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Abstract— We develop a data-driven, Partial Differential
Equation-Ordinary Differential Equation (PDE-ODE) model that
describes the response of the Carbon Dioxide (CO2) dynamics
inside a conference room, due to the presence of humans, or
of a user-controlled exogenous source of CO2. We conduct two
controlled experiments in order to develop and tune a model
whose output matches the measured output concentration of
CO2 inside the room, when known inputs are applied to the
model. In the first experiment, a controlled amount of CO2 gas
is released inside the room from a regulated supply, and in
the second, a known number of humans produce a certain
amount of CO2 inside the room. For the estimation of the
exogenous inputs, we design an observer, based on our model,
using measurements of CO2 concentrations at two locations
inside the room. We perform several simulation studies for the
illustration of our design.

I. INTRODUCTION

A. Motivation

The knowledge of occupancy levels in discrete zones
within a building offers the potential of significant energy
savings when coupled with zonal control of building services
[7], [11], which is a motivation for the work presented in the
present article.

A relatively unexplored approach for estimating the num-
ber of humans occupying discrete zones of office spaces,
such as, for example, a conference room within a larger office
space, is to model and estimate the effect of the CO2 that is
produced from humans on the total CO2 concentration in the
specific discrete zone (i.e., the conference room). The reason
is that humans are the primary producers of CO2 inside
a building [25] and that CO2 sensors are widely deployed
in smart buildings (since CO2 is an important quantity to
observe in order to manage occupant comfort [25] and since
this quantity can be measured using cheap sensors).

Modeling CO2 dynamics is challenging, due to the com-
plexity of air dynamics. Most recently, two categories of
models are used: Zonal models and Computational Fluid
Dynamics (CFD) models. CFD models provide the most rich
and detailed view of air motion in a space, however, they are
beset by arduous work in modeling the physical space (e.g.
providing locations of all walls, furniture, and occupants)
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and identifying all parameters that are needed for the model.
CFD models also suffer from lengthy computation times to
solve the necessary PDEs at a high resolution, especially near
boundaries [18], [24]. Zonal models relate the movement
of air between discrete and well-mixed spaces, such as
rooms and parts of rooms. Generally, zonal models rely
on ODE mass-balance laws between these spaces, which,
in comparison to CFD models, can be solved very quickly
[18]. However, this comes at the expense of not modeling
the distributed nature of airborne contaminant transfer within
a single space, and complex local phenomena such as jets of
air coming from a vent [19].

Yet, for designing and implementing estimation algorithms
for the CO2 concentration, one has to develop a simple, and
at the same time, accurate PDE-based model that retains the
distributed character of the system. Based on this model,
one can then design an observer for estimating the unknown
CO2 input that is produced from humans. The observer
design has to be developed using the minimum number of
sensors, in order to reduce cost and increase reliability.

B. Literature

Our modeling and estimation efforts for the CO2 produced
by humans in a room lie in the general study of airborne
contaminant modeling and estimation in indoor spaces. There
is a wide variety of models from mass-conservation-based
ODE models [22] to highly detailed CFD models for indoor
airflow [8], [16]. The choice of model is often dependent
on the end application and what information is available.
For instance, ODE models may not operate at fine enough
spatial resolution to be useful, whereas a detailed CFD model
may be too complex for designing estimation algorithms.
Techniques for the estimation of the concentration of con-
taminants emitted from a source in indoor environments exist
in the literature [2], [6], [17], [23], [26], [30]. In particular
[15], [28], are dealing with the estimation of CO2 emitted by
humans for the purposes of occupancy detection. Our method
is unique in that we derive a simple, data-driven PDE-ODE
coupled system, and recast the problem of identification of
the unknown CO2 input produced by humans as a problem
of state estimation of the PDE-ODE system.

Boundary observers for some classes of PDEs are con-
structed in [9], [10], [12], [13], [27] via backstepping. In
[20], this methodology is applied for the estimation of the
state-of-charge of batteries. Observer designs for time-delay
systems with unknown inputs are presented in [1].
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C. Results

We conduct two experiments (Section II). In the first, a
regulated amount of CO2 gas is released in the conference
room for specific time periods while CO2 concentrations
are measured at seven different locations in the room.
We use the measurements of the CO2 concentration in
order to develop a model that reproduces the measured
CO2 concentrations at the seven different locations, given the
known CO2 release. We also use the measurements from this
experiment in order to identify in which sensing locations
the measured CO2 concentrations are more sensitive to an
external CO2 source. In the second experiment, we monitor
the evolution of the CO2 concentrations at three different
locations in the room (the ventilation system’s input and
output, and at a table located in the conference room) as
two researchers enter and exit the room at recorded times.
The purpose is to verify the model that we develop in the first
experiment under a CO2 input that is generated by humans.

By conducting the two experiments, we aim to develop a
data-driven model whose output matches the output of the
actual system, when the same inputs are applied to both the
model and the system, which is simple enough for estimation
and identification purposes. We do not attempt to modeling
the exact physical phenomena govern the dynamics of the
CO2. Yet, our model provides some insight on the actual spa-
tially distributed dynamics of the CO2 concentration since it
is a PDE model.

We model the dynamics of the CO2 concentration in the
room using a convection PDE with a source term which
is the output of a first-order ODE system driven by an
unknown input which models the human’s emission rate
of CO2 (Section III). The source term represents the effect
of the humans on the CO2 concentration in the room. In
our experiments, we observe a delay in the response of the
CO2 concentration in the room to changes in the human’s
input. For this reason, the source term is a filtered version of
the unknown input rather than the actual input. We assume
that the unmeasured input from the humans has the form
of a piecewise constant signal. This formulation is based on
our experimental observation that humans contribute to the
rate of change of the CO2 concentration of the room with a
filtered version of step-like changes in the rate of CO2.

The value of the PDE at the one boundary of its spatial
domain indicates the CO2 concentration inside the room at
the location of the air supply. At this location, incoming
air is entering the room, and hence, one can view the
CO2 concentration of the fresh incoming air as an input to
the system. The value of the PDE at the other boundary
of its spatial domain indicates the CO2 concentration at the
air return of the ventilation system. The air at this point is
mixed with CO2 that convects from the air supply towards
the air return, and with CO2 that is produced from humans.
We consider the CO2 concentration at this point as the output
of our system. Any value of the PDE on an interior point
of its spatial domain is an indicator of the concentration of
CO2 at the ceiling in a (non-ratiometric) normalized distance

Fig. 1. The office space under study.

along an axis from the supply to the return vent.
We design an observer for the overall PDE-ODE system

using boundary measurements, at the air supply and the air
return (Section IV). The observer estimates the unknown
input from the humans, as well as the overall PDE state of
our model. Our observer design and the proof of exponential
stability of the observation error is based on the observer
design from [4] for linear systems with distributed sensor
delays.

Notation: The spatial L2(0, 1) norm is denoted by ‖ · ‖.
II. EXPERIMENTAL SET-UP

Our experimental work takes place in a 44 m3 conference
room, shown in Fig. 1. The room is completely interior
within the building and has no outside walls. On the ceiling
there is one air supply vent with a diffuser and protective
grate, and an air return vent with a protective grate.

We measure CO2 concentration using the K-30 Sensor
Module [14] which comes with specifications of ±30 ppm±
3% accuracy and repeatability of ±20 ppm±1%. We expect
the nominal CO2 concentrations of the room to be no more
than 1500 ppm, which gives a repeatability error bound of
±35 ppm.

Constant errors in CO2 readings are corrected by a method
called Baseline Correction. Essentially, sensor readings are
taken over a time period and the lowest concentration seen
during that period is assumed to be 400 ppm, corresponding
the outdoor air concentration (i.e., the steady-state value if
the room is ventilated and no humans are present). The
sensor itself performs this correction automatically over a
seven and a half day interval. We manually perform this
correction by operating all of the sensors overnight, then
subtracting an offset from each data set so that the minimum
readings from each sensor equaled each other. This ensures
that all of our sensor readings are using the same baseline,
even if this baseline is up to (−30 ppm − 400 ppm · 3%) =
−32 ppm away from the real value.

A. Experiment I: Controlled CO2 Release

In the first experiment, we have two goals:
• The first goal is to examine the spatial dependence of

CO2 concentration in the room, in particular how well-
mixed the air is. If there is a spatial dependence, we
would like to identify the sensor which exhibits the most
dependence on CO2 generation in the room.
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Fig. 2. CO2 concentrations during Experiment I. Showing measurements
from all 7 locations over the approximately 22 hour experiment.

• The second goal is to collect data that can be used for
manual or automatic identification of the parameters of a
model whose output matches the measured data, when
the same CO2 input is applied to the model and the
conference room.

Therefore, our testing methodology is to add a controlled
disturbance of CO2 into the room and measure the resulting
response on the sensors placed in the room.

The disturbance input consists of beverage grade (99.9%
purity) CO2 gas being released via a flow regulator at
approximately 2 CFM, and passed through a small 200 W
personal heater, to simulate warm breath. A mechanical timer
is used to switch the regulator and heater on and off with a
2 hr period (1 hr on, 1 hr off).

We deploy a total of fifteen CO2 sensors in the conference
room at eight different locations. At seven of the eight
locations, two CO2 sensors are co-located for redundancy
in case hardware failure made a reading invalid. We do not
encounter any hardware failures during the experiment, so
we instead take the mean of redundant measurements.

Fig. 2 gives the sensor readings from this test. When the
CO2 injection is turned off, all of the measurements settle
to a steady-state value, which is almost the same for all
sensors. However, when CO2 injection begins, we see clear
spatial differences in CO2 concentrations. During injection,
the highest concentrations of 900 ppm are seen by sensors
placed at the air return vent and sensors placed on the ceiling
at the midpoint between the supply and return vents. The
lowest concentrations are seen at the supply vent, which stays
below 600 ppm. All of the other sensors, which are placed
between chest and waist level in the room, exhibit similar
behavior in response to the CO2 injection. In general, besides
transient behavior due to ventilation turning on and off, the
CO2 concentrations from different points in the room react
the same, albeit with different magnitudes.

From this experiment, we conclude that, when CO2 is
being generated in the room, the concentration of CO2 local
to the air supply represents a mixture of the room’s
CO2 concentration and that of the fresh air (about 400 ppm).
Other than at the supply vent, we observe that there are
large variations on the CO2 concentration between points
at the ceiling and points at table height. This is explained
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Fig. 3. CO2 concentrations during Experiment II. Showing measurements
from 3 locations in the conference room over 3 hour experiment. Magenta
lines indicate when occupancy changes occurred. The arrows indicate the
time instants at which the ventilation rate increases2.

by the fact that a warm breath from a human occupant acts
as a “bubble” of gas that rises to the ceiling, since it is
more buoyant than the ambient, cooler air. Also, we observe
that there are smaller variations on the CO2 concentration
between different points at the ceiling.

We also conclude that, of all the sensors, the measurements
most affected by the production of CO2 are those taken at the
air return vent. Therefore, these measurements will be most
useful to observe and perform system identification with.

B. Experiment II: Release of CO2 from Humans

In the second experiment, the goal is to determine the
effect of real human occupancy on the concentration of
CO2 in the room. For this experiment, three CO2 sensors are
deployed: one each at the air supply and return vents, and
one on the conference table at the center of the room. Our
excitation procedure consists of adding or removing one of
two participants of the experiment, and noting the time that
the occupancy changes. Fig. 3 is a plot of the data gathered
from this experiment in which occupancy transitions occur.

From this plot, we can see the general trend that
CO2 concentration at the conference room table and at the
return vent increases when occupants arrive and decreases
when occupants leave the room. We also conclude that the
concentration at the air supply vent is much less dependent
on occupancy. This can be attributed to the constant fresh
air ventilation that is provided by building services, so that
fresh air concentration dominates the concentration in the
area near the vent.

We can also see an interesting effect starting at the
approximate times of 1:30PM, 2:20PM and 3:40PM, where
the CO2 measurement at the air supply sharply drops and
corresponds to a rise in CO2 in the other two measurements.
We hypothesize this is due to the ventilation rate increasing.
Near to the supply vent, a greater quantity of fresh air would
mix with the air near the sensor, driving the concentration
down. A higher air velocity in the room will also impart more
turbulent mixing of pockets of CO2 concentration within the
room, pushing them out of the air return and increasing the
concentration at that point. The mixing of these pockets also
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causes an increase in the CO2 concentration near the table.

III. MODEL OF THE CO2 DYNAMICS

Our model consists of a PDE and an ODE part. The ODE
part is given by

Ẋ(t) = −aX(t) + V (t) (1)
V̇ (t) = 0, (2)

where, X , in ppm, models the source term of human
CO2 production on the relative concentration (in ppm) of
the room in the local vicinity of the human (the evolution
of which is described later on by a PDE), and V is a step-
valued function, in ppm · s−1, representing the level of the
human CO2 production rate within the vicinity of humans.
Parameter, 1

a , in 100s, represents a time constant specifying
how fast changes in occupancy affect the CO2 concentration
in the room, in the local vicinity of the human.

The ODE is coupled with a PDE that models the
CO2 concentration in the room given by

ut(x, t) = bux(x, t) + bXX(t) (3)
u(0, t) = Ue −∆U(t), (4)

with ∆U(t) = U(t) − Ue, where u(x, t), in ppm, is the
concentration of CO2 in the room at a time t ≥ 0 s and
for 0 ≤ x ≤ 1, −b > 0, in 1

100s , represents the rate of air
movement in the room, and bX > 0, in 1

104s , specifies the
rate of diffusion of CO2 from the local vicinity of the human
to the room. The spatial variable x is unitless and represents
a normalized distance along a horizontal axis that connects
the air supply and air return. The air supply and air return are
located at x = 0 and x = 1 respectively. Therefore, u(0, t)
is the CO2 concentration inside the room at the location of
the air supply and u(1, t) is the CO2 concentration inside
the room at the location of the air return. The input U(t)
is the measured ppm concentration of the fresh incoming
air. We do not simply specify the boundary condition at
x = 0 as u(0, t) = U(t). The reason is that during our
experiments we observe that a sudden drop in the measured
CO2 concentration at the air supply results in an increase of
the CO2 concentration at the air return. Our explanation for
this effect is that a drop in CO2 concentration at the supply
from its equilibrium value corresponds to increased airflow
at the vent, i.e. more fresh air gets mixed in the local vicinity.
The increased airflow has the effect of pushing pockets of
CO2 air out of the return vent. One way to capture this
effect is to multiply the difference of the CO2 concentration
from its equilibrium value ∆U(t) = U(t) − Ue with
minus one, where Ue, in ppm, is the steady state input
CO2 concentration at the supply ventilation.

In Fig. 4, we illustrate the geometrical representation of
our model. The PDE portion of the model, u, represents
convection of air from the air supply to the air return

2We assume that the air ventilation rate increased at the marked points be-
cause an increased proportion of fresh air (typically 400 ppm) would cause
a drop in the supply CO2 concentration. The validity of this hypothesis
could be verified by measuring the flow of incoming air at the supply with
an anemometer.

Input from humans

Direction of convection

SupplyReturn

V

u(x, t)

u(1, t) u(0, t)

X

u(1, t) U(t)�

Fig. 4. Geometrical representation of our model. Fresh air (U ) enters the
room from the supply vent. Air near the ceiling (u) convects from the air
supply to the air return. Humans produce CO2 (V ) rising (X) to the ceiling.
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Fig. 5. Solid: The simulated concentration of CO2 at the air return u(1, t)
given by the model (1)–(4) for Experiment I. Dashed: The concentration
of the CO2 at the air return measured by the CO2 sensor. Dotted: The
concentration of CO2 at the air supply measured by the CO2 sensor.

vent near the ceiling. Note the absence of a diffusive term,
which we have omitted since it plays a relatively minor
role in dispersing indoor pollutants [3]. We model the
CO2 concentrations near the ceiling since this is where we
see most effect from human-generated CO2 (Section II). This
is explained by the fact that a warm breath from a human
occupant acts as a “bubble” of gas that rises to the ceiling,
since it is more buoyant than the ambient, cooler air. Thus,
the air coming from lower in the room is modeled as a source
term on the PDE across its entire length. The ODE portion of
the model is intended to model the fact that this bubble of air
does not immediately rise to the ceiling but only gradually.

In Fig. 5 we show the CO2 concentration at the air return
and air supply, measured by the CO2 sensors for Experiment
I, in which we periodically release CO2 every one hour. We
also show the model’s output u(1, t) with parameters from
Table I3 and initial condition u(x, 0) = 400 ppm. The input
V to our model, with which we emulate the behavior of the
CO2 released from the pump, is the square wave in Fig. 6.

In Fig. 7 we show the CO2 concentration from Experi-
ment II measured from the CO2 sensor and predicted from

3In this section we manually tune the parameters of model (1)–(4) in order
to match the measured CO2 concentration at the air return with u(1, t).
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TABLE I
PARAMETERS OF THE MODEL (1)–(4) FOR EXPERIMENTS I, II.

Physical Paramater Model parameter Value (I) Value (II)
Convection coefficient

(
1

100s

)
−b 0.8 0.16

Source term coefficient
(

1
104s

)
bX 0.2 0.2

Time constant of the human’s effect (100s) 1
a

10 10

Equilibrium concentration at the air return (ppm) Ue 450 370
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Fig. 6. Top: The input V to the model (1)–(4) from Experiment I modeling
the concentration of CO2 that is released from the pump. When V = 0 the
CO2 pump is turned off and when V 6= 0 the CO2 pump is turned on.
Bottom: The input V to the model (1)–(4) from Experiment II modeling
the input concentration of CO2 from the humans.

model (1)–(4) with parameters shown in Table I, initial
condition u(x, 0) = 400 ppm, and input V that is shown
in Fig. 6 (bottom), with which we emulate the behavior of
the CO2 produced by humans.

IV. ESTIMATION OF THE HUMANS’ EFFECT

We construct an observer for the plant (1)–(4) assuming
measurements of u(1, t) and U(t). We assume that the pa-
rameters of the model are known since they can be manually
identified (as in Section III).
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Fig. 7. Solid: The simulated concentration of the CO2 at the air return
u(1, t) given by the model (1)–(4) for Experiment II. Dashed: The concen-
tration of the CO2 at the air return measured by the CO2 sensor. Dotted:
The concentration of CO2 at the air supply measured by the CO2 sensor.

C
O
2

co
nc

en
tr

at
io

n
(p

pm
)

A. Observer Design

Our observer is a copy of the plant plus output injection

ût(x, t) = bûx(x, t) + bXX̂(t)+p(x) (u(1, t)−û(1, t))(5)
û(0, t) = −U(t) + 2Ue (6)

˙̂
X(t) = −aX̂(t) + V̂ (t) + L1 (u(1, t)− û(1, t)) (7)
˙̂
V (t) = L2 (u(1, t)− û(1, t)) . (8)

The following corollary follows from Theorem 2 in [4].
Corollary 1: Consider system (1)–(4) and the observer

(5)–(8) with

p(x) = L1γ1(x) + L2γ2(x) (9)

γ1(x) =
bX
a

(
e−

a
b x − 1

)
(10)

γ2(x) = −bX
ba
x+

bX
a2
(
1− e− a

b x
)
. (11)

Let bX 6= 0 and choose L1, L2 such that A −[
L1

L2

]
C, where A =

[
−a 1
0 0

]
, C =

[
γ1(1) γ2(1)

]
,

is Hurwitz. Then for any u(x, 0), û(x, 0) ∈ L2(0, 1),
X(0), X̂(0), V (0), V̂ (0) ∈ R, there exist positive constants
κ and λ such that the following holds for all t ≥ 0

Ω(t) ≤ κΩ(0)e−λt (12)

Ω(t) =

∫ 1

0

(u(x, t)− û(x, t))
2
dx+

(
X(t)− X̂(t)

)2
+
(
V (t)− V̂ (t)

)2
. (13)

B. Simulations

We test our observer design for the model (1)–(4). We
apply the input U that is measured from the sensor and
the input V which is shown in Fig. 6 for each of the two
experiments. We choose û(x, 0) = 400, for all x ∈ [0, 1],
X̂(0) = V̂ (0) = 0, and L1 = 9.5, L2 = 4, such that
the matrix A−

[
L1 L2

]T
C has two eigenvalues at −1,

for the parameters of the model of Experiment I, and at
−0.8012+0.3976i for Experiment II. In Fig. 8 we show the
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Fig. 8. Top: Estimation V̂ (blue line) of the pump input V (black line) in
Fig. 6 for Experiment I. Bottom: The estimation V̂ (blue line) of the input
V (black line) in Fig. 6 produced from the people for Experiment II.

estimation of the input V from the pump and produced by
the people, which converge to the true value of V .

V. CONCLUSIONS

Future work will address the problem of estimation of
the actual human occupancy level using CO2 measurements.
This is a highly non-trivial problem because humans’
CO2 generation rates vary widely between different persons
depending on current activity, diet, and body size [24].
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