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Abstract— A dynamic pressure and variable air volume
(VAV) control strategy is proposed for building heating, ven-
tilation and air-conditioning (HVAC) systems. The strategy
consists in two level control, namely, pressure loop control and
temperature loop control. The pressure control loop is to make
sure that the air pressure at the inlet of each room is equal to
a certain value while the temperature control loop is to control
the room temperature which is achieved by adjusting the VAV
box so that the supply air flow rate can be varied to achieve
the room setting temperature. For the pressure control loop, a
cooperative control technique is applied. The two control loops
are coupled. This paper will analyze the stability of the overall
system and give a sufficient condition on the initial values in
terms of rooms and the HVAC system parameters.

I. INTRODUCTION

In recent years, energy saving and environment protection
have become increasingly important. The world’s growing
energy demand requires developing sustainable living plans.
The largest sector of energy consumption in most of cities is
buildings. Usually, a great portion of the energy consumption
of buildings is attributed to HVAC systems. Due to the
changes of operating environment and parameters of HVAC
systems, many HVAC systems cannot work in an efficient
way. Therefore, the controller design of HVAC systems is a
field of increasing significance.

HVAC systems can be controlled based on either static
models assuming that the environment is slowly time-varying
or dynamic models for real-time control. Most of the existing
work on controller design is based on static models [14],
and mainly focused on developing a simplified model of
cooling coils. The model parameters are determined on-line,
based on commission or catalog information by linear or
nonlinear least squares methods. For overall HVAC systems,
[4] and [5] formulate the minimization of the total power
consumption, which is mainly caused by chillers, pumps and
fans, as a global optimization problem. A modified genetic
algorithm was used to set the optimal operating point of
each component. When we consider the dynamic property
of an HVAC system, the control problem becomes more
difficult. A new dynamic simulation model for air-handling
unit (AHU) was developed in [2]. In the work, the parameters
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can be easily determined from total fan energy measurement.
Since dynamic models can handle the changing environment
at different times in a day over a long period of time, a
dynamic control strategy can lead to a better performance
compared to a static control strategy. By using Kalman
filtering, [11] presents a temperature prediction algorithm
based on a simple time varying zone model. The optimal
performance is achieved by applying a genetic algorithm.

Room temperature can be controlled by adjusting the cool
air temperature and flow rate into a room, which is controlled
by a damper. There are two temperature control strate-
gies: pressure dependent control and pressure independent
control. Pressure dependent control consists in controlling
the damper, based on the room temperature. Based on the
temperature difference between the room temperature and
the desired one, one can adjust the air flow by controlling
the VAV box. The reader can refer to [12], [15], [1], [8] and
[7] for example.

Pressure independent control strategies contain two control
loops. The inner loop is for temperature control which can
provide the set point for outer loop based on the temperature
difference. The outer loop is for air pressure control. Pressure
independent control leads to better control performance. This
is because a pressure dependent controller will take action
when the air flow changes affect the room temperature.
Therefore the response of the system suffers from a time
delay. However, pressure independent control has a pressure
control level which is to lock the pressure at the inlet of
each room. The steady air pressure makes the air flow rate
smooth. Moreover, the two level control makes the controller
design more flexible.

In this paper, we consider a pressure independent control
strategy. Keeping the air pressure of the room inlet is the
key step to air flow control. However, when adjusting a
damper, not only the air pressure at the corresponding branch
changes, but the pressure at all the other branches are
affected. For the pressure control loop, a cooperative control
strategy is developed to adjust the damper such that the air
pressure of each branch converges to a desired value. The
cooperative controller can reduce the pressure differences
among each room inlet while tracking the desired pressure,
which makes the tracking process smoother. Moreover, the
controller is working in a distributed way, which means
each pressure control damper is controlled based only on the
pressure information of neighbor branches. Comparing with
a centralized controller, the distributed one is more reliable
and has low computation costs.
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Fig. 1. Pressure-flow balance.

II. MATHEMATICAL MODEL AND PROBLEM STATEMENT

Fig.1 shows the structure of a simplified HVAC system.
The left part is the AHU, which provides mixed fresh air
and return air to the air supply duct. The cooling coil cools
down the air provided by AHU before it is sent to the air
supply duct. A fan follows which can provide positive air
pressure to the air flow. Pressure control dampers are needed
to control the air pressure of the corresponding branches.
VAV boxes can be adjusted to change the air flow into
the zones. Sometimes, a return air fan is added for better
controlling the air exfiltration of the rooms. For simplicity,
we do not consider the return air fan.

We assume that the room air can be mixed in no time,
which means the temperature would be same everywhere
in the room. The heat sources in the room are considered
as constant. Under these assumptions, the room temperature
can be modeled as first order system [13]

Ṫi(t) = ṁi(t)K1,i(l − Ti(t)) +K2,i(si − Ti(t)), (1)

where ṁi(t) is the mass flow rate at the inlet of room i, Ti is
the temperature in room i, l is the supplied air temperature,
si is the temperature of heat source in room i, K1,i = ρ

Ci

and K2,i = Fi

Ci
are constants with Ci the room capacity,

ρ the air density and Fi the specific heat capacitance. Since
the dynamic pressure in the duct is negligible compared with
static pressure, we consider that pi stands for full pressure at
branch duct i and the full pressure is transferred into dynamic
pressure after VAV box. According to Bernoulli’s equation,
the mass flow rate can be expressed as

ṁi(t) = ui(t)

√
2Pi(t)

ρ
, (2)

where ui is the open area of the damper to be controlled in
the i-th VAV box. A similar model can be found in [10].

In [3], the pressure-flow balance model is considered as an
equivalent circuit system. In this paper, we consider a more
general model, which is given below:

Pi = f2
i (d1, · · · , dn, ui, Pfan), (3)

where di is the opening of pressure control damper i, Pfan
is the air pressure difference generated by the supply fan.
The function fi is nonlinear and satisfies

−F̄ ≤ ∂fi
∂ui

< 0, ∂fi
∂dj

< −ρ1, i 6= j,

supj 6=i,k 6=i

∂fi
∂dj
∂fi
∂dk

≤ γ,
∑n
j=1

∂fi
∂dj

> ρ2, (4)

where F̄ , ρ1, ρ2 and γ are positive constants. We assume that
Pfan is time-invariant since the air supply fan is prevented
to change its output power very often in order to maximize
its lifetime and save energy. The inequalities in (4) show
the coupling of the air pressure in each air duct. When the
air flow resistance of pressure control damper i increases,
the pressure Pi drops correspondingly. Meanwhile, the air
pressure at the other inlets increases. The last inequality can
be understood as that when all the pressure control dampers
increase their opening, the air pressure at the inlet of each
room will increase.

From (1)-(3) we can see that the temperature system
and air pressure system are coupled. The objective is to
control ui such that the temperature of each room reaches its
desired value. Meanwhile, the pressure is adjusted through
di accordingly to make sure that all the pressures at the inlet
of the rooms stick to a certain value, i.e.

lim
t→∞

Ti(t) = T0, lim
t→∞

Pi(t) = P0, i = 1, . . . , n, (5)

where T0 and P0 are room temperature and air pressure to be
tracked. In fact, T0 can be set as different values for different
rooms. For notation convenience, we consider the case in
which all rooms share a common desired temperature.

III. CONSENSUS-BASED CONTROLLER DESIGN

Most of the existing room temperature dynamic controller
literature is based on PID [9], which locally controls the VAV
damper i to compensate the changes of neighbors and outside
environment. However, this approach does not consider the
coupling of the air pressure in each air duct. When damper
i is changing, the air pressure at the inlet of other rooms
is affected. This may cause a bad transient response of the
system. In this section, we introduce a two level control
strategy, temperature control level and pressure control level.
We propose a consensus-based approach for the pressure
control level in order to reduce the fluctuation of air flow.

The control input of ui(t) and di(t) are given as follows:

u̇i(t) = c(Ti(t)− T0), (6)

ḋi(t) = α
∑
k∈Ni

[(√
Pk(t)−

√
Pi(t)

)
+β
(√

P0 −
√
Pi(t)

)]
, i = 1, . . . , n, (7)

where α > 0, β ≥ (n− 2)(γ − 1) and c > 0 are constants.
When γ = 1, β can be chosen as any positive number. Ni
is the set of neighboring branches that communicate their
pressure information to branch i. Controller (7) is based
on a widely-used distributed consensus control protocol.
The dampers work in a cooperative manner. By employing
cross-coupling error technology, the proposed approach can
guarantee that all the pressures converge to the desired value
more smoothly.
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For all i = 1, . . . , n, denote

θi(t) =
√
Pi(t), θ̃i = θi −

√
P0,

ũi = ui −
√

ρ
2P0

K2,i(si−T0)
K1,i(T0−l) , xi = ˙̃ui + r1ũi,

w1,i =
K2,i(si−l)
T0−l , w2,i =

√
2P0

ρ K1,i(T0 − l),

w3,i =
K2,i(si−T0)√

P0
, w12,i =

√
2P0

ρ K1,i,

w13,i =
K2,i(si−T0)√
P0(T0−l)

, w23,i =
√

2
ρK1,i(T0 − l),

w123,i =
√

2
ρK1,i,

r1 =
w1,i−

√
w2

1,i−4cw2,i

2 , r2 =
w1,i+

√
w2

1,i−4cw2,i

2 . (8)

Then we have the following result.
Theorem 3.1: For the HVAC system described in Fig.1,

if the initial conditions satisfy that ∀i = 1, . . . , n,
max{|xi(0)|, r1|ũi(0)|, ρ2

2F̄
|θ̃i(0)|} ∈ Si, where

Si =

0,

√
φ2 + 8w123,i

( cw2,iρ2
F̄
− cw3,ir1

)
− φ

4w123,i

 , (9)

with φ =
w12,iρ2
F̄

+ 2w13,ir1 + cw23,i, then all the room
temperatures Ti and the static pressures Pi, i = 1, 2, . . . , n
converge to T0 and P0 asymptotically based on the controller
given in (6) and (7), where c satisfies that ∀i = 1, . . . , n,

w1,i −
√
w2

1,i − 4cw2,i <
2w2,iρ2

w3,iF̄
. (10)

Proof: Denote T̃i = Ti−T0. According to (1), we have

˙̃Ti(t) =

[
ui(t) +

√
ρ

2P0

K2,i(si − T0)

K1,i(T0 − l)

]
(
√
P0 + θ̃i(t))

×
√

2

ρ
K1,i(l − T0 − T̃i(t)) +K2,i(s− T0 − T̃i(t))

=−w1,iT̃i(t)− w2,iũi(t)− w3,iθ̃i(t)

−w12,iũi(t)T̃i(t)− w13,iT̃i(t)θ̃i(t)

−w23,iũi(t)θ̃i(t)− w123,iũi(t)T̃i(t)θ̃i(t), (11)

where w1,i, w2,i, w3,i, w12,i, w13,i, w23,i and w123,i are
defined in (8). The controller (6) can be rewritten as

˙̃ui(t) = cT̃i(t). (12)

Substituting (12) into (11) yields

¨̃ui(t) =−w1,i
˙̃ui(t)− cw2,iũi(t)− cw3,iθ̃i(t)

−w12,iũi(t) ˙̃ui(t)− w13,i
˙̃ui(t)θ̃i(t)

−cw23,iũi(t)θ̃i(t)− w123,iũi(t) ˙̃ui(t)θ̃i(t). (13)

Considering xi as defined in (8), we can decompose (13)
into the following two equations

˙̃ui(t) =−r1ũi(t) + xi(t),

ẋi(t) =−r2xi(t)− cw3,iθ̃i(t)− w12,iũi(t) ˙̃ui(t)

−w13,i
˙̃ui(t)θ̃i(t)− cw23,iũi(t)θ̃i(t)

−w123,iũi(t) ˙̃ui(t)θ̃i(t),

where r1 and r2 are defined in (8).

According to (3), we have ∀i = 1, 2, . . . , n,

θ̇i(t) =
∂fi
∂ui

u̇i(t) +

n∑
j=1

∂fi
∂dj

ḋj(t)

=
∂fi
∂ui

˙̃ui(t) +

n∑
j=1

∂fi
∂dj

ḋj(t). (14)

By substituting (7) into the above equation, the closed-loop
system can be written into the following compact form

θ̇(t) = −L(t)θ(t) +

[
0

F (t) ˙̃u(t)

]
, (15)

where θ = [
√
P0 θ1 · · · θn ]′, ˙̃u = [ ˙̃u0

˙̃u1 · · · ˙̃un ]′,

L(t) =

[
0 0

b(t) L̃(t)

]
, b(t) =

 l1,0
...
ln,0

 ,

L̃(t) =

 l1,1 · · · l1,n
...

. . .
...

ln,1 · · · ln,n

 , F (t) =


∂f1
∂u1

. . .
∂fn
∂un

 ,
and

li,0(t) = −α
n∑
j=1

∂fi
∂dj

< −αρ2,

li,i(t) = α(β + |Ni|)
∂fi
∂di
− α

∑
j∈N i

∂fi
∂dj

> 0,

sup
t≥0

li,j(t) = α(β + |Ni|)
∂fi
∂dj
− α

n∑
k∈Nj

∂fi
∂dk
≤ 0,

j = 1, 2, . . . , n, j 6= i.

Therefore, L(t) is a valid Laplacian matrix corresponding
to a leader-following graph. Since the graph is essentially
connected, according to [6], Pi, i = 1, . . . , n will converge
to the leader P0 when ˙̃u(t) = 0. However, ũ is time-varying
and coupled with P , which makes the problem complicated.
Denote θ̃ = [ θ̃1 · · · θ̃n ]′. Then from (15), we have

˙̃
θ(t) = −L̃(t)θ̃(t) + F (t) ˙̃u(t). (16)

Now we define a Lyapunov function as V (t) =
max{‖x(t)‖∞, r1‖ũ(t)‖∞, ρ22F̄

‖θ̃(t)‖∞}. We will prove that
for any t ≥ 0, V̇ (t) < 0 almost everywhere. The proof will
be discussed in the following 7 cases.
• Case 1 (r1‖ũ(t)‖∞ > max{‖x(t)‖∞, ρ22F̄

‖θ̃(t)‖∞}).
There exists m such that |ũm(t)| = ‖ũ(t)‖∞. Accord-
ing to the definition of V , it has |r1ũm(t)| > |xm(t)|.
Then we have

d|ũm(t)|
dt

= sign[ũm(t)][−r1ũm(t)+xm(t)] < 0, (17)

which implies V̇ (t) = r1
d|ũm(t)|

dt < 0. The last inequal-
ity of (17) is because sign[ũm(t)] = −sign[−r1ũm(t)+
xm(t)].
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• Case 2 ( ρ2
2F̄
‖θ̃(t)‖∞ > max{‖x(t)‖∞, r1‖ũ(t)‖∞}).

There exists m such that |θ̃m(t)| = ‖θ̃(t)‖∞. According
to the definition of V , we have∣∣∣∣ ∂fm∂um

˙̃um(t)

∣∣∣∣= ∣∣∣∣ ∂fm∂um
(xm(t)− r1ũm(t))

∣∣∣∣
≤ F̄ |xm(t)|+ F̄ r1|ũm(t))|
< ρ2|θ̃m(t)|. (18)

On the other hand, according to (16) we can get the
following equation

˙̃
θm(t) = li,0(t)θ̃m(t)−

n∑
j=1

li,j(t)(θ̃j(t)− θ̃m(t))

+
∂fm
∂um

ũm(t). (19)

By considering (18), li,0(t) < −ρ2 and |θ̃j(t)| ≤
|θ̃m(t)|, supt≥0 li,j(t) < 0, j = 1, . . . , n, we arrive

at that sign[
˙̃
θm(t)] = −sign[θ̃m(t)] and d|θ̃m(t)|

dt < 0,
which implies V̇ < 0.

• Case 3 (‖x(t)‖∞ > max{r1‖ũ(t)‖∞, ρ22F̄
‖θ̃(t)‖∞}).

There exists m such that |xm(t)| = ‖x(t)‖∞. It has

|θ̃m(t)|< 2F̄

ρ2
|xm(t)|, |ũm(t)| < |xm(t)|

r1
,

| ˙̃um(t)|= | − r1ũm(t) + xm(t)| < 2|xm(t)|. (20)

Then we have∣∣∣cw3,mθ̃m(t) + w12,mũm(t) ˙̃um(t)

+w13,m
˙̃um(t)θ̃m(t) + cw23,mũm(t)θ̃m(t)

+w123,mũm(t) ˙̃um(t)θ̃m(t)
∣∣∣

< cw3,m
2F̄

ρ2
|xm(t)|+ 2w12,m

|xm(t)|2

r1

+2w13,m
2F̄

ρ2
|xm(t)|2 + cw23,m

2F̄ |xm(t)|2

r1ρ2

+2w123,m
2F̄ |xm(t)|3

r1ρ2

< r2|xm(t)|, (21)

which implies sign[ẋm(t)] = −sign[xm(t)] and there-
fore V̇ < 0.

• Case 4 (‖x(t)‖∞ = r1‖ũ(t)‖∞ > ρ2
2F̄
‖θ̃(t)‖∞). There

exist m and m′ such that |xm(t)| = ‖x(t)‖∞ and
|ũm′(t)| = ‖ũ(t)‖∞. If m 6= m′, the proof will be
the same as for Case 1 and 3. If m = m′, we have
either xm(t) = r1ũm(t) or xm(t) = −r1ũm(t). When
xm(t) = r1ũm(t), it has ˙̃um(t) = 0 and ẋm(t) < 0.
Then for any arbitrarily small number ε > 0, we have
|xm(t + ε)| < |r1ũm(t + ε)|, which is Case 1. When
xm(t) = −r1ũm(t), it has sign[ ˙̃um(t)] = −sign[ũm(t)]
and sign[ẋm(t)] = −sign[xm(t)], which implies V̇ < 0.

• Case 5 (r1‖ũ(t)‖∞ = ρ2
2F̄
‖θ̃(t)‖∞ > ‖x(t)‖∞). As-

sume that |ũm(t)| = ‖ũ(t)‖∞ and |θ̃m′(t)| = ‖θ̃(t)‖∞.
Similar to Case 4, we only consider m = m′. Since
|xm(t)| < r1|ũm(t)| and |xm(t)| < ρ2

2F̄
|θ̃m(t)|, it is

easy to prove that sign[ ˙̃um(t)] = −sign[ũm(t)] and
sign[

˙̃
θm(t)] = −sign[θ̃m(t)], which leads to d‖ũ(t)‖∞

dt <

0 and d‖θ̃(t)‖∞
dt < 0. Then V̇ < 0 follows directly.

• Case 6 (‖x(t)‖∞ = ρ2
2F̄
‖θ̃(t)‖∞ > r1‖ũ(t)‖∞). Since

r1‖ũ(t)‖∞ < ‖x(t)‖∞ and r1‖ũ(t)‖∞ < ρ2
2F̄
‖θ̃(t)‖∞,

similar to Case 5, we can get d‖x(t)‖∞
dt < 0 and

d‖ũ(t)‖∞
dt < 0, which leads to V̇ < 0.

• Case 7 (‖x(t)‖∞ = r1‖ũ(t)‖∞ = ρ2
2F̄
‖θ̃(t)‖∞ > 0).

Assume that |xm(t)| = ‖x(t)‖∞, |ũm′(t)| = ‖ũ(t)‖∞
and |θ̃m′′(t)| = ‖θ̃(t)‖∞. We only consider m = m′ =
m′′ as other cases can be considered in Case 1-6. When
xm(t) = r1ũm(t) = ρ2

2F̄
θ̃m(t) or xm(t) = r1ũm(t) =

− ρ2
2F̄
θ̃m(t), it has d‖x(t)‖∞

dt < 0, d‖ũ(t)‖∞
dt = 0 and

d‖θ̃(t)‖∞
dt < 0. Then for any arbitrarily small number

ε > 0, we have |xm(t + ε)| < |r1ũm(t + ε)| and
| ρ2
2F̄
θ̃m(t)| < |r1ũm(t + ε)|, which becomes Case 1.

When xm(t) = −r1ũm(t) = ρ2
2F̄
θ̃m(t) or xm(t) =

−r1ũm(t) = − ρ2
2F̄
θ̃m(t), it is easy to prove that

d‖x(t)‖∞
dt < 0, d‖ũ(t)‖∞

dt < 0 and d‖θ̃(t)‖∞
dt < 0, which

leads to V̇ < 0.
From the above cases, we conclude that V̇ = 0 only
happens at denumerable time instances (in Case 4 and 7)
with zero measure. It implies that limt→∞ V̇ (t) = 0. Then,
for any arbitrarily small number ε > 0, there must exist
a time instant tε such that ∀t ≥ tε, −ε < V̇ (t) ≤ 0.
For any t satisfying t ≥ tε, we consider the case in which
V (t) = r1‖ũ(t)‖∞ ≥ max{‖x(t)‖∞, ρ22F̄

‖θ̃(t)‖∞}. The oth-
er two cases ‖x(t)‖∞ ≥ max{r1‖ũ(t)‖∞, ρ22F̄

‖θ̃(t)‖∞} and
ρ2
2F̄
‖θ̃(t)‖∞ ≥ max{r1‖ũ(t)‖∞, ‖x(t)‖∞} can be analyzed

in a similar way and will be omitted here. Assume that
|ũm(t)| = ‖ũ(t)‖∞. Since −ε < V̇ (t) ≤ 0, we have

r1
d|ũm(t)|

dt
= r1sign[ũm(t)] ˙̃um(t)

=−r1|r1ũm(t)− xm(t)| > −ε, (22)

which implies r1|ũm(t)| − ε
r1
< |xm(t)| ≤ r1|ũm(t)|. On

the other hand, V̇ ≤ 0 implies that |xm(t)| ∈ Si. For
all |xm(t)| ∈ Si, we can always find ε1 > 0, ∆ > 0
and δ > 0 such that ∀ε ∈ (0, ε1], ∀τ ∈ [t, t + ∆),
|ẋm(τ)| > δ|xm(τ)|, sign[ẋm(τ)] = −sign[xm(τ)] and
r1|ũm(τ)| − ε

r1
< |xm(τ)| ≤ r1|ũm(τ)|. Then we have

|xm(t+ ∆)| < e−δ∆|xm(t)| ≤ e−δ∆r1|ũm(t)|, (23)

and

|xm(t+ ∆)| > r1|ũm(t+ ∆)| − ε

r1
> e−ε∆r1|ũm(t)| − ε

r1
.

(24)
Choose ε such that ε < min{ε1, δ}. By combining (23) and
(24) we have

V (t) = r1|ũm(t)| < ε

r1(e−ε∆ − e−δ∆)
.

The arbitrariness of ε implies that limt→∞ V (t) = 0.
According to the definition of V (t), it has

lim
t→∞

xi(t) = 0, lim
t→∞

ũi(t) = 0, lim
t→∞

θ̃i(t) = 0,

425



which implies limt→∞ Pi(t) = P0. Moreover, in light of (6)
and (14), we have

lim
t→∞

(Ti(t)− T0) = lim
t→∞

u̇i(t)

c
= lim
t→∞

˙̃ui(t)

c

= lim
t→∞

xi(t)− r1ũi(t)

c
= 0, (25)

which completes the proof.
Remark 3.1: The controller for pressure control damper

is simple as shown in (7) and is easy to be implemented
based on the air pressure measurements. On the other hand,
the VAV box is adjusted to control the temperature. As the
pressure control and temperature control are coupled. The
stability of the system is analyzed in Theorem 3.1. The
pressure of each branch will asymptotically converge to a
common value. Meanwhile, the temperature for each zone
will also asymptotically converge to the desired value. The
coefficient c and α could be chosen according to the control
purpose. The larger value we choose for c and α, the faster
the convergence rate we can get and the larger overshoot the
system will generate.

Remark 3.2: The pressure controller in (7) is designed in
a cooperative manner. A damper controller is given based
on the other branches pressure information named neighbor
information. Once a sudden change happens in the pressure
of one branch, the dampers of its neighbor branches can
help to compensate the change and work in a cooperative
way. The total air flow fluctuation can therefore be reduced.

IV. NUMERICAL EXAMPLE

We consider the HVAC systems with 5 rooms. The setpoint
for Pi, i = 1, . . . , 5 is P0 = 10.6× 104 Pa. The setpoint for
room temperature is 22◦C. We use MATLAB to simulate the
system progress.

For the VAV damper and pressure control damper, the
initial values of controller ui and di, i = 1, . . . , 5 are 0.
The coefficients K1,i and K2,i are 0.008. We choose the
coefficient c involved in (6) as 0.004, α is 0.01 and β is 1
for cooperative control. A cooling load is added in room
3 at time instant t = 100. Fig.2 shows the trajectories
of temperature Ti under our cooperative control law, i =
1, . . . , 5. For comparison, we also introduce noncooperative
control law which is (7) by removing the cross-coupling error√
Pk(t)− Pi(t). Fig. 3 shows the temperature trajectories

of the 5 rooms. From Fig.2 and Fig.3 we can see that
the overshoot and settling time is smaller under cooperative
controller. Moreover, it can be seen that all the room temper-
atures are keeping closer under cooperative controller. This
is because the cross-coupling error term makes all the other
pressure dampers close a bit after t = 100 to compensate the
sudden pressure drop and to save the cooling air flow.

The trajectories of pressure Pi under both cooperative
control and noncooperative control are given in Fig.4 and
Fig.5. The trajectory of total cool air mass flow rate are
compared in Fig.6. For simplicity, here we only compare
the energy consumption of fan power. The energy con-
sumption is proportional to

∫
(
∑5
i=1 ṁi(t))

3dt. To show
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Fig. 2. Temperature under cooperative control.
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Fig. 3. Temperature under noncooperative control.
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Fig. 4. Air pressure of room inlets under cooperative control.
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Fig. 5. Air pressure of room inlets under noncooperative control.
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Fig. 6. Cool air mass flow rate under two control laws.

the energy saving for the proposed control law, we only
consider the energy consumption from t = 100 to the
end. Under the cooperative control law (6)-(7), we have∫ 250

100
(
∑5
i=1 ṁi(t))

3dt = 1.95× 105.
While, the energy consumption under noncooperative con-

trol law is
∫ 250

100
(
∑5
i=1 ṁi(t))

3dt = 2.46×105, which implies
20.73% energy saving for cooperative control.

V. CONCLUSION

In this paper, we have considered air pressure and temper-
ature control for HVAC systems. The VAV is controlled to
guarantee that the room temperature converges to a desired
value T0. On the other hand, the pressure control damper
is adjusted such that the air pressure at the inlet of the
room converges to P0. Since the air pressure is affected by
the VAV boxed as well as the pressure control dampers of
the neighbor branches, the systems are highly coupled. A
cooperative control strategy was proposed for the pressure
control dampers. The numerical examples show that the
fluctuation of the total cooling air mass flow rate is reduced
under the cooperative control strategy.
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