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Abstract— We consider two classic problems in convex opti-
mization: 1) minimizing a convex objective over the nonnegative
orthant of the `1-ball and 2) minimizing a convex objective over
the probability simplex. We propose an efficient and simple
equality constraint elimination technique which converts the `1
and simplex constraints into order constraints. We formulate
the projection onto the feasible set as an isotonic regression
problem, which can be solved exactly in O(n) time via the Pool
Adjacent Violators Algorithm (PAVA), where n is the dimension
of the space. We design a C++ implementation of PAVA
up to 25,000 times faster than scikit-learn. Our PAVA-
based projection step enables the design of efficient projected
subgradient methods which compare well against projected
algorithms using direct projections onto the `1-ball and onto
the simplex, with projection in O(n log(n)) exact time and O(n)
expected time. Interestingly, our technique is particularly well
adapted to learning from sparse, skewed, or aggregated data,
by decreasing the cross-correlations between data points.

I. INTRODUCTION

We study the following convex optimization problems:

min
x

f (x) s.t. ‖x‖1 ≤ λ , x� 0 (1)

min
x

f (x) s.t. 1T x = λ , x� 0 (2)

where f : Rn→ R is a convex function, λ , λ1, · · · , λs posi-
tive constants, ‖x‖1 = ∑

n
i=1 |xi| is the `1-norm, 1T x = ∑

n
i=1 xi,

and x � 0 describes the nonnegative orthant xi ≥ 0, i ∈
{1, · · · ,n}. In the third problem, the vector x is decomposed
into s subvectors x1, · · · ,xs such that each block xk is
of dimension nk (with ∑k nk = n) and subject to equality
constraints 1T xk = ∑

nk
i=1 xk

i = λk for k ∈ {1, · · · ,s}.
In our setting, ‖x‖1 = ∑

n
i=1 xi = 1T x since the entries of

x are restricted to be nonnegative, hence we will use 1T x
instead of the norm notation for the remainder of the article.
We focus on projected subgradient methods, and projecting
onto the `1-ball is equivalent to projecting the absolute value
of x onto the nonnegative orthant of the `1-ball [8], thus for
brevity, in the remainder of the article, we will refer to the
latter as just projecting on the `1-ball.

Problems with a cardinality penalty term are common
in machine learning. They are often cast into a convex
optimization formulation in which the `1 norm is a proxy
for penalizing cardinality. Such problems have many appli-
cations, see [8], [17] and references therein. An equivalent
approach to cast the `1 regularized problem is to impose
a `1 constraint, such as in problem (1). A mathematically
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related task in machine learning is the estimation on the
probability simplex, see Pilanci et al. [17] and references
therein. Applications include measure recovery [17], port-
folio optimization [13], traffic assignment [16], route flow
estimation in transportation networks [19]. Duchi et al. [8]
focuses on the `1 constrained problem (1) and designs
efficient projected subgradient methods with projection in
O(n logn) in exact time or O(n) expected time.

In this paper, we present an efficient equality constraint
elimination technique [5, §4.1.3] on the simplex constrained
problem (2) which reduces the constraints to order con-
straints. Hence isotonic regression techniques, see [18], can
be used and by extension the `1 constrained problem (1).
Isotonic regression can be solved in linear time by the Pool
Adjacent Violators Algorithm (PAVA) [4, §3], and has been
successfully applied to Ad Click Prediction [14], [10]. We
also design a C++ implementation of PAVA that is approxi-
mately 24,000 times faster than the PAVA from the widely-
used Python library scikit-learn, and 5-10 times faster
than the state-of-the-art. Thus, the proposed parametrization
x = Nz+ e allows for efficient gradient projection in linear
time using PAVA and compares well against the projection
on the `1-ball, which has O(n) expected time complexity [8].

We compare the rates of converence of different projection
subgradient descent methods: the Barzilai-Borwein method
[2] and the L-BFGS (see [15]), augmented with a back-
tracking line search [5, §9.2] on problems (1) and (2). We
demonstrate experimentally that our method performs well
on learning from sparse data points sampled from skewed
distributions. We note that many models assume that data
are symmetric about the mean, e.g. sampled from a normal
distribution. In reality, data points may not be perfectly
symmetric and there is active research on skewness [12].

II. PROBLEM SETTING AND EXISTING TECHNIQUES

Our analysis is motivated by devising efficient projected
subgradient methods, see, e.g. Bertsekas [3]. We present how
(1) can be solved using such methods, see Duchi et al. [9].
Throughout the paper, we will denote the feasible set of (1),
which is the intersection of the `1-ball and Rn

+:

Bλ
+ = {x ∈ Rn | 1T x≤ λ , x� 0} (3)

A. Gradient projection onto the `1-ball

Projected subgradient methods minimize the objective f
subject to x∈ Bλ

+ by computing the sequence x0, x1, · · · with

xt+1 = ΠBλ
+

(
xt − γt∇ f (xt)

)
, t = 0, 1, 2, · · · (4)
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where ∇ f (xt) is the (sub)gradient of f at xt , γt is a positive
step size in the direction of negative gradient, and ΠBλ

+
(w)

is the Euclidean projection of w onto Bλ
+, i.e. the solution of

min
x

1
2
‖w−x‖2

2 s.t. 1T x≤ λ , x� 0 (5)

The above problem (5) can be solved by first projecting
w onto Rn

+, i.e. setting all the negative entries to zero. If
the resulting vector w+ := (max(wi, 0))i=1,··· ,n is such that
1T w+≤ λ , then the optimal solution of (5) is w+. If we have
1T w+ > λ , the optimal solution must be on the boundary of
the `1-ball and thus the inequality constraint 1T x≤ λ can be
replaced with the equality constraint 1T x = λ :

min
x

1
2
‖w−x‖2

2 s.t. 1T x = λ , x� 0 (6)

A unique solution to problem (6) exists and can be ob-
tained by shifting all the entries in w by the same amount −θ

while keeping all the entries nonnegative, i.e. finding θ ∈ R
such that the vector(w−θ1)+ = (max(wi−θ , 0))i=1,··· ,n is
feasible 1T (w−θ1)+ = λ . Computing the optimal threshold
θ requires sorting w in decreasing order w(1), w(2), · · · , w(n)
and finding the pivot ρ ∈ [n] and then θ such that w(i)−θ > 0
for 1≤ i≤ ρ and w(i)−θ ≤ 0 otherwise. The sorting step is
the most expensive one and requires O(n logn) time (using
e.g. quicksort). An improvement [9] consists of finding the
pivot element ρ in step 2 in expected linear time without
sorting w. It is based on a modification of the randomized
median finding algorithm of Cormen et al. [6].

We note that problems on the simplex (2) are similar with a
projection step that is directly given by (6). In the remainder
of the paper, we will denote Sn

λ
the simplex of mass λ :

Sn
λ
= {x ∈ Rn |1T x = λ , x� 0} (7)

III. OUR CONSTRAINT ELIMINATION TECHNIQUE

In this section, we present one of our main contributions: a
simple and efficient equality constraint elimination technique
that converts the simplex constraints into order constraints.
Our method also eliminates the equality constraint in the
projection step of `1-constrained problems.

A. Reduction to an order constraint

Using linear algebra [5, §4.1.3], we eliminate the equal-
ity constraint 1T w = λ in (2) by constructing a feasible
direction e ∈ Sn

λ
and a matrix N ∈ Rn×(n−1) whose range

is the orthogonal complement of the vector 1 ∈ Rn, i.e.
{t1 | t ∈ R}⊥. With such components e and N, we have
{x ∈ Rn |1T w = λ} = {e+Nz |z ∈ Rn−1}, and substituting
x = e+Nz in (2) gives:

min
z

f (e+Nz) s.t. e+Nz� 0 (8)

Proposition 1: There exists an affine transformation x =
e+Nz (8) such that the simplex-constrained problem (2) is
equivalent to a minimization problem with order constraint:

min
z

f (e+Nz) s.t. 0≤ z1 ≤ ·· · ≤ zn−1 ≤ λ (9)

Proof: Vectors of the form [0, · · · ,1,−1, · · · ,0]T are orthog-
onal to 1 ∈ Rn, hence we choose N and e ∈ Rn such that:

N =


1
−1 1

−1
. . .
. . .

 ∈ Rn×(n−1); e =: [0, · · · ,0,λ ]T ∈ Rn

(10)
where the columns of N form a basis of {t1 | t ∈ R}⊥. With
the above construction, the entries of x = e+Nz are

x1 = z1
xi = zi− zi−1 i = 2, · · · ,n−1
xn = λ − zn−1

(11)

which results in a simplification of the constraint e+Nz� 0
into order constraints 0≤ z1 ≤ ·· · ≤ zn−1 ≤ λ . �

This also applies to `1-constrained problems:

Proposition 2: There exists an affine transformation x = Nz
such that the `1-constrained problem (1) is equivalent to a
minimization problem with order constraint of the form:

min
z

f (Nz) s.t. 0≤ z1 ≤ ·· · ≤ zn ≤ λ (12)

Proof: We note that the variables x1, · · · , xn given by (11)
form a telescoping sum, yielding x1 + · · ·+xn = λ , which is
the desired equality constraint in the simplex. For the `1-ball
restricted to Rn

+, we want x1+ · · ·+xn≤ λ , which is obtained
by replacing the last equality in (11) by the inequality xn ≤
λ − zn−1. If we pose zn := xn + zn−1, then we have zn ≤
λ and xn = zn− zn−1 ≥ 0, which set the constraints on the
added variable zn to zn−1 ≤ zn ≤ λ . Hence, for `1-constrained
problems, the affine transformation is x = Nz with

N =


1

−1
. . .
. . . 1

−1 1

 ∈ Rn×n (13)

x1 = z1
xi = zi− zi−1 i = 2, · · · ,n �

(14)

B. Geometric and statistical interpretations

We observe that the columns of N in (13) do not form
an orthogonal basis for the vector z, the scalar product for
two consecutive vectors being -1. Hence, the projection in
the z-basis is not equivalent to the one in the x-basis.

We also note that N in (10) or (13) is full rank, hence our
transformation does not affect the strong or weak convexity
of the objective function f . However, as we will see later, the
condition number of the sublevel sets of f is affected, see
[5, §9.1]. Finally, we give a statistical interpretation: inverting
equations (14), the variables zi are zi = ∑

i
j=1 x j, hence z is

the cumulative sum of the entries of x. If x is constrained
in the probability simplex, then z describes the cumulative
density function associated to x.
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IV. PROJECTION AS AN ISOTONIC REGRESSION PROBLEM

In this section, we focus on problems of the form (12),
the analysis of (9) being the same. The sequence of points
generated by projected gradient methods applied to (12) is:

zt+1 = Π
iso
[0,λ ]

(
zt − γtNT

∇ f (Nzt)
)

(15)

where Πiso
[0,λ ](y) is the Euclidean projection of y onto the

order constraints:

min
x

n

∑
i=1

(yi− xi)
2 s.t. 0≤ x1 ≤ x2 ≤ ·· · ≤ xn ≤ λ (16)

Without the lower and upper bounds, we are left with an
isotonic regression problem, denoted Πiso

R (y)

min
x

n

∑
i=1

(yi− xi)
2 s.t. x1 ≤ x2 ≤ ·· · ≤ xn (17)

Problem (17) has a unique solution which can be obtained
using the Pool Adjacent Violators Algorithm (PAVA) [1].
PAVA starts with y1 on the left and move to the right until
it encounters the first violation yi > yi+1. Then it replaces
this pair by their average, and back-average to the left as
needed, to get monotonicity. Then it continues this process
to the right, until finally it reaches yn. It has been shown that
PAVA terminates in O(n) time [11]. Hence we would like to
reduce the box-constrained problem (16) to (17) so that we
can use PAVA to perform our gradient projection.

A. Isotonic regression with box constraints

Throughout our analysis, we denote Πiso
[a,b](yk→l)

the problem of fitting an increasing subsequence
a≤ xk, xk+1, · · · , xl ≤ b to yk, yk+1, · · · , yl :

min
l

∑
i=k

(yi− xi)
2 s.t. a≤ xk ≤ xk+1 ≤ ·· · ≤ xl ≤ b (18)

Hence we would like to reduce the box-constrained problem
Πiso

[0,λ ](y) to Πiso
R (y). We provide a lemma and the main result:

Lemma 1. Given xiso the solution to (17), if there exists k
such that xiso

k < xiso
k+1 then (17) reduces to the two subprob-

lems Πiso
R (y1→k) and Πiso

R (yk+1→n)

min ∑
k
i=1(yi− xi)

2 s.t. x1 ≤ ·· · ≤ xk
min ∑

n
i=k+1(yi− xi)

2 s.t. xk+1 ≤ ·· · ≤ xn
(19)

such that [xiso
1 , · · · ,xiso

k ] is the solution to the former and
[xiso

k+1, · · · ,xiso
n ] is the solution to the latter. The same

result holds for (16) and x?, with resulting subproblems
Πiso

[0,+∞)(y1→k) and Πiso
(−∞,λ ](yk+1→n).

Proof: Since the constraint xk ≤ xk+1 is not active at xiso,
it may be removed without altering the solution. Then the
resulting program is separable into the two programs in (19)
with respective solutions [xiso

1 , · · · ,xiso
k ] and [xiso

k+1, · · · ,xiso
n ].�

Proposition 3: The solution x? to (16) is the Euclidian
projection of the solution xiso to (17) onto [0,λ ]n, i.e. x?i = xiso

i
if 0≤ xiso

i ≤ λ , x?i = 0 if xiso < 0, and x?i = λ if xiso > λ .

Proof: We only prove for a box of the form [0,+∞), since
the discussion extends straightforwardly to the case [0,λ ].
For correctness, we add the component x?0 = 0 to x?, x?
being the solution to (16).

Special case: [xiso
i ≤ 0, ∀ i]. Suppose ∃k ∈ {1, · · · ,n}, x?k > 0.

We choose k the smallest of such indices, then 0 = x?k−1 < x?k
and [x?k , · · · ,x?n] is the unique solution to Πiso

R (yk→n) from
Lemma 1. Then [xiso

1 , · · · ,xiso
k−1,x

?
k , · · · ,x?n] is also feasible for

(17) (xiso
k−1 ≤ l < x?k) but has lower objective value than xiso,

this contradicts the unicity of the solution. Hence x?k = 0, ∀k.

General case: We suppose ∃k ∈ {1, · · · ,n} such that:
xiso

k−1 ≤ 0 < xiso
k . From Lemma 1, [xiso

1 , · · · ,xiso
k−1] and

[xiso
k , · · · ,xiso

n ] are then solutions to Πiso
R (y1→k−1) and

Πiso
R (yk→n) respectively. From above, the vector [0, · · · ,0] ∈

Rk−1 is solution to Πiso
[0,+∞)(y1→k−1). Then the global vector

[0, · · · ,0, xiso
k , · · · ,xiso

n ] is the solution to the global program:

min
n

∑
i=1

(yi− xi)
2 s.t. 0≤ x1 ≤ ·· · ≤ xk−1, xk ≤ ·· · ≤ xn

Adding the constraint xk−1 ≤ xk does not affect the solution.
Hence [0, · · · ,0, xiso

k , · · · ,xiso
n ] is the solution to Πiso

[0,+∞)(y).�

B. Efficient Implementation of the PAVA

Since our code base is in Python, we use the PAVA
from scikit-learn. However, as observed by Tulloch,1

scikit-learn’s implementation is rather slow compared,
e.g., to the PAVA in R. Even though the original algo-
rithm has O(n) complexity where n is the dimension of
the problem, PAVA from scikit-learn scales close to
O(n2) due to the cost of maintaining active sets. Hence, we
write our own C++ implementation of Tulloch’s algorithm,
called PAVA+(·), and use Cython2 to build the wrappers
for Python. The algorithm detects a decreasing subsequence
yi, · · · ,yk and replaces each point in the subsequence by the
average of the subsequence to minimize the distance to y,
the vector we project, while satisfying the order constraint.
By implementing entirely in-place, Tulloch obtained an al-
gorithm 5,000 times than scikit-learn. Our C++ im-
plementation is 16,000 times faster than scikit-learn.3

The algorithm always iterates through all the entries of y
at each execution of the main loop, but it would be more
efficient to skip constant subsequences4 formed in previous
iterations by substituting decreasing subsequences by their
average. When solving the `1-constrained problem (1), the
iterates xt can be sparse due to the `1 regularization, where
sequences of zeroes 0 = xi for i = r, r + 1, · · · , s translates
into constant sequences zr−1 = zr = · · ·= zs (recall that 0 =
zi− zi−1 from (14)). Hence, we add an integer array w ∈

1http://tullo.ch/articles/speeding-up-isotonic-regression/
2Cython is a popular language for compiling Python into plain C by

adding static type declarations, see http://cython.org/
3For 1,000,000 points from a perturbed log(1+x), we perform in 43.4ms

while scikit-learn finishes in 690s on average.
4In the isotonic regression literature, such constant subsequences are

commonly called active sets.
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Nn initialized with all ones, and update the entries wi by
the size of the constant subsequence starting at index i. We
still preserve the efficiency of PAVA+(·) with only in-place
operations on y and w but with only one replacement per
constant subsequence. The pseudocode is presented below:

Algorithm 1 PAVA++(·) Improved PAVA algorithm.
1: w := [1, · · · ,1] ∈ Rn

2: pooled:= 1
3: while pooled== 1:
4: pooled:= 0
5: i := 1
6: while i≤ n:
7: k := i+wi
8: j := i
9: while k ≤ n and yk ≤ y j:

10: j := k
11: k := k+wk
12: if yi 6= y j:
13: numerator:= 0
14: denominator:= 0
15: j := i
16: while j < k:
17: numerator :=numerator +w jy j
18: denominator := denominator +w j
19: j := j+w j
20: yi :=numerator / denominator
21: wi :=denominator
22: pooled:= 1
23: i := k

As shown in Figure 1, numerical experiments on randomly
perturbed points log(i), i = 1, · · · ,n show that PAVA++(·)
is 60% times faster than PAVA+(·), from 5 to 10 times
faster than Tulloch’s PAVA, and 24,000 times faster then
scikit-learn’s PAVA. We also separate the points log(i),
i = 1, · · · ,n into K blocks {rk, rk + 1, · · · , rk+1 − 1}, k =
1, · · · ,K, each point in the same block being set to zrk ,
the first point of the block. Hence we construct uniform
subsequences which correspond to a sparse vector x with
non-zero entries equal to xrk = zrk − zrk−1, the difference
of values between consecutive uniform subsequences, see
equation (14). When computations are carried out in a sparse
setting, we know the non-zero entries of x and hence the
partition {rk, rk+1, · · · , rk+1−1}, k = 1, · · · ,K. PAVA++(·)
is 10 times faster as illustrated in Figure 1, as a result of
initializing the weight vector with the partition block sizes
in Algorithm 1.

V. IMPLEMENTATION AND EXPERIMENTS

A. Efficient implementation of subgradient methods

For our numerical results, we also wrote optimized
C++/Cython implementations of the projection onto the
simplex Sn

λ
, the projection onto the `1-ball Bλ

+, and the
projection onto the product of simplexes Sn1

λ1
×·· ·×Sns

λs
.5 We

compare the rates of converence of the projected gradient
method [3] with the Barzilai-Borwein step size selection [2],
and the L-BFGS (see [15]), augmented with a backtracking

5The code is open source and available at
https://github.com/megacell/block-simplex-least-squares

Fig. 1. Left: comparison between the computation times averages
over 10 trials of PAVA from scikit-learn (sklearn), Tulloch’s
PAVA, its C++ implementation (PAVA+), and with constant sequences
tracking (PAVA++) on logarithm data. Right: comparison between the
computation times of the PAVA+, PAVA++, and PAVA++ with prior
knowledge on the constant subsequences.

line search [5, §9.2]. Our implementation of these methods
are mostly in Python, and the matrix manipulations relies
heavily on the NumPy package, as well as SciPy.sparse for
sparse matrices multiplications. Cython has been used to
wrap the projections implemented in C++.

Our experiments consider the least squares setting with de-
sign matrix A ∈Rm×n, observations b ∈Rm, and parameters
x∈Rn, where we aim to minimize the least-squares objective
f (x) = 1

2‖Ax−b‖2
2 subject to the simplex constraint x ∈ Sn

λ
,

that is n is the number of parameters and m the number of
observations.

B. Linear regression model

We have four setups in which the entries of A are i.i.d.
samples from 1) the normal distribution, 2) the log-normal
distribution, 3) the exponential distribution, and in the fourth
setup we have the “cumulative normal”:

Ai j =
n

∑
k= j

aik with ai j
i.i.d.∼ N(0,1), ∀ i, j (20)

The parameters x are drawn blockwise from Dirichlet distri-
butions with hyperparameter α , and the simplex scaling fac-
tor λ is drawn uniformly on [0,Λ]. Then the measurements
are generated via b = Ax. We set n = 1000 and compare
the difference of performance between solving the simplex-
constrained problem (2) and the equivalent re-formulation via
our affine transformation x = Nz+e. The error f (x)− f (x?)
typically presents a linear convergence, as illustrated in
Figure 2. We get a proxy for the log of the convergence
rate by doing a linear fit of the accuracy.

Fig. 2. Accuracies f (x)− f (x?) as a function of time in log scale for
Ai j sampled from the exponential distribution. We have approximately
linear convergence with respect to time.

The empirical estimates of the log rates are aggregated
in Figure 3.a. as a function of the number of measurements
m = 10, 30, 100, 300, 1000. For m = 1000(= n), the matrix
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normal cumulative exponential log-normal
c(AT A) 611 5.71×108 7.56×105 2.72×106

c((AN)T AN) 1.48×108 2.42×103 1.29×108 5.35×107

coherence A 0.153 0.99 0.587 0.606
coherence AN 0.188 0.14 0.196 0.506
mean corr. A 0.0252 0.558 0.502 0.374

mean corr. AN 0.0309 0.0252 0.0309 0.0302

TABLE I
CONDITION NUMBER OF AT A AND (AN)T AN FOR m = 1000, AND

AVERAGE MUTUAL COHERENCE, AND CROSS-CORRELATION OF A AND

AN FOR m = 10, 30, · · · , 1000 FOR THE REGRESSION MODEL.

A is full rank, so we can compute the condition number of
the Hessian ∇2 f = AT A of f , that is

c(AT A) = λmax(AT A)/λmin(AT A) (21)

which directly affects the rate of convergence since the con-
vergence is at least linear for (unconstrained) minimization
of strongly convex functions [5, §9.3.1]:6

f (xt)− f (x?)
f (x0)− f (x?)

≤ κ(AT A)t =

(
1− 1.6×10−4

c(AT A)

)t

(22)

Hence we have faster convergence when the condition
number c(AT A) is close to 1. The condition number after
affine transformation x := Nz + e on the least-squares is
c((AN)T AN), hence we compare both values in Table 1.
When m = 1000, the condition number is lower in the x-
basis for all the distributions except the cumulative normal.
Hence there is faster convergence for these distributions,
as illustrated in Figure 3.a. and predicted by (22). For
the cumulative normal, the product AN has exactly entries
Ai j − Ai, j+1, hence we recover exactly the samples ai j in
(20). Learning directly on the points ai j enables a faster
convergence with the z variables as seen in Figure 3.a.

On the contrary, the gradient descent methods converge
faster with the z variables for sparse data (m≤ 100) generated
from skewed distributions (exponential and log-normal here).
Let us define the average cross-correlation and the mutual
coherence of A, which where introduced by Donoho and
Huo [7] and has been used extensively in the field of sparse
representations of signals:

average cross-correlation of A = mean{|aT
i a j|}i 6= j

mutual coherence of A = max{|aT
i a j|}i6= j

(23)

where ai denotes the normalized rows of A. Table 1 shows
that the average cross-correlation and the mutual coherence
are smaller for AN when data points are sampled from
skewed distribution, suggesting that the z variables form a
better basis, the extreme case being the cumulative normal
in which we fit on the samples ai j ∼ N(0,1) directly.

6In the general case, we have c = 1− 2λminα min(1, β/λmax), where α

and β are the tuning parameters of the backtracking line search. We choose
α = 10−4 and β = 0.8 which reduces c to the expression above.

aggregated uniform highway network
c(AT A) 4.60×107 9.00×105

c((AN)T AN) 7.95×10 4.84×103

coherence A 0.900 0.418 0.675
coherence AN 0.222 0.191 0.476
mean corr. A 0.659 0.300 0.275

mean corr. AN 0.0315 0.0314 0.181

TABLE II
CONDITION NUMBER OF AT A AND (AN)T AN FOR m = 1000, AND

AVERAGE MUTUAL COHERENCE, AND CROSS-CORRELATION OF A AND

AN FOR m = 10, 30, · · · , 1000 FOR THE SIGNAL RECOVERY PROBLEM.

C. Sparse signal recovery from linear measurements

For these numerical experiments, we focus on block-
simplex least-squares problems (2) of the form

min
x

1
2
‖Ax−b‖2

2 s.t. x ∈ Sn1
λ1
×·· ·×Sns

λs
(24)

and we want to recover the signal x from sparse linear
measurements aT

i x, where aT
i ∈ {0, 1}n for all i = 1, · · · ,m.

Hence A ∈ {0, 1}m×n is an incidence matrix that maps the
state x (to be estimated) of a physical system to aggregate
measurements of it. This setting appears widely in physical
systems which can be modeled as a graph, such as in
transportation networks [19].

We consider a first model in which all the entries of A
are i.i.d samples from a Bernoulli distribution with constant
parameter p (we take p = 0.3 to emulate sparsity) and a
second model that emulates measurements which are cor-
related with the block structure of the parameter vector. In
the second model, the generation of Ai j is no longer i.i.d.
Now instead, the rows aT

i ∈Rn are generated independently
based on a pivot k randomly selected in {1, · · · ,n} which
determines the Bernoulli success probabilities for the entire
row: pi = 0.9 for |i−k| ≤ K, and 0.1 otherwise, resulting in
clusters of ones in the overall design matrix, all other entries
being set to 0.

We apply the same projected subgradient methods and
compare their rates of convergence on the two models de-
scribed above. When the measurements are sparse (m≤ 100),
the algorithms are faster in the z-basis as shown in Figure
3.b. Table 2 shows that the average cross-correlation and
the mutual coherence are smaller for AN for both models,
suggesting that the observation model AN generates sparse
measurements that are less correlated, hence the superior
convergence for our projected gradient descent methods.

D. Application to route flow estimation

For our application, we consider the highway network
near Los Angeles composed of 44 nodes and 122 directed
arcs, see Figure 4. The roads’ characteristics are obtained
from OpenStreetMaps, the (Origin-Demand) OD demands
are based on data from the Census Bureau. They represent
a quasi-static morning rush hour model. The experimental
setup is identical to [19]. We compute the equilibrium flow
using the (Bureau of Public Roads) BPR-type delay function
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Fig. 3. Comparison of the methods on a) the linear regression model and b) the sparse signal recovery problem. The dimension n = 1000 and
the number of measurements varies from 10 to 1000 (full rank).

sBPR
a (va) = da(1+0.15(va/ma)

4) with va, da and ma the flow,
free flow delay and capacity on arc a and then enumerate
the used routes P between OD pairs using a k-shortest paths
algorithm. We suppose we have measurements from loop
detectors mainly along the I-210, I-10 and state route 60,
see Figure 4. We are interested in estimating the route flows
xp for p ∈ P, and pose it as a least-squares problem of the
form (24). The projected gradient methods are faster with
the z variables and Table 2 shows that AN has lower mutual
coherence and average cross-correlation.

Fig. 4. Application to the highway network of Los Angeles. Top
left: typical morning rush hour on 2014- 06-12 at 9:14 AM from
Google Maps. Top right: delays from the User Equilibrium. Middle
left: observed links.
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