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Abstract. We use viability techniques for solving Dirichlet problems with inequality constraints
(obstacles) for a class of Hamilton–Jacobi equations. The hypograph of the “solution” is defined as
the “capture basin” under an auxiliary control system of a target associated with the initial and
boundary conditions, viable in an environment associated with the inequality constraint. From the
tangential condition characterizing capture basins, we prove that this solution is the unique “upper
semicontinuous” solution to the Hamilton–Jacobi–Bellman partial differential equation in the Barron-
Jensen/Frankowska sense. We show how this framework allows us to translate properties of capture
basins into corresponding properties of the solutions to this problem. For instance, this approach
provides a representation formula of the solution which boils down to the Lax–Hopf formula in the
absence of constraints.
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1. Introduction.

1.1. Motivation. This article is motivated by macroscopic fluid models of
highway traffic, following the pioneering work of Lighthill and Whitham [64] and
Richards [78]. In their original work, the authors modeled highway traffic flow with
a first order hyperbolic partial differential equation with concave flux function, called
the Lighthill–Whitham–Richards (partial differential) equation. This model is the
seminal model for numerous highway traffic flow studies available in the literature
today [2, 45, 46, 63, 33, 87, 31]. It models the evolution of the density of vehicles on a
highway by a conservation law, in which the mathematical model of the flux function
inside the conservation law results from empirical measurements [60].

Solutions to such equations may have shocks (they are set-valued maps), which
model abrupt changes in vehicle density on the highway [2], and only model physical
phenomena to a certain degree. Hence discontinuous selections of these solutions are
investigated, for instance, the entropy solution [2] of Oleinik [73], which is acknowl-
edged to be the proper weak solution of this problem. There has been an extensive
literature on this problem, of which we single out the work of Bardos, Leroux, and
Nedelec [24]; see also Strub and Bayen [83].

Very few results applicable to highway traffic are available for control of first order
hyperbolic conservation laws. Differential flatness [50] has been successfully applied
to the Burgers equation (and therefore to the Lighthill–Whitham–Richards equation)
in [75] order to avoid the formation of such shockwaves. This analysis does not so far
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extend to the presence of shocks. Lyapunov-based techniques have also been applied
to the Burgers equation [62]. Adjoint-based methods have been successfully applied to
networks of Lighthill–Whitham–Richards equations in [57]; these results seem so far
the most promising, but they do not have guarantees to provide an optimal control
policy. Questions of interest in controlling first order partial differential equations
[66, 74, 82, 86], and in particular, Lighthill–Whitham–Richards equations, are still
open and difficult to solve due to the presence of shocks occurring in the solutions of
these partial differential equations [3, 20, 21, 32, 36, 42, 47, 48, 49, 58, 59, 61].

In order to alleviate the technical difficulties resulting from shocks present in solu-
tions of the Lighthill–Whitham–Richards equation, an alternate formulation consists
in considering the cumulated number of vehicles, widely used in the transportation
literature as well [70, 71, 72]. The cumulative number of vehicles can be thought of
as a primitive of the density over space. Formally, the evolution of the cumulated
number N(t, x) of vehicles is the solution of a Hamilton–Jacobi (partial differential)
equation of the form

∂N(t, x)

∂t
+ ψ

(
∂N(t, x)

∂x

)
= ψ(v(t)),

where the flux function ψ appearing in this Hamilton–Jacobi equation is in fact con-
cave as shown by the empirically measured flux function of the Lighthill–Whitham–
Richards equation [64, 78, 24, 83]. The function v(·) will be regarded as a control of
the Hamilton–Jacobi equation in forthcoming studies. It could, for example, model
the inflow of vehicles at the entrance of a stretch of highway. It is a given datum in
this paper.

The solution of this Hamilton–Jacobi equation has no shocks but is not necessarily
differentiable. It is only upper semicontinuous. Actually, the nondifferentiability of the
cumulated number of vehicles is closely related to the presence of the shocks of the
solution to the Lighthill–Whitham–Richards equation (see, for instance, [39, 40, 41]).

Since the Lighthill–Whitham–Richards equation and the Hamilton–Jacobi equa-
tion model the same physical phenomenon, and since both formulations are equiva-
lently used in the highway transportation literature, we single out in this paper the
study of the evolution of the cumulated number of vehicles in order to leverage the
extensive knowledge of Hamilton–Jacobi equations for which control and viability
techniques can be applied [65, 67, 68, 69, 76, 77, 81].

1.2. Contributions of the paper. We shall revisit this Hamilton–Jacobi equa-
tion by answering new questions as follows:

• introducing a nontrivial right-hand side;
• involving Dirichlet conditions;
• and, above all, imposing inequality constraints on the solution, for instance,

upper bounds on the cumulated number of vehicles, depending on time and
space variables.

For this purpose, we suggest using a novel point of view based on the concept of
capture basin of a target viable in an environment extensively studied in the frame-
work of viability theory; i.e., given a closed subset of a finite dimensional vector space
regarded as an environment, a closed subset of this environment considered as a target
and a control system, the viable capture basin is the subset of initial states of the
environment from which starts at least one evolution governed by the control system
viable in the environment until the finite time when it reaches the target (see Def-
inition 3.3). It happens that the hypograph of the solution to the Hamilton–Jacobi
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equation satisfying initial and Dirichlet conditions as well as inequality constraints is
the capture basin of an auxiliary target (involving initial and boundary conditions) vi-
able in an auxiliary environment (involving inequality constraints) under an auxiliary
control system (involving the flux function of the Hamilton–Jacobi equation).

Hence, anticipating this property, we define the viability hyposolution of the
Dirichlet problem for this Hamilton–Jacobi equation with constraints from this prop-
erty as being a viable capture basin (see Definition 4.1). Then we proceed by trans-
lating properties of viable capture basins (see [7], for instance) in the language of
partial differential equations for this particular case. We shall prove that the viability
hyposolution

1. is the unique generalized solution in the Barron-Jensen/Frankowska sense1

(a weaker concept of viscosity solution introduced by Crandall, Evans, and
Lions in [44, 43] for continuous solutions adapted to the case when solution
is only semicontinuous): Theorem 9.1;

2. is equivalently the unique upper semicontinuous solution in the contingent
Frankowska sense:2 Theorem 8.1;

3. satisfies the sup-linearity property and depends “hypocontinuously” on the
initial and Dirichlet conditions;

4. is represented by the Lax–Hopf formula [1] (see Theorem 5.1) in the ab-
sence of inequality constraints, a more involved representation formula (see
Theorem 5.5) in the presence of inequality constraints, upper estimates (maxi-
mum principle; see Proposition 5.3), and lower estimates (see Proposition 5.4).

The results presented in this article have since been applied to highway traffic
data [30, 29], using available algorithms to solve, in particular, viability problems
numerically [80, 37, 38].

1.3. Outline of the paper. In order to make the paper more readable, section 3
gathers some definitions, notations, and basic prerequisites of viability theory and con-
vex analysis for the convenience of readers who are not familiar with these topics. We
then state the problem and the main assumptions, which will not be repeated. We
next define the viability hyposolution to the nonhomogeneous Dirichlet/initial value
problem for our class of Hamilton–Jacobi equations under inequality constraints as
the capture basin of a target summarizing the Dirichlet/initial data viable in a target
associated with inequality constraints. Then, we translate the properties of capture
basins into the viability hyposolution, starting with a general representation formula
providing Lax–Hopf formulas in the absence of inequality constraints. We next check
that the viability hyposolution satisfies the Dirichlet and initial conditions as well as
the inequality constraints. The last three sections are devoted to the proof that the vi-
ability hyposolution is a solution to the Hamilton–Jacobi partial differential equation

1Frankowska proved that the epigraph of the value function of an optimal control problem—
assumed to be only lower semicontinuous—is semipermeable (i.e., invariant and backward viable)
under a (natural) auxiliary system. Furthermore, when it is continuous, its epigraph is viable and its
hypograph invariant [53, 54, 56]. By duality, the latter property is equivalent to the fact that the value
function is a viscosity solution of the associated Hamilton–Jacobi equation in the sense of Crandall
and Lions. See also [26, 22, 8] for more details. Such concepts have been extended to solutions of
systems of first order partial differential equations without boundary conditions by Frankowska and
the first author (see [14, 15, 16, 17, 18, 19] and Chapter 8 of [5]). See also [11, 12].

2Contingent inequalities were first introduced in [4] for characterizing Lyapunov functions and
value functions of a class of control problems and later, used in [84, 85] to investigate infinitesimal
properties of Lyapunov and value functions in differential games. The “backward inequality” was
introduced for the first time in [55, 56] to prove uniqueness of lower semicontinuous solutions of
Hamilton–Jacobi–Bellman equations. See also [23, 25, 27, 28, 34, 35].
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in two equivalent dual generalized senses by translating both the viability theorem
and the invariance theorem characterizing the capture basin in terms of either tan-
gential conditions or normal conditions, as it was done in a long series of papers by
Frankowska. Using tangential conditions, we express the viability hyposolution as a
solution to the Hamilton–Jacobi partial differential equation couched in terms of con-
tingent hypoderivatives, whereas using normal conditions, we characterize it in terms
of superdifferentials, as it was done independently by Barron-Jensen and Frankowska,
in the spirit of nonsmooth analysis and viscosity solutions. The presence of inequality
constraints complicates the technical formulation of the concept of solution at points
where the solution touches the boundary of the constraint, above all in the superdif-
ferential formulation, justifying the reason why we conclude this paper with this dual
characterization.

2. Statement of the problem. This section states the problem of interest for
this article. Section 3 provides all prerequisites for the concepts used in the later
sections for a reader not familiar with viability theory and convex analysis. No pre-
requisites from viability theory are required to read this section.

2.1. Notation. For notational convenience, and in order to avoid multiplication
of the letters used in the article, we have used the letters σ and τ is several different
ways, which depend on context; i.e., for σ, we have the following definitions, based on
context:
• Support function for some compact convex subset A ⊂ X, where σA(v) := σ(A, v) :=

supu∈A 〈u, v〉 is the support function of A. Note that the first argument of σ is a
set, while the second is a vector.

• Auxiliary min inf function σ(t, x, u) := min(t, τ(x, u)), defined in Theorem 5.1.
Note that this function has three arguments, which are one scalar t and two vectors
x and u of X.

• Auxiliary min inf functional σ(t, x, u(·)) = min(t, τ(x, u(·))), defined in the proof
of Theorem 5.1. Note that this function has three arguments, which are one scalar
t, one vector x ∈ X, and function u(·) (measurable, integrable).

Similarly for the notation τ is used as a
• Dummy variable τ , for example, in integrals. Note that τ has no argument.
• Pseudotime τ(t), for example, in (13). Note that τ(t) has one argument t which

corresponds to the running time of the corresponding differential inclusion.
• Auxiliary inf function τ(x, u) := infx+tu/∈K t, defined in Theorem 5.1. Note that

this function has two inputs, which are vectors x and u of X.
• Auxiliary inf functional τ(x, u(·)) := infx+

∫ t
0
u(τ)dτ /∈K t, defined in the proof of

Theorem 5.1. Note that this function has two inputs, which is one vector x ∈ X
and function u(·) (measurable, integrable).

We will use this notation in the rest of the article, and in each of the cases of interest,
the context, i.e., the number of arguments of τ , provides the proper definition.

2.2. Assumptions. We set X := R
n. Let us consider

1. a concave function ψ : X �→ R satisfying growth conditions

∀ v ∈ X, β − σA(v) ≤ ψ(v) ≤ δ − σA(v)

for some compact convex subset A ⊂ X, where σA(v) := supu∈A 〈u, v〉 is the
support function of A and where β ≤ δ.

2. a bounded continuous function v : R+ �→ Dom(ψ).
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3. an upper semicontinuous initial datum N0 : X �→ R+. We set N0(0, x) :=
N0(x) and N0(t, x) := −∞ if t > 0.

4. a closed subset K ⊂ X with nonempty interior Int(K) =: Ω and boundary
∂K =: Γ.

5. an upper semicontinuous boundary datum γ : R+ ×X �→ R, satisfying3

∀ x ∈ ∂K, N0(x) = γ(0, x) and ∀ t ≥ 0, ∀ x ∈ Int(K), γ(t, x) = −∞.

6. a Lipschitz function b : R+ ×X �→ R ∪ {−∞} setting the upper constraint.

We shall also assume in this paper that the data satisfy the following consistency
conditions:

(1)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(i) ∀ x ∈ ∂K, N0(x) = γ(0, x);
(ii) ∀ t ≥ 0, ∀ x ∈ K, max ( N0(t, x), γ(t, x)) ≤ b(t, x);

(iii) ∀ 0 ≤ r ≤ s, ∀ x ∈ ∂K, ∀ y ∈ ∂K, γ(r, x) − γ(s, y) ≤
〈

1

s− r

∫ s

r
v(τ)dτ, x− y

〉
;

(iv) ∀ x ∈ K, ∀ y ∈ ∂K, N0(x) ≤ inf
s≥0

(
γ(s, y) +

〈
1

s

∫ s

0
v(τ)dτ, x− y

〉)
,

which are needed only to prove that the Dirichlet/initial conditions are satisfied (see
Theorem 6.1). When the function v(·) ≡ v is constant, they boil down to

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(i) ∀ x ∈ ∂K, N0(x) = γ(0, x);
(ii) ∀ t ≥ 0, ∀ x ∈ K, max ( N0(t, x), γ(t, x)) ≤ b(t, x);
(iii) ∀ 0 ≤ r ≤ s, ∀ x ∈ ∂K, y ∈ ∂K, γ(r, x) − γ(s, y) ≤ 〈v, x− y〉;
(iv) ∀ x ∈ K, y ∈ ∂K, N0(x) ≤ inf

s≥0
γ(s, y) + 〈v, x− y〉.

Under the above mentioned assumptions that are assumed throughout this paper,
we shall solve the existence of a solution to the nonhomogenous Hamilton–Jacobi
equation

(2) ∀ t > 0, x ∈ Int(K),
∂N(t, x)

∂t
+ ψ

(
∂N(t, x)

∂x

)
= ψ(v(t))

satisfying the initial and Dirichlet conditions

(3)

{
(i) ∀ x ∈ K, N(0, x) = N0(x) (initial condition),
(ii) ∀ t ≥ 0, ∀ x ∈ ∂K, N(t, x) = γ(t, x) (Dirichlet boundary condition)

and the viability constraints

∀ t ≥ 0, x ∈ K, N(t, x) ≤ b(t, x) (upper inequality constraint).(4)

3This is not mandatory. We can take any function such that Dom(γ) ⊂ K is strictly contained in
K, an instance which may be useful for defining “guards” in impulse or hybrid systems, for instance.
Boundary conditions are obtained when Dom(γ) = ∂K.

D
ow

nl
oa

de
d 

06
/3

0/
16

 to
 1

28
.3

2.
19

6.
84

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DIRICHLET PROBLEMS FOR HAMILTON–JACOBI EQUATIONS 2353

Example. This equation is motivated by a commonly used first order model equa-
tion in highway traffic (Lighthill–Whitham–Richards equation) when X := R and
K := [ξ,+∞[, ψ a concave flux function vanishing at density 0 and at a jam density
ω > 0 and N(t, x) is the cumulated number of vehicles at time t and at location
x ∈ K. Consistency conditions (1) read in this case: N0(ξ) = γ(0, ξ) and

(5)

⎧⎪⎪⎨⎪⎪⎩
(i) ∀ t ≥ 0, ∀ x ∈ K, max ( N0(t, x), γ(t, x)) ≤ b(t, x);
(ii) ∀ 0 ≤ r ≤ s, γ(r, ξ) − γ(s, ξ) ≤ 0 (monotonocity);

(iii) ∀x ∈ K, N0(x) ≤ inf
s≥0

(
γ(s, ξ) +

〈
1

s

∫ s

0

v(τ)dτ, x− ξ

〉)
.

Then the trapezoidal flux function (such as the one proposed by Daganzo [45, 46])
defined by

ψ(v) =

⎧⎨⎩
ν�v if v ≤ γ�,
δ if v ∈ [γ�, γ�],
ν�(ω − v) if v ≥ γ�,

and the Greenshield flux function

ψ(v) =

⎧⎨⎩
νv if v ≤ 0,
ν
ωv(ω − v) if v ∈ [0, ω],
ν(ω − v) if v ≥ ω

satisfy the assumptions on the function ψ with A := [−ν�,+ν�] and A := [−ν,+ν],
respectively (see Lemma 7.2 in section 7).

We characterize the solution to this nonhomogenous Dirichlet/initial value prob-
lem with inequality constraints through the capture basin of a target defined by the
Dirichlet/initial conditions viable in an environment defined by inequality constraints
under an adequate control system.

3. Prerequisite from viability theory and convex analysis. Readers fa-
miliar with convex analysis and viability theory can skip this section and proceed
directly to section 4.

3.1. Some prerequisites from viability theory. Here, X := R
n and Y := R

m

denote finite dimensional vector spaces. Let f : X × Y �→ X be a single-valued map
describing the dynamics of a control system and U : X � Y the set-valued map
describing the state-dependent constraints on the controls.

First, any solution to a control system with state-dependent constraints on the
controls {

(i) x′(t) = f(x(t), u(t)),
(ii) u(t) ∈ U(x(t))

can be regarded as a solution to the differential inclusion x′(t) ∈ F (x(t)), where the
right-hand side is defined by F (x) := f(x, U(x)) := {f(x, u)}u∈U(x).

D
ow

nl
oa

de
d 

06
/3

0/
16

 to
 1

28
.3

2.
19

6.
84

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2354 J.-P. AUBIN, A. M. BAYEN, AND P. SAINT-PIERRE

We denote by S(x) ⊂ C(0,∞;X) the set of absolutely continuous functions t �→
x(t) ∈ X satisfying

for almost all t ≥ 0, x′(t) ∈ F (x(t))

starting at time 0 at x: x(0) = x. The set-valued map S : X � C(0,∞;X) is called
the solution map associated with F .

Therefore, from now on, as long as we do not need to implicate explicitly the
controls in our study, we shall replace control problems by differential inclusions.

We shall say that K is locally viable under F if from every x ∈ K starts a solution
x(·) to the differential inclusion x′ ∈ F (x) viable in K on the nonempty interval [0, Tx[
in the sense that

∀ t ∈ [0, Tx[, x(t) ∈ K

and that K is viable if we can take Tx = +∞. It is locally backward invariant under
F if for every t0 ∈ ]0,+∞[, x ∈ K, for all solutions x(·) to the differential inclusion
x′ ∈ F (x) arriving at x at time t0, there exists s ∈ [0, t0[ such that x(·) is viable in K
on the interval [s, t0], and backward invariant if we can take s = 0.

We denote by

Graph(F ) := {(x, y) ∈ X × Y | y ∈ F (x)}

the graph of a set-valued map F : X � Y and by Dom(F ) := {x ∈ X|F (x) �= ∅} its
domain.

Most of the results of viability theory are true whenever we assume that the
dynamics is Marchaud as follows.

Definition 3.1 (Marchaud map). We shall say that F is a Marchaud map if⎧⎪⎪⎨⎪⎪⎩
(i) the graph of F is closed,
(ii) the values F (x) of F are convex,
(iii) the growth of F is linear:

∃ c > 0 | ∀ x ∈ X, ‖F (x)‖ := supv∈F (x) ‖v‖ ≤ c(‖x‖ + 1).

We shall say that F is λ-Lipschitz if

∀ x, y ∈ X, F (x) ⊂ F (y) + λ‖x− y‖B,

where B is the unit ball.
This covers the case of Marchaud control systems, where (x, u) �→ f(x, u) is con-

tinuous, affine with respect to the controls u and with linear growth, and when U is
Marchaud.

We recall the following version of the important Theorem 3.5.2 of [5].
Theorem 3.2 (the stability theorem). Assume that F : X � X is Marchaud.

Then the solution map S is upper semicompact with nonempty values; this means that
whenever xn ∈ X converge to x in X and xn(·) ∈ S(xn) is a solution to the differential
inclusion x′ ∈ F (x) starting at xn, there exists a subsequence (again denoted by) xn(·)
converging to a solution x(·) ∈ S(x) uniformly on compact intervals.

We shall also need some other prerequisites from [5].
Definition 3.3 (capture basin of a target). Let C ⊂ K ⊂ X be two subsets, C

being regarded as a target, K as a constrained set. The subset Capt(K,C) of initial
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states x0 ∈ K such that C is reached in finite time before possibly leaving K by at
least one solution x(·) ∈ S(x0) starting at x0 is called the viable-capture basin of C
in K. A subset K is a repeller under F if all solutions starting from K leave K in
finite time. A subset D is locally backward invariant relative to K if all backward
solutions starting from D viable in K are actually viable in K.

We recall the following result of [10].

Theorem 3.4 (fixed-point characterization of capture basins). The viable-capture
basin Capt(K,C) of a target C viable in K is

1. the largest subset D satisfying C ⊂ D ⊂ K and D ⊂ Capt(D,C),
2. the smallest subset D satisfying C ⊂ D ⊂ K and Capt(K,D) ⊂ D, and
3. the unique subset D satisfying C ⊂ D ⊂ K and

D = Capt(K,D) = Capt(D,C).

The subset K\C denotes the intersection of K and the complement of C; i.e., it
is the set of elements of K which do not belong to C. We can derive the following
characterization of capture basin (see [7]).

Theorem 3.5 (viability characterization of capture basins). Let us assume that
F is Marchaud and that the subsets C ⊂ K and K are closed. If K\C is a repeller
(this is the case when K itself is a repeller), then the viable-capture basin Capt(K,C)
of the target C under S is the unique closed subset satisfying C ⊂ D ⊂ K and

(6)

{
(i) D\C is locally viable under S,
(ii) D is locally backward invariant relative to K.

The contingent cone TL(x) to L ⊂ X at x ∈ L is the set of directions v ∈ X such
that there exist sequences hn > 0 converging to 0 and vn converging to v satisfying
x+hnvn ∈ L for every n (see, for instance, [13] or [79] for more details). The (regular)
normal cone is the polar cone NL(x) := (TL(x))− of the contingent cone.

Definition 3.6 (Frankowska property). Let us consider a set-valued map F :
X � X and two subsets C ⊂ K and K. We shall say that a subset D between C and
K satisfies the Frankowska property with respect to F if

(7)

⎧⎨⎩
(i) ∀ x ∈ D\C, F (x) ∩ TD(x) �= ∅;
(ii) ∀ x ∈ D ∩ Int(K), −F (x) ⊂ TD(x);
(iii) ∀ x ∈ D ∩ ∂K, −F (x) ∩ TK(x) ⊂ TD(x).

Actually, conditions (7)(ii), (iii) boil down to the same condition,

∀ x ∈ D, −F (x) ∩ TK(x) ⊂ TD(x).

When K is further assumed to be backward locally invariant, the above conditions
(7) boil down to

(8)

{
(i) ∀ x ∈ D\C, F (x) ∩ TD(x) �= ∅;
(ii) ∀ x ∈ D, −F (x) ⊂ TD(x).

Theorem 3.5 and the viability4 and invariance theorems imply the following.

4See, for instance, Theorems 3.2.4, 3.3.2, and 3.5.2 of [5].
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Theorem 3.7 (tangential characterization of capture basins). Let us assume that
F is Marchaud, that K is closed, and that a closed subset C satisfies ViabF (K\C) = ∅.
Then the viable-capture basin CaptKF (C) is

1. the largest closed subset D satisfying C ⊂ D ⊂ K and

(9) ∀ x ∈ D\C, F (x) ∩ TD(x) �= ∅;

2. the unique closed subset D satisfying the Frankowska property (7) if F is
Lipschitz.

We provide the dual characterization of the capture basin in terms of normal
cones due to Frankowska.

Lemma 3.8 (normal characterization of capture basins). Let us assume that

∀ x ∈ K, 0 ∈ Int(F (x) + TK(x)).

Then property (7) is equivalent to the dual property

(10)

⎧⎨⎩
(i) ∀ x ∈ D\C, ∀ p ∈ ND(x), σ(F (x),−p) ≥ 0;
(ii) ∀ x ∈ D ∩ Int(K), ∀ p ∈ ND(x), σ(F (x),−p) ≤ 0;
(iii) ∀ x ∈ D ∩ ∂K, ∀ p ∈ ND(x), infq∈NK(x) σ(F (x), q − p) ≤ 0.

Proof. Whenever 0 ∈ Int(F (x)+TK(x)), Proposition 3.9 on page 50 of [6] implies
that the support function of −F (x) ∩ TK(x) is the inf-convolution of the support
functions of −F (x) and TK(x) as follows:

σ(−F (x) ∩ TK(x), p) = inf
q∈NK(x)

σ(F (x), q − p).

Consequently, inclusion −F (x) ∩ TK(x) ⊂ TD(x) is equivalent to

∀ p, inf
q∈NK(x)

σ(F (x), q − p) ≤ σ(TD(x), p),

which can be written

∀ p ∈ ND(x), inf
q∈NK(x)

σ(F (x), q − p) ≤ 0.

This concludes the proof.

3.2. Some prerequisites of convex analysis. We gather in this section nota-
tions and some results on convex analysis for the convenience of the reader not familiar
with this topic. Since the authors of most books on convex analysis have chosen to
study convex functions rather than concave ones, we have chosen to associate with
the concave function ψ the Fenchel transform ϕ� of ϕ := −ψ rather than the “concave
Fenchel” transform ψ� defined by the concave function

ψ�(u) := inf
p∈Dom(ψ)

[〈p, u〉 − ψ(p)] = −ϕ�(−u).

The basic theorem of convex analysis states that ψ = ψ�� if and only if ψ is con-
cave, upper semicontinuous, and nontrivial (i.e., Dom(ψ) := {p | ϕ(p) > −∞} �= 0).
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The epigraph Ep(ϕ) of an extended function ϕ is the set of pairs (x, λ) ∈ X × R

such that ϕ(x) ≤ λ, and the hypograph Hyp(ψ) of a function ψ is the set of pairs
(p, μ) ∈ X × R such that μ ≤ ψ(p). Note that the hypograph of ψ is related to the
epigraph of ϕ by the relation

(p, λ) ∈ Hyp(ψ) if and only if (p,−λ) ∈ Ep(ϕ).

An extended function is lower semicontinuous if and only if its epigraph is closed and
is upper semicontinuous if and only if its hypograph is closed.

Definition 3.9 (hypoderivatives and superdifferentials). The hypoderivative
D↓ψ(p) and the epiderivative D↑ϕ(p) are related to the tangent cones of the hypo-
graph of ψ and epigraph of ϕ by the relations

Hyp(D↓ψ(p)) := THyp(ψ)(p, ψ(p)) and Ep(D↑ϕ(p)) := TEp(ϕ)(p, ϕ(p)).

The superdifferential ∂+ψ(p) of the concave function ψ at p is defined by

u ∈ ∂+ψ(p) if ∀ v ∈ X, 〈u, v〉 ≥ D↓ψ(p)(v),

and the subdifferential ∂−ϕ(p) is defined by

u ∈ ∂−ϕ(p) if ∀ v ∈ X, 〈u, v〉 ≤ D↑ϕ(p)(v).

We infer that

∀ v ∈ X, D↓ψ(p)(v) = −D↑ϕ(p)(v)

and that

u ∈ ∂+ψ(p) if and only if u ∈ −∂−ϕ(p).

The polar cone P− of a given set P is defined by

P− = {p ∈ X� | ∀x ∈ P, 〈p, x〉 ≤ 0},

where X� is the dual space of X, and the normal cone NK(x) := TK(x)− to K at
x ∈ K we use in this paper is the polar cone to the contingent cone to K at x ∈ K.
The superdifferential ∂+ψ(p) and the subdifferential ∂−ϕ(p) are related to the normal
cones of the hypograph of ψ and epigraph of ϕ by the relations

u ∈ ∂+ψ(p) if and only if (−u, 1) ∈ NHyp(ψ)(p, ψ(p))

and

u ∈ ∂−ϕ(p) if and only if (u,−1) ∈ NEp(ϕ)(p, ϕ(p)).

Recall the Legendre inversion formula

u ∈ −∂+ψ(p) if and only if p ∈ ∂−ϕ
�(u)

and the (decreasing) monotonicity property of superdifferential maps p � ∂+ψ(p) of
a concave function,

∀ ui ∈ ∂+ψ(pi), i = 1, 2, 〈u1 − u2, p1 − p2〉 ≤ 0.

The subdifferential ∂−σ(K, p) of the support function is defined by the support
zone {u ∈ K such that σ(K, p) = 〈p, u〉} of p in K. See [6] or [79] for more details.
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4. The viability hyposolution. The assumption that the flux function ψ is
concave and upper semicontinuous plays a crucial role for defining the viability hy-
posolution. Indeed, the Fenchel theorem allows us to characterize it by

(11) ψ(p) = inf
u∈Dom(ϕ�)

[ϕ�(u) − 〈p, u〉],

where ϕ� is the Fenchel conjugate function, which is the convex lower semicontinuous
function defined by

(12) ϕ�(u) := sup
p∈Dom(ψ)

[〈p, u〉 + ψ(p)].

We introduce the auxiliary characteristic control system,

(13)

⎧⎨⎩
τ ′(t) = −1,
x′(t) = u(t),
y′(t) = ϕ�(u(t)) − ψ(v(τ(t))), where u(t) ∈ Dom(ϕ�).

The function τ(t) corresponds to a countdown, i.e., a pseudotime decaying at rate
−1. This technique of augmentation of a dynamics by τ ′(t) =−1 is common in the
Hamilton–Jacobi partial differential equation literature; see, for example, [55, 56].
To be rigorous, we have to mention once and for all that the controls u(·) are
measurable integrable functions with values in Dom(ϕ�), and thus, ranging over
L1(0,∞; Dom(ϕ�)), and that the above system of differential equations is valid for
almost all t ≥ 0.

We set c(t, x) := max(N0(t, x), γ(t, x)), defined by

c(t, x) :=

⎧⎨⎩
−∞ if t > 0 and x ∈ Ω := Int(K),
N0(x) if t = 0 and x ∈ K,
γ(t, x) if t ≥ 0 and x ∈ Γ := ∂K.

We introduce the environment K := Hyp(b) is the subset of triples (T, x, y) ⊂
R+ ×X × R such that y ≤ b(T, x) (this is the hypograph of the function b) and the
target C := Hyp(c) defined as the subset of triples (T, x, y) ⊂ R+ ×X × R such that
y ≤ c(T, x) (which is the hypograph of the function c).

Definition 4.1 (the viability hyposolution). The capture basin Capt(13)(K, C)
of a target C viable in the environment K under control system (13) is the subset of
initial states (t, x, y) such that there exists a measurable control u(·) such that the
associated solution

s �→
(
t− s, x +

∫ s

0

u(τ)dτ, y +

∫ s

0

(ϕ�(u(τ)) − ψ(v(t− τ)))dτ

)
is viable in K until it reaches the target C.

The viability hyposolution N is defined by

(14) N(t, x) := sup
(t,x,y)∈Capt(13)(K,C)

y.

Note that Hyp(M) ⊂ Hyp(N) if and only if N is pointwise larger than M.
Therefore, using hypographs, the two order relations coincide.

We shall prove the following.
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Theorem 4.2 (nonhomogenous Dirichlet/initial value problem with inequality
constraints). The viability hyposolution N defined by (14) is the largest upper semi-
continuous solution to Hamilton–Jacobi equation (2) satisfying initial and Dirichlet
conditions (3) and inequality constraints (4) in both the contingent solution sense (see
(28)) and in the contingent normal sense (see (31)). If the functions ψ, ϕ�, and v are
furthermore Lipschitz, then the viability hyposolution N is its unique upper semicon-
tinuous solution in both the contingent Frankowska sense (see (29) and (30)) and in
the Barron-Jensen/Frankowska sense (see (32), (33) and Theorems 8.1 and 9.1 for
the precise statement).

Remark. Note that the concept of “largest solution” coincides with the pointwise
one. Inequalities (32) and (33) defining the concept of generalized solutions depend on
the type of assumption made on the flux function ψ. The present work uses a standard
assumption in transportation engineering, namely that the flux ψ is concave, whereas
a majority of mathematical studies of Hamilton–Jacobi partial differential equations
assume that ψ is convex. This change induces an unusual modification of the signs
in the inequalities defining the concept of Barron-Jensen/Frankowska solutions. Un-
der the assumption of convex fluxes, this solution would be lower semicontinuous
(and sometimes called the lower semicontinuous solution to Hamilton–Jacobi equa-
tions). Under the assumption imposed by transportation engineering considerations,
the present solution is upper semicontinuous and the signs in inequalities (32) and (33)
are changed. The mathematical formulation of the engineering problem thus led to
a slightly unusual framework for solving this Hamilton–Jacobi equation. The convex
version of this paper will appear in the forthcoming book [9].

We shall derive this theorem and other results from the properties of capture
basins gathered in [7, 10]. Since the capture basin of a union of targets is the union of
the capture basins of these targets, we infer that whenever c := supi ci is the upper
envelope of a family of functions ci, then the viability hyposolution is the upper
envelope

∀ t ≥ 0, x ∈ X, N(t, x) = sup
i

Nci(t, x)

of the solutions Nci
(sup-linearity property).

In particular, since c(t, x) := max( N0(t, x), γ(t, x)) (extended to −∞ when t > 0
or x ∈ Int(K)), we obtain the decomposition formula

(15) N(t, x) = max (NN0(t,x),Nγ(t,x))

in terms of initial condition component NN0 and the Dirichlet component Nγ of the
viability hyposolution N defined by

{
NN0(t, x) := sup(t,x,y)∈Capt(13)(Hyp(b),Hyp(N0)) y,

Nγ(t, x) := sup(t,x,y)∈Capt(13)(Hyp(b),Hyp(γ)) y.

The viability hyposolution depends continuously on the data in the following
sense: If the hypographs of a sequence of initial data cj converge in the upper Painlevé–
Kuratowski sense (see, for instance, [13]) to the hypograph of data c, then the upper
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Painlevé–Kuratowski limit of the hypographs of the solutions Nj associated with data
cj is contained in the hypograph of the hyposolution N associated with data c (upper
hypocontinuity property). If the functions ψ, ϕ�, and v are furthermore Lipschitz,
the hypograph of the hyposolution N associated with data c is contained in the lower
Painlevé–Kuratowski limit of the hypographs of the solutions Nj associated with data
cj (lower hypocontinuity property), so that both the upper and lower limits coincide
with the hypograph of the hyposolution N (hypoconvergence of the solutions; see
[13] or [79] for a definition). These statements follow from Theorem 6.6 of [7] stating
that if the system is both Marchaud and Lipschitz, the capture basin of a Painlevé–
Kuratowski limit of targets is the Painlevé–Kuratowski limit of the capture basins of
the targets.

5. Lax–Hopf formula and estimates of the solution.

5.1. The Lax–Hopf formula for Dirichlet problems. When there is no
inequality constraint, we prove that the viability hyposolution can be represented ex-
plicitly as a simple maximization problem involving the Fenchel conjugate ϕ� defined
by (12).

Theorem 5.1 (the Lax–Hopf formula). Let us consider the case without inequality
constraints and set

τ(x, u) := inf
x+tu/∈K

t and σ(t, x, u) := min(t, τ(x, u)).

Then the viability hyposolution (17) can be written

(16)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

N(t, x)

= sup
{u∈Dom(ϕ�)}

[
c(t− σ(t, x, u), x + σ(t, x, u)u) − σ(t, x, u)ϕ�(u)

+

∫ t

t−σ(t,x,u)

(ψ(v(τ)))dτ

]
.

Using the decomposition N(t, x) = max (NN0(t, x),Nγ(t, x)), we derive the more
explicit formula

(17)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

NN0(t, x) = sup
u∈Dom(ϕ�)

(N0(x + tu) − tϕ�(u)) +

∫ t

0

ψ(v (τ))dτ,

Nγ(t, x) = sup
{u∈Dom(ϕ�)|τ(x,u)≤t}

[
γ (t− τ(x, u), x + τ(x, u)u) − τ(x, u)ϕ�(u)

+

∫ t

t−τ(x,u)

ψ(v (τ))dτ

]

involving the initial and Dirichlet conditions.

Proof. Let us associate the following with u(·):

τ(x, u(·)) := inf
x+
∫ t
0
u(τ)dτ /∈K

t and σ(t, x, u(·)) = min(t, τ(x, u(·))).
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The formula is derived from the general representation formula⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
N(t, x) = sup

u(·)

[
c

(
t− σ(t, x, u(·)), x +

∫ σ(t,x,u(·))

0

u(τ)dτ

)
−
∫ σ(t,x,u(·))

0

ϕ�(u(τ))dτ

+

∫ t

t−σ(t,x,u(·))
ψ(v(τ))dτ

]

of the viability hyposolution without constraints given by Corollary 5.6.

We proceed in two steps.

1. Taking constant controls u(·) ≡ u and observing that τ(x, u) = τ(x, u(·)), we
infer that

sup
u∈Dom(ϕ�)

(c (t− σ(t, x, u), x + σ(t, x, u)u) − σ(t, x, u)ϕ�(u))

+

∫ t

t−σ(t,x,u)

ψ(v(τ))dτ ≤ N(t, x).

2. Let us associate with u(·) the function û defined by û(s) := 1
s

∫ s
0
u(τ)dτ . We

first observe that

τ(x, u(·)) = τ(x, û(τ(x, u(·)))).

Since ϕ� is convex and lower semicontinuous and ψ is concave and upper
semicontinuous, the Jensen inequality implies

ϕ�

(
1

s

∫ s

0

u(τ)dτ

)
≤ 1

s

∫ s

0

ϕ�(u(τ))dτ

and

1

s

∫ s

0

ψ(v(t− τ))dτ ≤ ψ

(
1

s

∫ t

t−s

v(τ)dτ

)
,

and thus

(18)∫ s

0

ψ(v(t− τ))dτ −
∫ s

0

ϕ�(u(τ))dτ ≤ s

(
ψ

(
1

s

∫ t

t−s

v(τ)dτ

)
− ϕ� (û(s))

)
.

Consequently, setting t� := σ(t, x, u(·)) = τ(x, û(σ(t, x, u(·)))) and u� :=
û(t�), we obtain inequalities⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c

(
t− t�, x +

∫ t�

0

u(τ)dτ

)
−
∫ t�

0

ϕ�(u(τ))dτ +

∫ t

t−t�
ψ(v(τ))dτ

≤ c
(
t− t�, x + t�u�

)
− t�ϕ�(u�) +

∫ t

t−t�
ψ(v(τ))dτ

≤ sup
{u∈Dom(ϕ�)}

(c (t− σ(t, x, u), x + σ(t, x, u)u) − σ(t, x, u)ϕ�(u))

+

∫ t

t−σ(t,x,u)

ψ(v(τ))dτ.
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Therefore, by taking the supremum, we obtain

N(t, x) ≤ supu∈Dom(ϕ�) (c (t− σ(t, x, u), x + σ(t, x, u)u) − σ(t, x, u)ϕ�(u))

+

∫ t

t−σ(t,x,u)

ψ(v(τ))dτ.

This completes the proof of the Lax–Hopf inequality.
Corollary 5.2 (case of the traffic model). When X := R, K := [ξ,+∞[, ψ

is a concave flux function vanishing at density 0 and at a jam density ω > 0, and
N(t, x) is the cumulated number of vehicles at time t and at location x ∈ K. Con-
sistency conditions (5) imply the existence of a unique upper semicontinuous solution
N(t, x) = max (NN0(t, x),Nγ(t, x)) to this problem in the Barron-Jensen/Frankowska
sense satisfying the Lax–Hopf formula

(19)⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
NN0(t, x) = sup

u∈Dom(ϕ�)

(
N0(x + tu) − tϕ�(u) +

∫ t

0

ψ(v (t− τ))dτ

)
,

Nγ(t, x) =

sup
{u∈Dom(ϕ�)|u≤ ξ−x

t }

(
γ

(
t− ξ − x

u
, ξ

)
− ξ − x

u
ϕ�(u) +

∫ ξ−x
u

0

ψ(v (t− τ))dτ

)
.

5.2. A posteriori estimates. The maximum principle, an a priori upper esti-
mate of a solution of a partial differential equation (whether it exists or not) is here
obtained as an a posteriori estimate, a property of the viability hyposolution.

Proposition 5.3 (upper estimate of the viability hyposolution). The viability
hyposolution satisfies

N(t, x) ≤ sup
u∈Dom(ϕ�)

(
c (t− σ(t, x, u), x + σ(t, x, u)u) −

〈
u,

∫ t

t−σ(t,x,u)

v(τ)dτ

〉)
.

Consequently, the viability hyposolution satisfies the following ( a posteriori in-
stead of a priori) estimate

N(t, x) ≤ sup
t≥0, x∈K

c(t, x) + t Diam(Dom(ϕ�)) sup
t≥0

‖v(t)‖

(maximum principle).
Proof. Fix u ∈ Dom(ϕ�) and set σ(t, x, u) =: s. Definition (12) of the conjugate

function implies

(20) ψ

(
1

s

∫ t

t−s

v(τ)dτ

)
− ϕ�(u) ≤ −

〈
1

s

∫ t

t−s

v(τ)dτ, u

〉
.

Consequently,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c (t− σ(t, x, u), x + σ(t, x, u)u) − σ(t, x, u)ϕ�(u) +

∫ t

t−σ(t,x,u)

(ψ(v(τ)))dτ

≤ c (t− σ(t, x, u), x + σ(t, x, u)u) −
〈
u,

∫ t

t−σ(t,x,u)

v(τ)dτ

〉

≤ sup
w∈Dom(ϕ�)

(
c (t− σ(t, x, w), x + σ(t, x, w)w) −

〈
w,

∫ t

t−σ(t,x,w)

v(τ)dτ

〉)
.
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Taking the supremum over u ∈ Dom(ϕ�), Lax–Hopf formula (16) implies the
upper estimate

N(t, x) ≤ sup
u∈Dom(ϕ�)

(
c (t− σ(t, x, u), x + σ(t, x, u)u) −

〈
u,

∫ t

t−σ(t,x,u)

v(τ)dτ

〉)
.

This completes the proof.

In the same way, we provide a lower estimate of the solution.

Proposition 5.4 (lower estimate). Assume that v(t) := v is constant and, for
simplicity, that the function ψ is differentiable. Then

c(t− σ(t, x,−ψ′(v)), x− σ(t, x,−ψ′(v))ψ′(v)) + σ(t, x, ψ′(v)) 〈v, ψ′(v)〉 ≤ N(t, x).

Consequently, the hyposolution is nonnegative on its positivity domain Dom+(N),
defined as the subset of pairs (t, x) ∈ R+ ×K such that

c(t− σ(t, x,−ψ′(v)), x− σ(t, x,−ψ′(v))ψ′(v)) + σ(t, x,−ψ′(v)) 〈v, ψ′(v)〉 ≥ 0.

Proof. By Definition 3.9 of the superdifferential,

∀ u ∈ ∂+ψ(v), ψ(v) − ϕ�(−u) = 〈v, u〉.

Therefore, if ψ is differentiable, taking u := −ψ′(v) as the unique element of
−∂+ψ(v) = ∂−ϕ(v), the Legendre equality ψ(v) − ϕ�(−ψ′(v)) = 〈v, ψ′(v)〉 yields⎧⎨⎩

c(t− σ(t, x,−ψ′(v)), x− σ(t, x,−ψ′(v))ψ′(v)) + σ(t, x,−ψ′(v)) 〈v, ψ′(v)〉
= c(t− σ(t, x, u), x + σ(t, x, u)u) − σ(t, x, u) 〈v, u〉
= c(t− σ(t, x, u), x + σ(t, x, u)u) + σ(t, x, u)(ψ(v) − ϕ�(u)) ≤ N(t, x)

thanks to the Lax–Hopf formula.

5.3. General representation formula. We have derived Lax–Hopf formula
(16) from a general representation formula (21) valid when there is viability con-
straints.

Theorem 5.5 (representation formula of the viability solution (the case with
constraints)). We already set

τ(x, u(·)) := inf
x+
∫ t
0
u(τ)dτ /∈K

t and σ(t, x, u(·)) = min(t, τ(x, u(·))).

The viability hyposolution can be represented in the form

(21)⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

N(t, x) = sup
u(·)

[
min

(
c

(
t− σ(t, x, u(·)), x +

∫ σ(t,x,u(·))

0

u(τ)dτ

)
−
∫ σ(t,x,u(·))

0

ϕ�(u(τ))dτ +

∫ t

t−σ(t,x,u(·))
ψ(v(τ))dτ,

inf
s∈[0,σ(t,x,u(·))]

(
b

(
t− s, x +

∫ s

0

u(τ)dτ

)
−
∫ s

0

ϕ�(u(τ))dτ +

∫ t

t−s

ψ(v(τ))dτ

))]
.
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Using the decomposition N(t, x) = max ( NN0
(t, x),Nγ(t, x)), this formula boils

down to⎧⎪⎪⎨⎪⎪⎩
NN0(t, x) = sup

u(·)

[
min

(
N0

(
x +

∫ t

0

u(τ)dτ

)
−
∫ t

0

ϕ�(u(τ))dτ +

∫ t

0

ψ(v(τ))dτ,

inf
s∈[0,t]

(
b

(
t− s, x +

∫ s

0

u(τ)dτ

)
−
∫ s

0

ϕ�(u(τ))dτ +

∫ t

t−s

ψ(v(τ))dτ

)]
and⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Nγ(t, x) = sup
{u(·)|τ(x,u(·))≤t}

[
min

(
γ

(
t− τ(x, u(·)), x +

∫ τ(x,u(·))

0

u(τ)dτ

)
−
∫ τ(x,u(·))

0

ϕ�(u(τ))dτ +

∫ t

t−τ(x,u(·))
ψ(v(τ))dτ,

inf
s∈[0,τ(x,u(·))]

(
b

(
t− s, x +

∫ s

0

u(τ)dτ

)
−
∫ s

0

ϕ�(u(τ))dτ +

∫ t

t−s

ψ(v(τ))dτ

))]
.

Proof. We begin by observing that a solution (τ(·), x(·), y(·)) to control system
(13) starting from (t, x, y) is given by τ(s) = t− s, x(s) = x +

∫ s
0
u(r)dr and

y(s) = y +

∫ s

0

(ϕ�(u(r)) − ψ(v(t− r)))dr

for some u(·).
Therefore, to say that (t, x, y) belongs to the capture basin Capt(13)(K, C) amounts

to saying that there exists a solution (τ(·), x(·), y(·)) to the characteristic control
system (13) starting from (t, x, y) and t� ∈ [0, t] such that

1. (t− t�, x(t�), y(t�)) belongs to the target C, i.e., such that

y(t�) := y +

∫ t�

0

(ϕ�(u(τ)) − ψ(v(t− τ)))dτ ≤ c (t− t�, x(t�))

= c

(
t− t�, x +

∫ t�

0

u(τ)dτ

)
.

2. For all s ∈ [0, t�], (t − s, x(s), y(s)) belongs to the environment K, i.e., such
that

y(s) = y +

∫ s

0

(ϕ�(u(τ)) − ψ(v(t− τ)))dτ ≤ b(t− s, x(s))

= b

(
t− s, x +

∫ s

0

u(τ)dτ

)
.

This implies that

y ≤ min

⎛⎜⎜⎜⎝
c

(
t− t�, x +

∫ t�

0

u(τ)dτ

)
−
∫ t�

0

(ϕ�(u(τ)) − ψ(v(t− τ)))dτ,

inf
s∈[0,t�]

b

(
t− s, x +

∫ s

0

u(τ)dτ

)
−
∫ s

0

(ϕ�(u(τ)) − ψ(v(t− τ)))dτ

⎞⎟⎟⎟⎠ .
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Since y is finite, this implies that c(t− t�, x +
∫ t�
0
u(τ)dτ) must be finite, and thus,

that

1. either t− t� = 0, in which case c(t− t�, x +
∫ t�
0
u(τ)dτ) = N0(x +

∫ t
0
u(τ)dτ);

2. or x(t�) ∈ ∂K, which means that t� = τ(x, u(·)) = σ(t, x, u(·)) ≤ t, in which
case

c

(
t− t�, x +

∫ t�

0

u(τ)dτ

)
= γ

(
t− σ(t, x, u(·)), x +

∫ σ(t,x,u(·))

0

u(τ)dτ

)
.

This implies that N(t, x) ≤ V(t, x), where⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

V(t, x) = sup
u(·)

(
min

(
c

(
t− σ(t, x, u(·)), x +

∫ σ(t,x,u(·))

0

u(τ)dτ

)
−
∫ σ(t,x,u(·))

0

ϕ�(u(τ))dτ +

∫ t

t−σ(t,x,u(·))
ψ(v(τ))dτ,

inf
s∈[0,σ(t,x,u(·))]

(
b

(
t− s, x +

∫ s

0

u(τ)dτ

)
−
∫ s

0

ϕ�(u(τ))dτ +

∫ t

t−s

ψ(v(τ))dτ

)))
.

For proving the converse inequality, we associate with every ε > 0 a control
t �→ uε(t) ∈ Dom(ϕ�) such that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

V(t, x) − ε ≤ min

(
c

(
t− σ(t, x, uε(·)), x +

∫ σ(t,x,uε(·))

0

uε(τ)dτ

)
−
∫ σ(t,x,uε(·))

0

ϕ�(uε(τ))dτ +

∫ t

t−σ(t,x,uε(·))
ψ(v(τ))dτ,

inf
s∈[0,σ(t,x,uε(·))]

(
b

(
t− s, x +

∫ s

0

u(τ)dτ

)
−
∫ s

0

ϕ�(uε(τ))dτ +

∫ t

t−s

ψ(v(τ))dτ

))
.

Therefore, setting xε(t) := x +
∫ t
0
uε(s)ds and

yε(t) := V(t, x) − ε +

∫ t

0

(ϕ�(uε(r)) − ψ(v(t− r))) dr

we observe that the function s �→ (t− s, xε(s), yε(s)) starts from (t, x,V(t, x)−ε), is a
solution to characteristic control system (13), viable in K for s ≤ σ(t, x, uε(·)) because

yε(s) = V(t, x) − ε +

∫ s

0

(ϕ�(uε(r)) − ψ(v(t− r))dr) ≤ b (t− s, xε(s)) ,

and reaches the target C := Hyp(c) at time tε := σ(t, x, uε(·)),

yε(tε) = V(t, x) − ε +

∫ tε

0

(ϕ�(uε(r)) − ψ(v(t− r))) dr ≤ c (t− tε, xε(tε)) .

This implies that (t, x,V(t, x) − ε) belongs to the capture basin Capt(13)(K, C),
and thus, that V(t, x) − ε ≤ N(t, x). Letting ε converge to 0 provides the converse
inequality, and thus, the representation formula we were looking for.
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Corollary 5.6 (representation formula of the viability solution (the case with-
out constraints)). Without inequality constraints, the viability hyposolution can be
represented in the form⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

N(t, x) = sup
u(·)

(∫ t

t−σ(t,x,u(·))
ψ(v(τ))dτ

+ c

(
t− σ(t, x, u(·)), x +

∫ σ(t,x,u(·))

0

u(τ)dτ

)
−
∫ σ(t,x,u(·))

0

ϕ�(u(τ))dτ

)
.

6. Dirichlet/initial conditions and inequality constraints. We begin by
checking that the viability hyposolution satisfies the initial condition, the Dirichlet
condition, and the inequality constraints.

Theorem 6.1 (Dirichlet/initial conditions and inequality constraints). Consis-
tency conditions (1) imply that the viability hyposolution satisfies the initial and
Dirichlet conditions (3) and inequality constraints (4).

Proof. Inclusions

C := Hyp(c) ⊂ Capt(13)(K, C) ⊂ K := Hyp(b)

imply that

∀ t ≥ 0, ∀ x ∈ K, c(t, x) ≤ N(t, x) ≤ b(t, x),

and thus inequality constraint N(t, x) ≤ b(t, x) and inequalities N0(x) ≤ N(0, x)
for all x ∈ K and γ(t, x) ≤ N(t, x) for all t ≥ 0 and x ∈ ∂K. We now prove by
contradiction that consistency conditions (1) imply converse inequalities N0(x) ≥
N(0, x) for all x ∈ K and γ(t, x) ≥ N(t, x) for all t ≥ 0 and x ∈ ∂K that we
summarize in

∀ (t, x) ∈ Dom(c), N(t, x) ≤ c(t, x).

Assume that there exist (t, ξ) ∈ Dom( c) and ε > 0 such that

N(t, ξ) = c(t, ξ) + ε.

Since (t, ξ,N(t, ξ)) belongs to the capture basin Capt(13)(Hyp(b),Hyp(c)), there
exists a solution (τ(·), x(·), y(·)) to the characteristic control system (13) starting
from (t, ξ,N(t, ξ)) and t� > 0 such that (t− t�, x(t�), y(t�)) belongs to the hypograph

Hyp(c); i.e., setting x(t�) = ξ +
∫ t�
0
u(τ)dτ = η, we obtain

y(t�) = N(t, ξ) +

∫ t�

0

ϕ�(u(τ))dτ −
∫ t�

0

ψ(v(t− τ))dτ ≤ c(t− t�, η).

Inequality (18) and definition (20) imply

(22)

∫ s

0

ψ(v(t− τ))dτ −
∫ s

0

ϕ�(u(τ))dτ ≤ −
〈

1

s

∫ t

t−s

v(τ)dτ, û(s)

〉
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Piecing these inequalities together and taking s = t�, we infer that⎧⎪⎪⎨⎪⎪⎩
c(t, ξ) + ε +

〈
1

t�

∫ t

t−t�
v(τ)dτ, η − ξ

〉
≤ N(t, ξ) +

∫ t�

0

ϕ�(u(τ))dτ −
∫ t�

0

ψ(v(t− τ))dτ ≤ c(t− t�, η),

from which we deduce that

ε ≤ c(t− t�, η) − c(t, ξ) −
〈

1

t�

∫ t

t−t�
v(τ)dτ, η − ξ

〉
.

Consistency conditions (1) can be written in the form

∀ 0 ≤ r ≤ s, ∀ x ∈ K, y ∈ ∂K, c(r, x) − c(s, y) ≤
〈

1

s− r

∫ s

r

v(τ)dτ, x− y

〉
.

Taking r := t− t�, s := t, x := η, and y := ξ, we obtain the contradiction ε ≤ 0, and
thus, we proved that for any (t, ξ) ∈ Dom(c), N(t, ξ) = c(t, ξ).

7. Other auxiliary systems. For proving that the viability hyposolution is the
solution, in a generalized sense, to the Hamilton–Jacobi partial differential equation
derived from the tangential or normal conditions characterizing capture basins, we
need assumptions that control system (13) does not satisfy.

The two inequalities characterizing the Barron-Jensen/Frankowska solution follow
from the two inclusions characterizing the Frankowska property of the capture basin
(Definition 3.6). One is derived from the viability theorem and requires the assumption
that F is Marchaud (upper semicontinuous, linear growth, with convex images); the
other one is derived from the invariance theorem, valid whenever F is Lipschitz with
closed values, without bounds on the size of their images (see Theorems 3.7 and 3.8).
This is the reason why we introduce below two new systems, (23) and (24). The first
one complies with the “Marchaud assumptions” of the viability theorem, so that the
capture basin under it will satisfy the first inclusion of the Frankowska property, the
second one to the “Lipschitz assumptions” of the invariance theorem, so that the
capture basin under it will satisfy the second inclusion of the Frankowska property.
The aim of this section is to derive from the inclusions of the Frankowska property the
corresponding inequalities defining the Barron-Jensen/Frankowska property. However,
to conclude, we need to prove that the capture basin is the same under the original
system and the two new ones. This is achieved by our proof; i.e., the capture basin
being the same under the three systems, it captures these two properties, and thus,
these two inequalities, each valid under the assumptions made (convexity with bounds
for the one deriving from the viability theorem and Lipschitz property without bounds
for the other one deriving from the invariance theorem).

It happens that the capture basin of the hypograph of c viable in the hypograph
of b under control system (13) is still the capture basin under other auxiliary sys-
tems which satisfy these assumptions, so we shall be able to transfer the theorems
concerning capture basins.

The function ψ being concave and finite, it is then continuous so that, the function
v(·) being bounded, the constant

α := sup
u∈Dom(ϕ�)

ϕ�(u) − inf
τ≥0

ψ(v(τ))
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is finite by Lemma 7.3. The new characteristic control systems are defined by

(23)

⎧⎪⎪⎨⎪⎪⎩
τ ′(t) = −1,
x′(t) = u(t) where u(t) ∈ Dom(ϕ�),
y′(t) = −ψ(v(τ(t))) + ϕ�(u(t)) + π(t)

where π(t) ∈ [0, α + ψ(v(τ(t)) − ϕ�(u(t)))]

and

(24)

⎧⎨⎩
τ ′(t) = −1,
x′(t) = u(t) where u(t) ∈ Dom(ϕ�),
y′(t) = −ψ(v(τ(t))) + ϕ�(u(t)) + π(t) where π(t) ≥ 0,

where we added a new control π ranging over different intervals.

Lemma 7.1 (equality between capture basins). The capture basins of the hypo-
graph of the function c by systems (13), (23), and (24) coincide as follows:

Capt(24)(Hyp(b),Hyp(c)) = Capt(23)(Hyp(b),Hyp(c)) = Capt(13)(Hyp(b),Hyp(c)).

Furthermore,

Capt(23)(Hyp(b),Hyp(c)) = Capt(23)(Hyp(b),Hyp(c)) − {0} × {0} × R+

(where in a vector space, A−B := {a− b}a∈A, b∈B).

Proof. Inclusions

Capt(13)(Hyp(b),Hyp(c)) ⊂ Capt(23)(Hyp(b),Hyp(c)) ⊂ Capt(24)(Hyp(b),Hyp(c))

are obvious. For proving that

Capt(24)(Hyp(b),Hyp(c)) ⊂ Capt(13)(Hyp(b),Hyp(c)),

let us consider an element (t, x, y) ∈ Capt(24)(Hyp(b),Hyp(c)). This means that

there exist u(·) ∈ L1(0,+∞; Dom(ϕ�)) and a corresponding solution (τ(·), x(·), y(·))
to the characteristic control system (24) starting from (t, x, y) given by τ(s) = t− s,
x(s) = x +

∫ s
0
u(r)dr, and

(25) y(s) ≥ y −
∫ s

0

(ψ(v(t− r)) − ϕ�(u(r))) dr

and there exists t� ∈ [0, t] such that (t−t�, x(t�), y(t�)) ∈ Hyp(c) and, for all s ∈ [0, t�],
(t− s, x(s), y(s)) ∈ Hyp(b). Setting

y0(s) := y +

∫ s

0

(ϕ�(u(r)) − ψ(v(t− r))) dr
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we infer that (τ(·), x(·), y0(·)) is a solution to the characteristic control system (13)
starting from (t, x, y) viable in the environment Hyp(b) because

∀ s ∈ [0, t�], y0(s) ≤ y(s) ≤ b(t− s, x(s))

until time t�, where it reaches the target Hyp(c) because

y0(t
�) ≤ y(t�) ≤ c(t− t�, x(t�)).

This means that (t, x, y) ∈ Capt(13)(Hyp(b),Hyp(c)).
We also observe that whenever (t, x, y) ∈ Capt(24)(Hyp(b),Hyp(c)) and z ≤ y,

inequality (25) implies that

y(s) ≥ y −
∫ s

0

(ψ(v(t− r)) − ϕ�(u(r))) dr ≥ z −
∫ s

0

(ψ(v(t− r)) − ϕ�(u(r))) dr

and thus that (t, x, z) also belongs to the capture basin, so that,

Capt(23)(Hyp(b),Hyp(c)) = Capt(23)(Hyp(b),Hyp(c)) − {0} × {0} × R+.

The proof is completed.
We also need the following.
Lemma 7.2. Let ψ : X �→ R be an upper semicontinuous concave function. The

domain of its Fenchel transform ϕ� is contained in a closed convex subset A if and
only if the function ψ satisfies inequality

∃ β ∈ R such that ∀ v ∈ X, β − σA(v) ≤ ψ(v).

Its Fenchel transform ϕ� is bounded on a convex subset A if and only if the function
ψ satisfies

∃ δ ∈ R such that ∀ v ∈ X�, ψ(v) ≤ δ − σA(v).

Proof. Since ψ(0) = infu∈Dom(ϕ�) ϕ
�(u), we infer that

∀ v ∈ X, ∀ u ∈ Dom(ϕ�), ψ(0) − σDom(ϕ�)(v) ≤ ϕ�(u) − 〈u, v〉

so that, by taking the infimum over u, we obtain inequality ψ(0)−σDom(ϕ�)(v) ≤ ψ(v).
It is enough to set β := ψ(0) and to take A := Dom(ϕ�). Conversely, assume that for
all v ∈ X, ψ(v) ≥ β−σA(v). We shall prove that Dom(ϕ�) ⊂ A. If not, there would
exist u ∈ Dom(ϕ�) \ A. The separation theorem states there exist p0 ∈ X and ε > 0
such that ε ≤ 〈p0, u〉 − σA(p0). Consequently, for every λ > 0,

λε ≤ 〈λp0, u〉 − σA(λp0) ≤ 〈λp0, u〉 + ψ(λp0) − β ≤ ϕ�(u) − β

by assumption and by the definition of ϕ�. Letting λ �→ +∞ implies that ϕ�(u) = +∞,
i.e., that u /∈ Dom(ϕ�), a contradiction.

For proving the second statement, we observe that if δ := supu∈Dom(ϕ�) ϕ
�(u) <

+∞ is finite, then

ψ(v) ≤ δ + inf
u∈Dom(ϕ�)

〈v,−u〉 = δ − σDom(ϕ�)(v)
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so that the inequality holds true with A := Dom(ϕ�). Conversely, inequality ψ(v) ≤
δ − σA(v) implies that

∀ u ∈ A, ϕ�(u) ≤ sup
v∈Dom(ψ)

[〈v, u〉 + δ − σA(v)] < +∞

is bounded on A, and thus, on Dom(ϕ�) whenever this domain is contained in A.
Control systems (23) and (24) are actually differential inclusions

(τ ′(t), x′(t), y′(t)) ∈ F (τ(t), x(t), y(t)),

where

(26) F (τ, x, y) := {(−1, u,−ψ(v(τ)) + ϕ�(u) + π)}u∈Dom(ϕ�), π∈[0,α+ψ(v(τ))−ϕ�(u)]

and

(τ ′(t), x′(t), y′(t)) ∈ F∞(τ(t), x(t), y(t)),

where

(27) F∞(τ, x, y) := {(−1, u,−ψ(v(τ)) + ϕ�(u) + π)}u∈Dom(ϕ�), π≥0 ,

respectively.
Lemma 7.3. The set-valued map F is Marchaud and, if the functions ψ, ϕ�, and

v are Lipschitz, the set-valued map F∞ is Lipschitz with closed images.
Proof. For proving that the set-valued map F is Marchaud, we shall check suc-

cessively that
1. the values F (τ, x, y) of the set-valued map F are convex. Indeed, for convex

weight λi ≥ 0 such that
∑

λi = 1, we can write∑
λi(−1, ui,−ψ(v(τ)) + ϕ�(ui) + πi) = (−1, u, ϕ�(u) − ψ(v(τ)) + π),

where u :=
∑

λiui and

π :=
∑

λiϕ
�(ui) − ϕ�

(∑
λiui

)
+
∑

λiπi.

Since the domain of ϕ� is convex, u ∈ Dom(ϕ�). We observe that π is non-
negative and smaller than or equal to α + ψ(v(τ)) − ϕ�(u) because{

π ≤
∑

λiϕ
�(ui) − ϕ� (

∑
λiui) +

∑
λi (α + ψ(v(τ)) − ϕ�(ui))

= α + ψ(v(τ)) − ϕ� (
∑

λiui) .

2. the graph of the set-valued map F is closed. Indeed, let us consider a se-
quence of elements ((τn, xn, yn), (−1, un, λn)) of the graph of F converging
to ((τ, x, y), (−1, u, λ)), where λn := −ψ(v(τn)) + ϕ�(un) + πn and where
πn ∈ [0, α + ψ(v(τn)) − ϕ�(un)].
Since the function (τ, x, y, u) �→ ϕ�(u)−ψ(v(τ)) is lower semicontinuous and
since

(τn, xn, yn, un, λn) = (τn, xn, yn, un,−ψ(v(τn)) + ϕ�(un) + πn)
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belongs to the epigraph of this function (because πn is positive by con-
struction), which is closed, we deduce that the limit (τ, x, y, u, λ) also be-
longs to this epigraph, i.e., that λ ≥ ϕ�(u) − ψ(v(τ)). It is enough to set
π := λ − ϕ�(u) − ψ(v(τ)) ≥ 0, which from now on defines π. Recall that
πn = λn +ψ(v(τn))−ϕ�(un) ≤ α+ l(τn, xn)−ϕ�(un) by construction of πn.
Therefore, λn ≤ α. Therefore, taking the limit, λ = π+ϕ�(u)−ψ(v(τ)) ≤ α. In
summary, the limit ((τ, x, y), (−1, u, λ)) of elements ((τn, xn, yn), (−1, un, λn))
belongs to the graph of F since λ = −ψ(v(τ)) + ϕ�(u) + π, where π ∈
[0, α + ψ(v(τ)) − ϕ�(u)].

3. the images F (τ, x, y) of F are bounded. This follows from Lemma 7.2 because
Dom(ϕ�) is bounded and

ϕ�(u) − ψ(v(τ)) + π ≤ α := sup
u∈Dom(ϕ�)

ϕ�(u) − inf
τ≥0

ψ(v(τ))

is finite since ϕ� is bounded above. Therefore

‖(−1, u, ϕ�(u) − ψ(v(τ)) + π)‖ ≤ max(1, ‖Dom(ϕ�)‖, α).

Hence, we have proved that the set-valued map F is Marchaud. The fact that F∞ is
Lipschitz is obvious since the functions ψ, ϕ�, and v, are assumed to be Lipschitz and
since the controls u range over R+ which, being constant, is Lipschitz.

We thus deduce the following.
Proposition 7.4 (upper semicontinuity of the solution). The viability hyposolu-

tion is upper semicontinuous and its hypograph satisfies

Hyp(N) = Capt(23)(Hyp(b),Hyp(c)) = Capt(24)(Hyp(b),Hyp(c)).

The viability hyposolution is concave whenever the functions b and c are concave.
Proof. The first statement follows from Proposition 4.3 of [5] stating that under a

Marchaud control system, the capture basin of a target is closed whenever the target
Hyp(c) and the environment Hyp(b) are closed and the complement of the target
in the environment is a repeller; this is the case because the first component of the
system is τ ′(t) = −1 which implies that all solutions (t − s, x(s), y(s)) starting from
any (t, x, y) leave R+×X×R, and thus, Hyp(b) ⊂ R+×X×R. Since we have proved
that

Capt(23)(Hyp(b),Hyp(c)) = Capt(23)(Hyp(b),Hyp(c)) − {0} × {0} × R+,

we infer that Capt(23)(Hyp(b),Hyp(c)) is a hypograph, and thus, the hypograph of
the viability hyposolution.

8. Contingent solution to the Hamilton–Jacobi equation. We shall prove
that the viability hyposolution to Hamilton–Jacobi equation (2) (see Definition 4.1)
is the contingent solution by characterizing them in terms of tangent cones and trans-
lating them into terms of contingent hyposolutions.

Theorem 8.1 (contingent Frankowska solution). The viability hyposolution N is
the largest upper semicontinuous solution satisfying

(28) ψ(v(t)) ≥ inf
u∈Dom(ϕ�)

(ϕ�(u) −D↓N(t, x)(−1, u))

and the initial/Dirichlet conditions and the inequality constraints. If the functions ψ,
ϕ�, and v are furthermore Lipschitz, then N is the smallest upper semicontinuous
solution satisfying the following:
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1. If N(t, x) < b(t, x), then

(29) ψ(v(t)) ≤ inf
u∈Dom(ϕ�)

(D↓N(t, x)(1,−u) + ϕ�(u)) .

2. If N(t, x) = b(t, x), then

(30) ψ(v(t)) ≤ inf
{u|ψ(v(t)) ≤ D↓b(t,x)(1,−u)+ϕ�(u)}

(D↓N(t, x)(1,−u) + ϕ�(u)).

We need the following technical lemma on tangent cones to hypographs for proving
Theorem 8.1.

Lemma 8.2 (tangent cones to hypographs). If ψ : X �→ R+ ∪ {−∞} is an
extended function and if D↓ψ(p)(dp) is finite, then, for every w < ψ(p) and every
μ ∈ R, the pair (dp, μ) belongs to the contingent cone THyp(ψ)(p, w) to the hypograph
of ψ at (p, w).

Proof. Let (dp, λ) belong to THyp(ψ)(p, ψ(p)). Then we know that there exist
sequences hn > 0 converging to 0, dpn converging to dp, and λn converging to λ such
that (p+hndpn, ψ(p)+hnλn) belongs to Hyp(ψ). Therefore, for w < ψ(p) and μ ∈ R
and hn small enough,

(p+hndpn, w+hnμ) = (p+hndpn, ψ(p)+hnλn)+(0, w−ψ(p)+hn(μ−λn)) ∈ Hyp(ψ)

belongs to the hypograph of ψ because w−ψ(p)+hn(μ−λn) ≤ 0 for hn small enough.
Therefore, since dpn → p and μn := μ → μ, we infer that (dp, μ) ∈ THyp(ψ)(p, w).

Proof of Theorem 8.1. Observe first that

(t, x, y) ∈ Hyp(N)\Hyp(c) if and only if t > 0, x ∈ Int(K), and y ≤ N(t, x).

Indeed, Hyp(N)\Hyp(c) is the set of (t, x, y) such that c(t, x) < y ≤ N(t, x).
This is automatically satisfied when t > 0 and x ∈ Int(K) whenever y ≤ N(t, x)
since in this case, c(t, x) = −∞. It is impossible otherwise since, by Theorem 6.1
N(t, x) = c(t, x).

Theorem 4.6 of [7] states that since F is Marchaud by Lemma 7.3, the capture
basin is the largest closed subset between the hypograph of c and R+ ×X × R such
that Hyp(N)\Hyp(c) is locally viable under F .

Theorems 3.2.4 and 3.3.4 of [7] state that Hyp(N)\Hyp(c) is locally viable under
F if and only if for all t > 0, for all x ∈ X, for all y ≤ N(t, x), ∃u ∈ Dom(ϕ�), ∃π ∈
[0, α + ψ(v(τ)) − ϕ�(u)], such that

(−1, u,−ψ(v(t)) + ϕ�(u) + π) ∈ THyp(N)(t, x, y).

If y = N(t, x), then

THyp(N)(t, x,N(t, x)) =: Hyp(D↓N(t, x))

so that we infer that there exists u ∈ Dom(ϕ�)

−ψ(v(t)) + ϕ�(u) + π ≤ D↓N(t, x)(−1, u)

from which inequality (28) ensues.
Conversely, since D↓N(t, x)(−1, ·) is upper semicontinuous and the domain of ϕ�

is compact, inequality (28) implies the existence of u ∈ Dom(ϕ�) such that

(−1, u,−ψ(v(t)) + ϕ�(u) + π) ∈ THyp(N)(t, x,N(t, x)).
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When y < N(t, x), then Lemma 8.2 implies that

(−1, u,−ψ(v(t)) + ϕ�(u) + π) ∈ THyp(N)(t, x, y)

because (−1, u) belongs to the domain of D↓N(t, x).

By Theorems 4.7 and 4.10 of [7], the capture basin is the smallest closed subset
between the hypographs of c and b such that Hyp(N) is backward invariant with
respect to Hyp( b). Since F∞ is Lipschitz by Lemma 7.3 whenever the functions ψ,
ϕ�, and v are Lipschitz, the invariance theorem (Theorem 5.3.4 in [5]) states that
Hyp(N) is backward invariant with respect to Hyp(b) under F∞ if and only if

∀ (t, x, y) ∈ Hyp(N), F∞(t, x, y) ∩ THyp(b)(t, x, y) ⊂ THyp(N)(t, x, y).

Since the function b is assumed to be continuous,

Int(Hyp(b)) = {(t, x, y) such that y < b(t, x)}.

Therefore, we have to investigate the following two cases:

1. For all (t, x, y) ∈ Hyp(N) ∩ Int(Hyp(b)). Then

∀t ≥ 0, ∀x ∈ X, ∀ y ≤ N(t, x), ∀ u ∈ Dom(ϕ�), ∀ π ≥ 0,

(1,−u, ψ(v(t)) − ϕ�(u) − π) ∈ THyp(N)(t, x, y).

If y = N(t, x), then we infer that for all u ∈ Dom(ϕ�),

ψ(v(t)) − ϕ�(u) ≤ D↓ N(t, x)(1,−u)

from which we derive inequality (29). Conversely, since for all u ∈ Dom(ϕ�),
(1,−u) belongs to the domain of D↓N(t, x), we derive that

(1,−u, ψ(v(t)) − ϕ�(u) − π) ∈ THyp(N)(t, x, y)

holds true.
2. For all (t, x, y) ∈ Hyp(N)∩∂(Hyp(b)), and in this case, y = N(t, x) = b(t, x).

Then, ∀t ≥ 0, ∀x ∈ X, ∀ u ∈ Dom(ϕ�), ∀ π ≥ 0 such that

(1,−u, ψ(v(t)) − ϕ�(u) − π) ∈ THyp(b)(t, x, y)

we have

(1,−u, ψ(v(t)) − ϕ�(u) − π) ∈ THyp(N)(t, x, y).

This means that whenever

ψ(v(t)) ≤ D↓ b(t, x)(1,−u) + ϕ�(u),

then

ψ(v(t)) ≤ D↓N(t, x)(1,−u) + ϕ�(u),

which is (30).
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Theorem 5.5 states that the viability hyposolution is the valuation function (21)
of the underlying optimal control problem (13).

The associated regulation map R for regulating the optimal evolutions is thus
defined by

∀ t > 0, x ∈ X, R(t, x) := {u | 0 ≤ D↓N(t, x)(−1, u) − ϕ�(u) + ψ(v(t))}.

One can prove that the optimal solutions of the control problem are governed by
the control system ⎧⎨⎩

τ ′(s) = −1,
x′(s) = u(s) ∈ R(τ(s), x(s)),
y′(s) = ϕ�(u(s)) − ψ(v(τ(s))).

This motivates a further study of the regulation map. If the solution N is differ-
entiable, the regulation map can be written in the form

R(t, x) :=

{
u | 0 ≤ −∂N(t, x)

∂t
+

∂N(t, x)

∂x
u− ϕ�(u) + ψ(v(t))

}
.

The elements u maximizing the right-hand side are the elements belonging to

−∂+ψ

(
∂N(t, x)

∂x

)
.

Consequently,

−∂+ψ

(
∂ N(t, x)

∂x

)
⊂ R(t, x).

Actually, approximations of the regulation map and thus, optimal evolutions, as
well as the solution to the Hamilton–Jacobi–Bellman equation are provided by the
capture basin algorithm.

9. Barron-Jensen/Frankowska solution to the Hamilton–Jacobi equa-
tion. Instead of characterizing capture basins in terms of tangent cones and translat-
ing them into terms of contingent Frankowska hyposolutions, we translate them into
the equivalent formulation of Barron-Jensen/Frankowska solutions, a weaker concept
of viscosity solutions requiring only the upper semicontinuity of the solution instead
of its continuity.

Theorem 9.1 (Barron-Jensen/Frankowska solution). The viability hyposolution
N is the largest upper semicontinuous solution between c and b satisfying

(31)

⎧⎨⎩
(i) ∀t > 0, ∀x ∈ Int(K), ∀(pt, px) ∈ ∂+N(t, x), pt + ψ(px) ≤ ψ(v(t)),
(ii) ∀t > 0, ∀x ∈ Int(K), ∀(pt, px) ∈ (Dom(D↓N(t, x)))−,

pt − σ(Dom(ϕ�), px) ≤ 0.

If the functions ψ, ϕ�, and v are furthermore Lipschitz, then N is the smallest
upper semicontinuous solution between c and b satisfying the following:

1. If N(t, x) < b(t, x), then

(32)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(i) ∀t ≥ 0, ∀x ∈ K such that
N(t, x) < b(t, x), ∀(pt, px) ∈ ∂+N(t, x),

pt + ψ(px) ≥ ψ(v(t));
(ii) ∀t ≥ 0, ∀x ∈ K such that

N(t, x) < b(t, x), ∀(pt, px) ∈ (Dom(D↓N(t, x)))−,
pt − σ(Dom(ϕ�), px) ≥ 0.
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2. If N(t, x) = b(t, x), then

(33)⎧⎪⎪⎨⎪⎪⎩
∀ (pt, px) ∈ ∂+N(t, x), ∃ (qt, qx) ∈ ∂+b(t, x) and 0 < μ < 1 such that
either pt − qt − σ(Dom(ϕ�), px − qx) ≥ 0

or
pt − μqt
1 − μ

+ ψ

(
px − μqx

1 − μ

)
≥ ψ(v(t)).

Thus, the unique upper semicontinuous solution satisfies all these properties.
Observe that under the Lipschitz assumptions, the viability hyposolution satisfies

(34)

⎧⎨⎩
(i) ∀t > 0, ∀x ∈ Int(K) such that N(t, x) < b(t, x),

∀(pt, px) ∈ ∂+N(t, x), pt + ψ(px) = ψ(v(t)),
(ii) ∀(pt, px) ∈ (Dom(D↓N(t, x)))−, pt − σ(Dom(ϕ�), px) = 0.

We need the following technical lemma on normal cones to hypographs for proving
Theorem 9.1.

Lemma 9.2 (normal cones to hypographs). A pair (u, λ) belongs to the normal
cone NHyp(ψ)(p, w) to the hypograph of ψ at (p, w) if and only

1. if w = ψ(p); then either
• λ = 0 and u ∈ (Dom(D↓ψ(p)))− or
• λ > 0 and u ∈ −λ∂+ψ(p).

2. if w < ψ(p); then λ = 0 and u ∈ (Dom(D↓ψ(p)))−.
In particular, if the domain of D↓ψ(p) is dense in X, then (u, λ) belongs to the normal
cone NHyp(ψ)(p, w) to the hypograph of ψ at (p, w) if and only if λ = 0 and u = 0.
This is the case whenever ψ is Lipschitz around p.

Proof. Let us consider now a pair (u, λ) belonging to the normal cone NHyp(ψ)(p, w)
:= (THyp(ψ)(p, w))− to the hypograph of ψ at (p, w). Therefore,

∀ (dp, μ) ∈ THyp(ψ)(p, w), 〈(dp, μ), (u, λ)〉 = 〈u, dp〉 + λμ ≤ 0.

Examine first the case when w = ψ(p), for which (dp, μ) ∈ THyp(ψ)(p, ψ(p)) if and
only if dp ∈ Dom(D↓ψ(p)) and μ ≤ D↓ψ(p)(dp). If λ < 0, we obtain a contradiction
because, when μ → −∞, 〈u, dp〉 + λμ → +∞. Hence

• either λ > 0, and thus, dividing by λ and taking μ := D↓ψ(p)(dp), we obtain

∀ dp ∈ Dom(D↓ψ(p)),
〈u
λ
, dp
〉

+ D↓ψ(p)(dp) ≤ 0

which means that −u
λ ∈ ∂+ψ(p);

• or λ = 0 and we obtain

∀ dp ∈ Dom(D↓ψ(p)), 〈u, dp〉 ≤ 0,

which means that u ∈ (Dom(D↓ψ(p)))− by definition of the polar cone.
When w < ψ(p), inequalities

∀ (dp, μ) ∈ THyp(ψ)(p, w), 〈(dp, μ), (u, λ)〉 = 〈u, dp〉 + λμ ≤ 0

imply that λ = 0 thanks to Lemma 8.2; otherwise, λμ converges to +∞ when μ → +∞
when λ > 0, and when μ → −∞ when λ < 0 since μ is allowed to range over R.
Therefore u ∈ (Dom(D↓ψ(p)))− because whenever dp ∈ Dom(D↓ψ(p)) and μ ∈ R,
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then (dp, μ) ∈ THyp(ψ)(p, w). If the domain D↓ψ(p) is dense in X, then the polar cone
(Dom(D↓ψ(p)))− is {0}, and thus u = 0.

Proof of Theorem 9.1. Proposition 7.4 states that the hypograph of the viability
hyposolution satisfies

Hyp(N) = Capt(23)(Hyp(b),Hyp(c)) = Capt(24)(Hyp(b),Hyp(c)).

Theorem 3.4 states that Capt(23)(Hyp(b),Hyp(c)) is the largest subset D between
C and K such that D\C is locally viable.

Taking D := Hyp(N), Theorems 3.2.4 and 3.3.4 of [5] state that Hyp( N)\Hyp(c)
is locally viable under F if and only if for all t > 0, for all x ∈ Int(K), for all y ≤
N(t, x), ∃u ∈ Dom(ϕ�), ∃π ∈ [0, α+ψ(v(t))−ϕ�(u)], such that for all (−pt,−px, λ) ∈
NHyp(N)(t, x, y),

(35)

{
〈(−pt,−px, λ), (−1, u,−ψ(v(t)) + ϕ�(u) + π)〉
= pt − 〈px, u〉 + λ(−ψ(v(t)) + ϕ�(u) + π) ≤ 0.

By Lemma 9.2, if y = N(t, x), (−pt,−px, λ) ∈ NHyp(N)(t, x, y) means that either
λ > 0, and that, taking λ = 1, (pt, px) ∈ ∂+N(t, x), or that λ = 0, and that (pt, px) ∈
(Dom(D↓N(t, x)))−. If y < N(t, x), (−pt,−px, λ) ∈ NHyp(N)(t, x, y) means also that
λ = 0, and that (pt, px) ∈ (Dom(D↓N(t, x)))−.

Consequently, condition (35) can be written in the following form:
• The case when y = N(t, x) and λ = 1:⎧⎨⎩

∀t > 0, ∀x ∈ Int(K), ∀ (pt, px) ∈ ∂+N(t, x), then
pt − ψ(v(t)) + infu∈Dom(ϕ�)[ϕ

�(u) − 〈px, u〉]
= pt − ψ(v(t)) + ψ(px) ≤ 0.

• The case when y ≤ N(t, x) and λ = 0:{
∀t > 0, ∀x ∈ Int(K), ∀ (pt, px) ∈ (Dom(D↓ N(t, x)))−, then
pt − supu∈Dom(ϕ�) 〈px, u〉 = pt − σ(Dom(ϕ�), px) ≤ 0.

(Recall that this condition disappears whenever the viability hyposolution N
is hypodifferentiable, and, in particular, when the hyposolution is Lipschitz.)

Proof of inequalities (32) and (33). Theorem 3.4 states that Capt(24)(Hyp(b),
Hyp(c)) is the smallest subset D between C and K such that D is backward invariant
with respect to K. Theorem 3.7 and Lemma 3.8 state that D := Hyp(N) is backward
invariant with respect to Hyp(b) under (24) if and only if one of the following holds:

1. For all (t, x, y) ∈ Hyp(N) ∩ Int(Hyp(b)),

∀ (−pt − px, λ) ∈ NHyp(N)(t, x, y), σ(F∞(x), (pt, px,−λ)) ≤ 0.

Since the function b is assumed to be continuous,

Int(Hyp(b)) = {(t, x, y) such that y < b(t, x)},

the first case means that y ≤ N(t, x) < b(t, x) and the above condition
implies that

(36)

⎧⎨⎩
∀ (−pt − px, λ) ∈ NHyp(N)(t, x, y),
〈(pt, px,−λ), (−1, u,−ψ(v(t)) + ϕ�(u) + π)〉
= −pt + 〈px, u〉 + λ(ψ(v(t)) − ϕ�(u) − π) ≤ 0.

This implies that λ ≥ 0.
Consequently, condition (36) can be written in the following form:
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• The case when y = N(t, x) < b(t, x) and λ = 1:⎧⎨⎩
∀t > 0, ∀x ∈ X, ∀ (pt, px) ∈ ∂+N(t, x), then
−pt + ψ(v(t)) + supu∈Dom(ϕ�)[〈px, u〉 − ϕ�(u)]

= −pt + ψ(v(t)) − ψ(px) ≤ 0.

• The case when y ≤ N(t, x) and λ = 0:{
∀t > 0,∀x ∈ X, ∀ (pt, px) ∈ (Dom(D↓N(t, x)))−, then
−pt + supu∈Dom(ϕ�) 〈px, u〉 = −pt + σ(Dom(ϕ�), px) ≤ 0.

2. For all (t, x, y) ∈ Hyp(N)∩∂(Hyp(b)), and in this case, y = N(t, x) = b(t, x)
and{

∀ (−pt − px, λ) ∈ NHyp(N)(t, x, y), ∃ (−qt − qx, μ) ∈ NHyp(b)(t, x, y)
such that σ(F∞(x), (pt − qt, px − qx, μ− λ)) ≤ 0,

where λ ≥ 0 and μ > 0 since we have assumed that b is Lipschitz, and thus
hypodifferentiable. This can be translated into the following form:

−pt + qt + sup
u

(〈px − qx, u〉+ (μ− λ)(ϕ�(u)) + sup
π≥0

(μ− λ)[π−ψ(v(t))]) ≤ 0.

This implies that λ ≥ μ > 0.
• The case when λ − μ = 0. It happens when both (pt, px) ∈ ∂+N(t, x)

and (qt, qx) ∈ ∂+b(t, x). In this case, the above inequality boils down to

−pt + qt + σ(Dom(ϕ�), px − qx) ≤ 0.

• The case when λ−μ > 0. The condition states that for every λ > 0 and
(pt, px) ∈ ∂+N(t, x), there exist 0 < μ < λ and (qt, qx) ∈ ∂+b(t, x) such
that

−λpt − μqt
λ− μ

+ sup
u

(〈
λpx − μqx
λ− μ

, u

〉
− ϕ�(u)

)
+ ψ(v(t)) ≤ 0,

which can be written

−λpt − μqt
λ− μ

− ψ

(
λpx − μqx
λ− μ

)
+ ψ(v(t)) ≤ 0.

This completes the proof.
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tions, Birkhäuser Boston, Boston, MA, 1997.

[23] M. Bardi and L. Evans, On Hopf’s formulas for solutions of Hamilton-Jacobi equations,
Nonlinear Anal. Theory Methods Appl., 8 (1984), pp. 1373–1381.

[24] C. Bardos, A. Y. Leroux, and J. C. Nedelec, First order quasilinear equations with boundary
conditions, Commun. Partial Differential Equations, 4 (1979), pp. 1017–1034.
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and T. Parthasarathy, eds., Birkhäuser Boston, Boston, MA, 1999, pp. 177–247.

[38] P. Cardaliaguet, M. Quincampoix, and P. Saint-Pierre, Set-valued numerical analysis for
optimal control and differential games, in Stochastic and Differential Games: Theory and
Numerical Methods, Annals of the International Society of Dynamic Games, M. Bardi,
T. E. S. Raghavan, and T. Parthasarathy, eds., Birkhäuser Boston, Boston, MA, 1999,
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