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A new convex optimization framework is developed for the route flow estimation problem
from the fusion of vehicle count and cellular network data. The issue of highly underdeter-
mined link flow based methods in transportation networks is investigated, then solved
using the proposed concept of cellpaths for cellular network data. With this data-driven
approach, our proposed approach is versatile: it is compatible with other data sources,
and it is model agnostic and thus compatible with user equilibrium, system-optimum,
Stackelberg concepts, and other models. Using a dimensionality reduction scheme, we
design a projected gradient algorithm suitable for the proposed route flow estimation
problem. The algorithm solves a block isotonic regression problem in the projection step
in linear time. The accuracy, computational efficiency, and versatility of the proposed
approach are validated on the I-210 corridor near Los Angeles, where we achieve 90% route
flow accuracy with 1033 traffic sensors and 1000 cellular towers covering a large network
of highways and arterials with more than 20,000 links. In contrast to long-term land use
planning applications, we demonstrate the first system to our knowledge that can produce
route-level flow estimates suitable for short time horizon prediction and control applica-
tions in traffic management. Our system is open source and available for validation and
extension.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

While there is a wealth of literature in transportation science that is aimed at modeling, computing, and estimating the
movement of people in terms of link flows and origin–destination (OD) flows, there is relatively little work focused on route
flow estimation. The route flow estimation problem is particularly important because route flow estimates can capture phe-
nomena in traffic behavior that link flows and OD flows (also called OD demands) cannot. For instance, route flows would
enable analysis and re-routing of commuters who would be most affected by a link closure. Additionally, route flows pro-
vides a rich state estimate of the network which may be used to compute link flows, OD flows, turning ratios, etc., thereby
providing backwards compatibility with past and ongoing work that builds upon those estimates.

Simultaneously accurate and efficient methods for estimating route flows are crucial for large scale urban network anal-
ysis and planning demands. However, the first step for many approaches to estimating route flow requires enumerating all
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feasible routes, which is an unreasonable task for many urban road networks because it may require exponential time to
compute (Ford and Fulkerson, 1962, Section 1.2). Classically, the set of potential routes may be extracted from the induced
equilibrium in network flow models. At the cost of restrictive assumptions, deterministic user equilibrium (UE) (Wardrop and
Whitehead, 1952) permits the modeling of unique link flows and feasible route (or path) flows without requiring full route
enumeration (Sheffi, 1985, Section 3.3), (Bell and Iida, 1997, Section 5.2)). The stochastic user equilibrium (SUE) (probit-based
(Daganzo and Sheffi, 1977; Maher and Hughes, 1997) and logit-based (Fisk, 1980; Bell and Iida, 1997)) addresses some of the
shortcomings of the UE by modeling imperfect knowledge of the network and variation in drivers’ preferences, which makes
the estimation of route flows possible (Bell et al., 1997). However, frequent perturbations in traffic networks indicate that
real-world transportation networks may not be in equilibrium (or only approximately so) (Hato et al., 1999), so we develop
a data-driven framework that focuses on effectively utilizing the large amount of data available for estimation in traffic net-
works. Indeed, in recent years, the growing number of mobile sensors in urban areas enables the use of probe vehicles for
route inference from GPS traces (Hunter et al., 2009; Rahmani and Koutsopoulos, 2013).

1.1. Traffic data sources

Traditional traffic sensing systems such as loop detectors embedded in the pavement and cameras provide accurate vol-
ume and speed estimates, but their placements are typically sparse and their information content is too coarse. Most impor-
tantly, they measure total counts of vehicles passing through a road segment without distinguishing between vehicles
following different routes. In order to partially address the shortage of information on the routes followed by vehicles, other
types of static sensors have been deployed on the road network: cameras that measure split ratios at different intersections
(Veeraraghavan et al., 2003) and plate scanning systems (Castillo et al., 2008, 2010). However these systems require costly
infrastructure and only provide highly localized traffic information. Meanwhile, given the large penetration of mobile phones
among the driving population and the ubiquitous coverage of service providers in urban areas, mobile phones have become
an increasingly popular source of location data for the transportation community. For example, dynamic probing by means
of in-car GPS traces (Work et al., 2008; Herrera et al., 2009; Hunter et al., 2009) is a promising technology for trajectory
recovery and travel time estimation. However, due to the read-only nature of GPS signals, the low penetration rate of
GPS-enabled devices running a dedicated sensing application currently limits the ability to accurately estimate traffic vol-
umes, and it is also unlikely that such data would become available to public agencies (Patire et al., 2013).

Cellular network data, in contrast to GPS traces, benefit from dedicated communication between mobile phones and cel-
lular network base stations, and the (coarse) location data are available directly from cellular communication network oper-
ators. Cellular network infrastructures record a variety of phone to cell communication events, such as handovers (HO),
location updates (LU) and call detail records (CDR) (Volinsky et al., 2011a,b), and this data has already been shown to be effec-
tive in studying urban environments (Candia et al., 2008a; Jiang et al., 2013; Toole et al., 2012). Since typical cellular net-
works in urban areas include thousands of cells, HO/LU/CDR events are dense enough to be used effectively to estimate
the route choice of agents without requiring any additional infrastructure. When an agent is moving, HOs transfer ongoing
calls or data sessions from one cell to another without disconnecting the session, and LUs allow a mobile device to inform the
cellular network when the device move from one location (or cell) to the next. CDRs (mainly used by service providers for
billing purposes) contain timestamped summaries of the cell through which each data transmission came, and therefore
contain abundant mobility traces for a majority of the population. Due to the granularity of sensing, these records alone
are not sufficient for recovering agent routes precisely. The spatial resolution of CDR, HO, and LU data varies with the density
of antennas and is roughly proportional to the daytime population density. In the present work, we use a standard localiza-
tion approach when dealing with cellular data based on Voronoi tessellation, a simple model solely based on the locations of
the cell towers (Baert and Seme, 2004; Candia et al., 2008b).

1.2. Related work

Several problems within traffic estimation have already benefited from incorporating data from cellular networks: OD
matrix computation using cell phone location data (Caceres et al., 2007; Calabrese et al., 2011) such as CDRs (White and
Wells, 2002), link flow estimation (Yadlowsky et al., 2014), and travel time and type of road congestion (Janecek et al.,
2012). These studies vary in scale and assumptions, but they indicate the promise of non-pervasive sensing to provide a
richer understanding of mobility. In particular, cellular network data has been used to improve the accuracy of OD matrix
estimation (Caceres et al., 2007; Calabrese et al., 2011). There are many surveys on the subject in the past decades (Bell
and Iida, 1997; Abrahamsson, 1998; Ortuzar and Willumsen, 2001), and the accuracy of OD estimates will continue to
improve. Additionally, convex optimization techniques have been used quite frequently by the transportation community
for diverse purposes, including several of these problems. For example, the classical Wardrop equilibrium approach to the
traffic assignment problem can be formulated as a convex optimization program given some typical assumptions on the link
performance (or delay) functions (Sheffi, 1985). Recent works often combine convex optimization with machine learning
techniques (Blandin et al., 2009; Shen and Wynter, 2012; Mardani and Giannakis, 2013).

An early study on the use of cellular network data for traffic assignment (Tettamanti et al., 2012) estimates the route
choice for each user in the cellular network using a distance measure to determine the best matching route. Their small
experiment (2–4 routes) performed via a macro-simulator indicates the potential of cellular network data for solving this
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problem. However, a recent survey on the use of wireless signals for road traffic detection (Mathew & Xavier, n.d.) concludes
that there is thus far no existing system that can estimate traffic densities in a practical sense, that is, in terms of scalability,
coverage, cost, and reliability, thus motivating our work on estimating route flows.

1.3. Contributions of this article

One of the key innovations of the present work is generalizing the common notion of an OD matrix to a general form of
coarse (route) flow measurements (here collected from cellular network data). As mentioned above, the problem of traffic
assignment is historically highly underdetermined because the OD matrix and link flows (even when all the links are
observed) contains relatively little information as compared to the number of available routes. We introduce the concept
of cellpaths, which generalizes 2-point network flow, which we call OD flow, to n-point network flow, which we call cellpath
flow. Where OD flow is characterized by two centroids (illustrated in Fig. 3), cellpath flow can be characterized by n region
centroids through with vehicles pass on a single trip. In this article, the centroids for cellpath flow correspond to cellular base
stations, and the centroids for OD flows correspond to centroids of Traffic Analysis Zones (TAZ). Since our approach includes
a ‘‘strict’’ generalization of ODs to cellpaths, the methodology presented in this article can be applied to a variety of traffic
modeling and estimation problems.

Now, we define our problem as follows: given a large-scale road network in the quasi-static regime, a set of OD demands,
a set of admissible routes between each OD pairs, cellpath flow measurements along the network, and link flow measure-
ments on a subset of links in the network, our goal is to develop a method to estimate the distribution of flow over the
set of routes. We pose the route flow estimation problem as a mathematical program optimizing the fit to link sensor data
over feasible route flow distributions, constrained to those which are consistent with measured cellpath flows in the
network.

Our analysis of the structure of the constraints in the optimization program allows us to present a more efficient solution
method that scales to full-sized networks. By recognizing the constraints as block-simplex constraints, we apply a standard
equality constraint elimination technique (Boyd and Vandenberghe, 2004, Section 4.2.4) with a particular change of variables
to convert the non-negativity constraints on the variables into ordering constraints. In the new space induced by the change
of variables, we show that the projection on the feasible set (characterized by the ordering constraints) can be performed in
linear time via bounded isotonic regression (see (Tibshirani et al., 2011) for a short survey on isotonic regression), where n is
the number of routes per OD pair. This is an improvement over the O n log nð Þ time required by the projection onto the sim-
plex (Duchi et al., 2008; Wang and Carreira-Perpin, 2013). Then we solve our convex optimization program with a first-order
projected descent algorithm. The change of variables presents two main advantages: our projection requires O nð Þ time and
the dimensionality is reduced (sometimes by a factor of 1=3), which is critical for large-scale problems. In addition, it is
worth noting that a wide variety of problems can benefit from this methodology. First, the use of algorithms that feature
a projection step, e.g. projected descent methods and alternating direction methods, is very popular since they often provide
a simple and efficient way to solve constrained convex optimization problem as opposed to more specialized active set
methods. There is also a great deal of applications that feature simplex constraints, such as the aforementioned traffic assign-
ment problem, many game theory settings for the computation of strategy distributions, and ‘1-based approach in machine
learning (Duchi et al., 2008).

Practical considerations that traffic flow in urban areas may not be in equilibrium motivate our emphasis on a data-driven
approach that benefits from the sheer amount of cellular network data without relying on equilibrium-based models or
other route choice models. Aiming at a real-world production system pipeline summarized in Fig. 1, we demonstrate the
versatility and data-driven nature of the proposed approach via validation on three datasets produced by two simulators
of route assignment, where the positions of the cell towers are sampled randomly on the urban networks. To assess our
approach on a variety of possible route choice models that may be realized in a real-world setting, we develop a small
equilibrium-based model that generates user equilibrium (UE) and system-optimal (SO) flows on the I-210 corridor near
Los Angeles, CA. We also use MATSim agent-based transport simulator1 on a large-scale urban road network near Los
Angeles, CA (with more than 20 K links and 290 K routes) to showcase the performance of our methodology on large datasets.
We demonstrate that our full pipeline, from the simulators to the procedures to estimate static route flows on small and
large-scale urban networks, can be extended easily to incorporate other types of data such as link capacities, split ratios etc.
Hence we hope that our framework will be a benchmark for many future studies of estimation problems in transportation
science.2

We summarize the contributions of the presented work:

� We propose a convex optimization formulation for the route flow estimation problem which uses a new data fusion
approach for loop detectors counts and cellular signal traces (ubiquitous among the driving population).
� We demonstrate that our formulation is also compatible with several other approaches to this problem, including equi-

librium concepts, which may be used in conjunction for improved estimation.
1 MATSim is an open source project: http://www.matsim.org/publications.
2 Our full system is open source and available at https://megacell.github.io/ for validation and extension.

http://www.matsim.org/publications
http://https://megacell.github.io/
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Fig. 1. Proposed route flow estimation pipeline, from raw data to route flows, including: (1) a scheme for route selection and resolution cellular and road
networks into a unified map; (2) a trip analysis step to filter driver cellular traces from other traces and infer cellpath flows; (3) an aggregation of the link
flow obtained from static sensors over a sizable duration (e.g. 1 h) suitable to address the static estimation problem; (4) a state-of-the-art OD matrix
estimation method; (5) a problem formulation that handles data fusion from disparate sources; and (6) the route inference method.
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� We introduce the concept of cellpaths and demonstrate its application to traffic estimation problems. We address the
issues with highly underdetermined link flow based methods (which was already raised in the traffic assignment litera-
ture) by formalizing cellular data as cellpaths and incorporating them as constraints. Though we focus on the route flow
estimation problem, many traffic problems may benefit from such an approach.
� Using a reduction scheme, we design an algorithm to solve the route flow estimation problem and large-scale traffic

assignment problems in general. In the resulting formulation, the projection step can be performed in O nð Þ via isotonic
regression, an improvement over O n log nð Þ, where n is the number of routes per OD pair.
� We present a full system pipeline from cellular network and link flow data to estimate the static route flow (and as a

by-product, link flow) on a large-scale urban network. We demonstrate the first system to our knowledge that can pro-
duce route-level flow estimates suitable for short time horizon prediction and control applications in traffic management
from the fusion of cellular network data and data from static sensors along roads.
� We present numerical results from different sets of small and large-scale data for the Greater Los Angeles Area (see Fig. 2).

In particular, the emphasis is placed on a data-driven approach: it is versatile to different types of underlying agent
behavior models.

The remainder of the article is organized as follows: In Section 2, we present the setup and assumptions of our work, then
formulate our route flow estimation problem in the framework of convex optimization. We also provide a re-formulation
necessary for the algorithmic approach described in Section 3. Further in Section 3, we develop a specialized projected gra-
dient method to solve convex optimization programs with simplex constraints. Section 4 is dedicated to the setting of our
experiments. Section 5 presents our numerical results. Section 6 concludes the paper by placing the presented method
within a general data-driven traffic estimation framework and identifying directions for future work.
2. Problem formulation

2.1. Problem setup and assumptions

We define the terminology used in the article, the notation is presented in Table 1, and the setup is illustrated in Fig. 3. It is
important to distinguish between four types of flows: cellpath flow, link flow, route flow, and OD flow. Our setup consists of:

� Origins: traffic regions each with an associated centroid, defined by a partitioning of the road network. Each region is both
an origin (its centroid is a source from which trips emanate) and a destination (its centroid is a sink at which trips termi-
nate). To demonstrate a possible implementation, the numerical work in this article uses the Traffic Analysis Zones (TAZ)
(see Fig. 2) as origins/destinations. We define OD flow to be the flow (vehicle count per time) that originates and termi-
nates with an OD pair.
� Cells: regions defined by the Voronoi partition of the locations of the cellular network base stations; they are generally a

different set of regions from the origins.
� Cellpath: a sequence of cells, and we define cellpath flow to be the flow along a cellpath.
� Link: a segment of road in the network, and the link flow is the flow through a link.
� Route: a sequence of links from an origin to a destination. Each route also has a particular associated cellpath, as well as a

particular associated OD; this insight is important for the structure of our convex optimization formulation. The route flow
is the flow on the route.

The link-route incidence matrix A encodes the network topology (which routes r 2 R contains which links l 2 L); the
cellpath-route incidence matrix U encodes the collection of routes with the same cellpaths (which routes r 2 R is associated
to which cellpath p 2 P); and the OD-route incidence matrix T encodes which routes r 2 R is between OD pairs k 2 O

2. 3
3 The lowercase letters l; r; p; k written as subscripts refer to the indices associated to links, routes, cellpaths, and ODs respectively.



Fig. 2. I-210 corridor in Los Angeles county used for the numerical work presented in Section 5. Left subfigure: The 700 regions are origin/destinations areas
called Traffic Analysis Zones (TAZ) used for the numerical experiments. Right subfigure: Corresponding Voronoi partition of the cellular network based on
1000 cell towers. Best viewed in color.

Table 1
Notation for route estimation problem. We have m observed links, q cellpaths, n routes.

Notation Description Notation Description

O; D Set of origins/destinations D ¼ O d 2 R
jOj2
þ Vector of OD flows, d ¼ ðdkÞk2O2

L jLj ¼ m, links with observed flow b 2 R
jLj
þ Observed link flow vector, b ¼ ðblÞl2L

P jPj ¼ q, observed cellpaths f 2 R
jPj
þ Cellpath flows vector, f ¼ ðf pÞp2P

R jRj ¼ n, set of routes x 2 R
jRj
þ Vector of route flows x ¼ ðxrÞr2R

A Set of all links in the network v 2 R
jAj
þ Full link flow vector, v ¼ ðvaÞa2A

A 2 f0;1gjLj�jRj Link-route incidence matrix Subset Rp Subset of np :¼ jRpj routes with cellpath p
Afull 2 f0;1gjAj�jRj Full link-route incidence matrix ~xp 2 ½0;1�jR

p j Ratios of flows across routes r 2 Rp

U 2 f0;1gjPj�jRj Cellpath-route incidence matrix xp 2 R
np
þ xp

r is the flow of route r 2 Rp

T 2 f0;1gjOj
2�jRj OD-route incidence matrix Rk � R Subset of nk routes between OD pair k

Fig. 3. In this illustration of the cellular and loop data fusion, we have two origins A and C (the blue traffic regions and their centroid as blue dots) and one
destination B (the red traffic region). We have routes r1; r2; r3; r4 with flows x ¼ ðx1; x2; x3; x4Þ such that r1; r2 go from A to B and r3; r4 go from C to B. Cells
c1; . . . ; c7 are shown in purple dashed regions. Since route r1 goes through cells c1; c2; c3; c4, its associated cellpath is p1234. Similarly, routes r2; r3; r4 have
cellpaths p1654;p654; p654 respectively. Let f p1234; f p1654; f p654 be the cellpath flows (obtained from cellular network data), i.e. there are f p1234=1000 veh/h going
through c1; c2; c3; c4. Let dAB and dCB be the OD demands. Cellpaths p1234 and p1654 disambiguate routes between AB : f p1234 ¼ x1; f p1654 ¼ x2, contrary to the
ODs: dAB ¼ x1 þ x2. However, cell towers are not dense along r3; r4, hence dCB ¼ f p654 ¼ x3 þ x4. The cellpath-route incidence matrix generalizes OD matrices
since we consider the sequence of intermediate regions (cells here) that intersect with trips. We also have x2 þ x3 ¼ b, with b the flow on the green link
(from loop detectors). There is a unique route flow inducing flows b; f p1234; f p1654; f p654 that is xH ¼ ½1 4 5 5�, while there are infinitely many flows inducing
b; dAB; dCB : x ¼ xH þ ½1 � 11 � 1�T t; 8 t 2 ½�1;4�, so the problem has one degree of freedom and is underdetermined with only the OD demands as data. Best
viewed in color. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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link� route : Alr ¼
1 if l 2 r

0 else

�
; cellpath-route : Upr ¼

1 if r 2 R
p

0 else

�
; OD-route : Tkr ¼

1 if r 2 R
k

0 else

(
ð1Þ
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The model assumptions are as follows:

� We consider a quasi-static setting, where traffic demands (flows) remain constant over time, and we focus on the noise-
less case, with a short commentary on the noisy case in Section 5.
� Since enumerating all routes is not tractable, we consider the top routes between each OD pair following different criteria

depending on the setting of the numerical experiment (see Section 4).
� We can reliably determine the cellpath flow f p from the cellular traces along each cellpath p.
� All cellpaths p 2 P are contiguous: each pair of consecutive cells in p shares a boundary.
� The set of cellpaths P is well-posed: each route r 2 R corresponds to exactly 1 cellpath p 2 P, and we have a cellpath flow

measurement f p for each p 2 P.

2.2. Formulation and analysis of the model

The fusion of cellular and loop data for route flow estimation is one of the key contributions of this article. We pose the
route flow estimation problem as a mathematical program optimizing the fit to link sensor data over feasible route flow dis-
tributions, constrained to those which are consistent with measured cellpath flows in the network. We formulate this in the
framework of convex optimization as a minimization of a quadratic program:
4 The
Markov
min 1
2 kAx� bk2

2

s:t: Ux ¼ f ; x � 0
ð2Þ
The problem is a constrained linear inverse problem in which we want to estimate a signal of length n (the route flows) given
that we have m measurements (the observable link flows). We additionally have q cellpath flow constraints: for each cellpath
p 2 P, there are np routes corresponding to p, such that their flow must sum up to the cellpath flow f p:
Ux ¼ f : m
r2Rp

xp
r ¼ f p 8p 2 P ð3Þ
We note that the subsets of routes Rp are disjoint (each route has at most one cellpath associated to it), hence (3) along with
the nonnegativity constraint in (2), together forms a block simplex constraint, which we further analyze in Section 3.

In general, m� n and q 6 n, thus typically the Hessian AT A of our convex quadratic objective is singular (AT A 2 Rn�n but
rankðAT AÞ 6 m� n). Thus the problem might have multiple optimal solutions (underdetermined) or might have more
observations than unknowns (overdetermined), depending on the number of cellpath flow constraints. Our cellpath formu-
lation encodes more constraints than methods that consider less detailed flow measurements (e.g. OD flow), thereby con-
straining the solution space. Moreover, when there are uncorrelated measurement errors on the vector flow b (absence of
interactions between the detection process of the link sensors), the ordinary least squares is the best unbiased estimator
of the route flow.4

We now make the following observation, which is key for our algorithm described in Section 3.

Proposition 1. Problem (2) can be reduced to a least-squares problem with (separable) standard simplex constraints:
min 1
2 k~A~x� bk2

2

s:t: 1T~xp ¼ 1; ~xp � 0; 8p 2 P
where ~A 2 RjLj�jRjþ : ~Alr ¼

f p if l 2 r 2 R
p

0 else

�
ð4Þ
where 1 ¼ ½1; . . . ;1�T 2 Rnp and ~A is a modified link-route incidence matrix containing the cellpath flows f p.
Proof. The constraints Ux ¼ f in (2) can be written explicitly:
P

r2Rp xp
r ¼ f p; 8p 2 P. With the change of variables ~xp :¼ xp=f p

for all p, the constraints become
P

r2Rp ~xp
r ¼ 1; 8p 2 P, or in matrix form: 1T~xp ¼ 1; 8p 2 P. Since f p > 0 for all p, then the

inequalities xp � 0 are equivalent to ~xp ¼ xp=f p � 0. Finally, the vector Ax has entries v l ¼
P

r: l2rxr for l 2 L, where v l is the
flow on link l. The sum can be decomposed between the different cellpaths p:

v l ¼
P

r: l2 rxr ¼
P

p

P
r: l2 r 2Rp xp

r

� �
¼
P

p

P
r: l2 r 2Rp f p~xp

r

� �
¼ ð~A~xÞl, hence the objectives are the same. h
2.3. Compatibility of our formulation

Our formulation is related to the traffic assignment problem (also called the route assignment problem) used to solve traffic
equilibrium problems (Wardrop and Whitehead, 1952; Sheffi, 1985, Section 3; Bell and Iida, 1997, Section 5), where A is the

set of all links (arcs) in the network, Afull 2 ½0;1�jAj�jRj is the full link-route incidence matrix, and / is the Beckmann objective
function (Beckmann et al., 1956):
errors must also have zero-mean and constant variance, then the result holds as link flows linearly depend on route flows: b̂ ¼ Axþ �, from the Gauss–
theorem.
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min /ðAfullxÞ s:t: Tx ¼ d; x � 0 ð5Þ
This is a standard formulation in traffic assignment in which a local minimum of (5) is a Wardrop equilibrium of a congestion
game (Monderer and Shapley, 1996); the relation between OD and route flows given by Tx ¼ d is equivalent to the ‘‘approach
proportions’’ formulation of Bar-Gera (2002). If the cellpath-route incidence matrix U is reduced to an OD-route incidence
matrix (see Fig. 3), both (2) and (5) share the same constraints. Furthermore, the cellpath constraints can be added to (5) to
restrict its solution space as well. The main difference lies in the minimization objective: in (2) it is the link flows measurement
residual while in (5) the Beckmann objective / expresses the incentives of all vehicles (or players) to take the shortest route.

In the context of game theory, each cellpath can be seen as a player who chooses a strategy or a probability distribution

with weights ð~xp
r Þr2Rp over the np routes, and a set defined by Sp :¼ f~xp 2 ½0;1�n

p
j
P

r2Rp ~xp
r ¼ 1g is a strategy set or a probability

simplex over the routes r 2 Rp.
We observe that the traffic assignment problem (5) can also be reduced in a similar fashion, where O

2 is the set of all OD
pairs:
min /ð~Afull~xÞ
s:t: 1T~x ¼ 1; ~xk � 0; 8k 2 O

2
where ~Afull ¼ dk if l 2 r 2 R

k

0 else

(
ð6Þ
Our formulation in (2) is also compatible with several other types of data, e.g. turning ratios, link capacities, OD flows. We
demonstrate this by augmenting our problem formulation with turning ratios as follows. If, at some node (intersection)
j 2 N , we know the flow of vehicles coming from link a ¼ ði; jÞ 2 A and turning into link a0 ¼ ðj; kÞ, we denote the pair of suc-

cessive links by t ¼ ða; a0Þ, denote T the set of monitored traffic turns (intersections), let G 2 f0;1gjT j�jRj be the turn-route
incidence matrix, and denote h the vector of flow that passes through each monitored intersection. Then, the objective of
(2) can be generalized to include turning ratios:
min 1
2 kA

0x� b0k2
2

s:t: Ux ¼ f ; x � 0
where A0 ¼

A

G

� �
; b0 ¼

b

h

� �
and Gtr ¼

1 if t ¼ ða; a0Þ : a; a0 2 r

0 otherwise

�
ð7Þ
Similarly, the objective of (2) can be generalized to include OD flows, and we later demonstrate the incorporation of this
information in our numerical experiments5:
min
1
2
kA0x� b0k2

2 s:t: Ux ¼ f ; x � 0 where A0 ¼
A
T

� �
and b0 ¼

b

d

� �
ð8Þ
Suppose we know the link capacities ~ma, then the constraints Afullx 	 ~m, where ~m :¼ ð ~maÞa2A is the link capacities vector,
can be added to program (2). To approximate the new problem as a program with simplex constraints, we can make the
added constraints implicit in the objective:
min
1
2
kAx� bk2

2 þ
X
a2A

UðLT
a x� ~maÞ s:t: Ux ¼ f ; x � 0 ð9Þ
where the barrier U is an approximation of the indicator function of R� given as I�ðuÞ ¼ ð0 if u 
 0 else 1Þ, and the vectors

LT
a ; a 2 A are the rows of Afull. A common choice for U is the logarithm barrier UðuÞ ¼ �a logð�uÞwhere a > 0 is a parameter

that sets the accuracy of the approximation (Boyd and Vandenberghe, 2004, Section 11.2.1).
In summary, we pose the route flow estimation problem as a mathematical program optimizing the fit to link sensor data

(and possibly other sources of data) over feasible route flow distributions, constrained to those which are consistent with
measured cellpath flows in the network. Our data-driven approach is compatible with other types of data and also similar
in formulation to route-based traffic assignment models.

3. Dimensionality reduction and projection via isotonic regression

In this section, we present an efficient constraint elimination technique relying on the choice of a particular nullspace,
which is suitable for both the proposed route flow estimation problem (2) and the traffic assignment problem (5). The pro-
jection on the inequality constraints is performed in linear time via isotonic regression.

3.1. Exploiting the structure of the equality constraints

We consider the reduced route flow estimation problem (4) and the reduced traffic assignment problem (5):
route flow estimation problem : min
x

1
2 k~A~x� bk2

2 s:t: 1T~xp ¼ 1; ~xp � 0; 8p 2 P

traffic assignment problem : min
x

/ð~Afull~xÞ s:t: 1T~xk ¼ 1; ~xk � 0; 8k 2 O
2

ð10Þ
e the inequalities Ux ¼ f ; Tx ¼ d; x � 0 might not define simplexes, we chose formulation (8) over: min 1
2 kAx� bk2

2 s:t: Ux ¼ f ; Tx ¼ d; x � 0 to have the
nstraints as in (2) for our algorithmic approach. Besides, with dense cellular networks, satisfying Tx ¼ d is redundant with the constraints Ux ¼ f
OD demands are included in cellular network data, hence both formulations reduce to (2).
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We consider a general objective function f and the simplices Sp ¼ f~xp 2 ½0;1�n
p
j
P

r2Rp ~xp
r ¼ 1g as constraints, but the following

analysis applies for both problems. We use standard linear algebra operations to eliminate the equality constraints (Boyd
and Vandenberghe, 2004, Section 4.2.4). Since the constraints have disjoint support, we treat each one of them separately.
For all p 2 P, we find a direction ep which is a particular solution of 1T~xp ¼ 1, and a matrix Np whose range is the orthogonal
complement of the vector 1 2 Rnp , denoted ft 1 j t 2 Rg?. With the vectors fepgp2P stacked into an overall vector ~x0 :¼ ðepÞp2P,

and the matrices fNpgp2P encoded in an overall block-diagonal matrix N :¼ diagððNpÞp2PÞ, the resulting problem is:
min
z

1
2 f ð~x0 þ NzÞ

s:t: ~x0 þ Nz � 0
; or with the blocks made explicit :

min
z

f ððep þ NpzpÞp2PÞ

s:t: ep þ Npzp � 0; 8p 2 P
ð11Þ
Vectors of the form ½. . . ;1;�1; . . .�T are orthogonal to 1 2 Rnp . We also choose a simple ep solution of 1T xp ¼ 1:
ep :¼ ½0; . . . ; 0; 1�T 2 Rnp ; Np ¼

1
�1 1

�1 . .
.

. .
.

2
666664

3
777775 2 Rnp�ðnp�1Þ 8p 2 P ð12Þ
where the columns of Np form a basis of ft 1 j t 2 Rg?. These choices result in a simplification of the constraints in (11), and
we can interchangeably operate on variables xp in (2) and variables zp in (4) since they are simply related:
~xp ¼ ep þ Npzp ¼ ½zp
1; zp

2 � zp
1; . . . ; zp

np � zp
np�1; 1� zp

np �
T
; 8p 2 P

zp ¼ ~xp
1; ~xp

1 þ ~xp
2; . . . ;

Xn�2

i¼1

~xp
i ;
Xn�1

i¼1

~xp
i ;

" #T

; 8p 2 P
ð13Þ
The constraint ep þ Npzp � 0 becomes an ordering constraint 0 6 zp
1 6 � � � 6 zp

np�1 6 1. The program (11) is now:
min
z

f ððep þ NpzpÞp2PÞ s:t: 0 6 zp
1 6 � � � 6 zp

np�1 6 1; 8p 2 P ð14Þ
The main advantage of this constraint elimination is the reduction of the dimension from n to n� q, where n is the num-
ber of routes and q the number of cellpaths (see Table 1). If each cellpath has maximum k routes, then we have n 6 kq, hence
n� q 6 nð1� 1=kÞ. For our target problem, we generally have k 2 ½3;50� hence the dimension can be reduced by as much as
1=3.

The problem (14) can be solved quite efficiently with a simple (accelerated) first order or second order projection algo-
rithm, or an Augmented Lagrangian method. In particular, the basic descent projection algorithm (see Algorithm 1) itera-
tively takes a step in a descent direction Dz (line 2) from the current point z, projects the new point zþ Dz onto the
constraint set zþ :¼ Pðzþ DzÞ (line 3), and performs a line search (line 4). The projection step is performed with q
Euclidean projections of zp þ Dzp onto ordering constraints:
PpðypÞ : min
up
kup � ypk2

2 s:t: 0 6 up
1 6 up

2 6 � � � 6 up
np�1 6 1 8p 2 P ð15Þ
Algorithm 1. Proj-descent(�) General projected descent method.
Require: initial point z ¼ ðzpÞp2P in the feasible set X.
1: while stopping criteria not met do
2: Determine a descent direction Dz ¼ ðDzpÞp2P
3: Projection: ðzpÞþ :¼ argmin

up
fkzp þ Dzp � upk2 : 0 6 up

1 6 up
2 6 � � � 6 up

np�1 6 1g; 8p 2 P

4: Line search on the projected arc: c :� argminff ðzþ tðzþ � zÞÞ : t 2 ½0;1�g
5: z :¼ zþ cðzþ � zÞ
6: end while
7: return z

In line 4 of Algorithm 1, we perform a backtracking line search (Boyd and Vandenberghe, 2004, Section 9.2). This is an
Armijo-rule based step size selection that ensures sufficient descent, it approximately minimizes the objective along the pro-
jected arc fzþ tðzþ � zÞ j t 2 ½0;1�g. Since the feasible set is convex, the projected arc is feasible, hence the method also

ensures feasibility of the next iterate. We apply backtracking with objective f ðzÞ ¼ kAð~x0 þ NzÞk2
2 and descent direction

d ¼ zþ � z.
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3.2. A simple projection using isotonic regression

The projections (15) have general form (16), given data points y :¼ ½y1; . . . ; yn� 2 Rn, weights w :¼ ½w1; . . . ;wn�  0, and
bounds L < U. 6 Without bounds, we have an isotonic regression problem (17) (see (Tibshirani et al., 2011) and references
therein).
6 For
ISO½L;U�1!nðy;wÞ : min
u

Xn

i¼1

wiðyi � uiÞ2 s:t: L 6 u1 6 u2 6 � � � 6 un 6 U ð16Þ

ISOR
1!nðy;wÞ : min

u

Xn

i¼1

wiðyi � uiÞ2 s:t: u1 6 u2 6 � � � 6 un ð17Þ
where we use the notation ISOI
s!tðy;wÞ such that subscript s! t means we only consider data points with indices from s to t,

and superscript I is the interval in which the variables us;usþ1; . . . ; ut lie. Since both problems are strongly convex, they both
have a unique solution. The solution to (17), denoted uiso, can be computed in linear time using the Pool Adjacent Violators
(PAV) algorithm (Best and Chakravarti, 1990, Section 3), so one hopes that the solution to (16), denoted uH, derives easily
from uiso. In fact, we prove the following result:

Proposition 2. The solution uH to (16) is the Euclidean projection of the solution uiso to (17) onto ½L;U�n.
Although isotonic regression is generally studied in the form (17), the bounded version (16) has appeared in (Grotzinger and

Witzgall, 1984). The simple connection presented in Proposition 2 is new to the best of our knowledge. This result can be written
uH ¼ P½L;U�n ðuisoÞ where PK is the Euclidean projector onto space K . When K ¼ ½L;U�n, the projected vector p :¼ P½L;U�n ðuÞ is
obtained from u 2 Rn by simply projecting each entry ui onto ½L;U�, i.e. pi ¼ ui if ui 2 ½L;U�; pi ¼ L if xi < L, and pi ¼ U if xi > U. We
first give a lemma.
Lemma 1. Given uiso the solution to (17), if there exists k such that uiso
k < uiso

kþ1 then (17) reduces to two subproblems:
ISOR

1!kðy;wÞ : min
u

Xk

i¼1

wiðyi � uiÞ2 s:t: u1 6 � � � 6 uk

ISOR
kþ1!nðy;wÞ : min

u

Xn

i¼kþ1

wiðyi � uiÞ2 s:t: ukþ1 6 � � � 6 un

ð18Þ
such that ½uiso
1 ; . . . ;uiso

k � is the solution to the first one and ½uiso
kþ1; . . . ; uiso

n � is the solution to the second one. The same result holds for

(16) and uH, with resulting subproblems ISO½L;þ1Þ1!k ðy;wÞ and ISOð�1;U�kþ1!n ðy;wÞ.
Proof. Since the constraint uk 6 ukþ1 is not active at uiso, it may be removed from (17) without altering the solution. Then the
resulting program can be separated into the two programs in (18) with respective solutions ½uiso

1 ; . . . ;uiso
k � and ½uiso

kþ1; . . . ;uiso
n �.

h

Proof of Proposition 2. We start with two simple cases.
Case 1: ½uiso

i 6 L; 8 i�. Suppose 9k; uH

k > L. We choose k the smallest of such indices, then either k ¼ 1 or L ¼ uk�1 < uk. In
both cases, ½uH

k ; . . . ;uH

n � is the unique solution to ISOð�1;U�k!n ðy;wÞ from Lemma 1. Since ½uiso
k ; . . . ;uiso

n � is also feasible for
ISOð�1;U�k!n ðy;wÞ, we have

Pn
i¼kwiðyi � uiso

i Þ
2
>
Pn

i¼kwiðyi � uH

i Þ
2, and adding

Pk�1
i¼1 wiðyi � uiso

i Þ
2

on both sides yieldsPn
i¼1wiðyi � uiso

i Þ
2
>
Pk�1

i¼1 wiðyi � uiso
i Þ

2 þ
Pn

i¼kwiðyi � uH

i Þ
2. Since ½uiso

1 ; . . . ;uiso
k�1;u

H

k ; . . . ;uH

n � is also feasible for (17)
(uiso

k�1 6 l < uH

k ), this contradicts the optimality of uiso. Hence uH

k ¼ L; 8k, i.e. uH ¼ P½L;U�n ðuisoÞ.
Case 2: ½uiso

i P U; 8 i�. The analysis is similar to case 2. We have: uH

k ¼ U; 8k, i.e. xH ¼ P½L;U�n ðuisoÞ.
General case: Without loss of generality, we suppose there exist two indices s; t such that:

uiso
1 6 � � � 6 uiso

s 6 L < uiso
sþ1 6 � � � 6 uiso

t�1 < U 6 xiso
t 6 � � � 6 xiso

n . From Lemma 1, ½uiso
1 ; . . . ;uiso

s �; ½uiso
sþ1; . . . ;uiso

t�1�, and
½uiso

t ; . . . ;uiso
n � are then solutions to ISOR

1!sðy;wÞ; ISOR
sþ1!t�1ðy;wÞ, and ISOR

t!nðy;wÞ respectively. From case 1, the vector
½L; . . . ; L� 2 Rs is solution to ISO½L;þ1Þ1!s ðy;wÞ and from case 2, the vector ½U; . . . ;U� 2 Rn�tþ1 is solution to ISOð�1;U�t!n ðy;wÞ. Then
the global vector x� :¼ ½L; . . . ; L; uiso

sþ1; . . . ;uiso
t�1; U; . . . ;U� is the solution to the global program:
min
u

Xn

i¼1

wiðyi � uiÞ2

s:t: L 6 u1 6 � � � 6 us; usþ1 6 � � � 6 ut�1; ut 6 � � � 6 un 6 U

ð19Þ
Adding the constraints us 6 usþ1 and ut�1 6 ut to (19) does not alter the solution since they are inactive. Hence
½L; . . . ; L; uiso

sþ1; . . . ;uiso
t�1; U; . . . ;U� is the solution to (16), i.e. uH ¼ P½L;U�n ðuisoÞ. h
subSection 3.2 only, U 2 R is the upper bound in problem (16). In the rest of the article, U is the cellpath-route incidence matrix.
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Algorithm 2. PAV-proj(yp) Projection onto ordering constraints in line 3 of Algorithm 1.

Require: vector yp 2 Rnp�1

1: compute yp;iso :¼ argmin
up

fkup � ypk2
2 : up

1 6 up
2 6 � � � 6 up

np�1g with the PAV algorithm (Best and Chakravarti, 1990)
2: project yp;iso onto ½0;1�np�1: ~yp

k ¼ yp;iso
k if yp;iso

k 2 ½0;1�; ~yp
k ¼ 0 if yp;iso

k 6 0; ~yp
k ¼ 1 if yp;iso

k P 1.
3: return return ~yp
In Algorithm 2, we give an efficient algorithm to perform the projections (15) in line 3 of Algorithm 1. We note that with-
out the constraint elimination described earlier, a projected descent method applied to (4) would require q projections onto
the probability simplices f~xp 2 Rnp j1T~xp ¼ 1; ~xp � 1g at each iteration. The complexity of these projections is O np log np

� �
(Duchi et al., 2008; Wang and Carreira-Perpin, 2013), which is less attractive than the O np

� �
complexity of Algorithm 2.

Problems (4) and (6) are both convex, and can be solved efficiently with including interior point methods, augmented
Lagrangian, gradient projection, and conjugate gradient. In particular, we choose the Barzilai and Borwein (BB) method for
the accelerated gradient method, where z is the current iterate and z� and previous iterate:
Dz ¼ �ððyT sÞ=ðyT yÞÞDf ðzÞ where y ¼ rf ðzÞ � rf ðz�Þ; s ¼ z� z� ð20Þ
The change of variable reduces the dimensionality, at the cost of losing some of the intuitive structure of the route choice
problem. While long-standing algorithms such as the Frank–Wolfe assignment (LeBlanc et al., 1975) and the Origin-based
assignment (Bar-Gera, 2002) and their modifications may have diminished efficiency since the all-or-nothing assignment
step is no longer available, their slow convergence is known (Ortuzar and Willumsen, 2001, Section 11.2.3.1). We propose
that the estimation problem (4) and the traffic assignment problem (6) can be reduced to the form (11), and then be solved
efficiently with quasi-Newton methods (e.g. L-BFGS (Nocedal and Wright, 2006)), accelerated gradient methods, or alternat-
ing direction methods. These algorithms are proven to have fast convergence, and the proposed projection step is efficient as
discussed above. Due to space limitations, early numerical results on the speed up of the algorithms are not shown in the
present article.

4. Experimental setting and validation process

We demonstrate our approach by providing numerical results on networks of varying sizes, applying different traffic
assignment models and sensor configurations, all based on the I-210 highway corridor in Los Angeles. To demonstrate
the versatility to the underlying data-driven approach, we investigate the following three scenarios (see Fig. 4):

1. Highway network in user equilibrium (UE), with varying cell densities and static sensor coverage.
2. Highway network in system optimum (SO), with varying cell densities and static sensor coverage.
3. Activity-based agent model on full network, with varying cell densities, 5% static sensor coverage.

We have intentionally selected three different traffic assignment models (UE, SO, agent-based) to test the versatility of
our method; we aim to demonstrate that our method is not only accurate (provided enough measurements) and appropriate
for full-scale networks but also model agnostic, thereby highlighting a major advantage of our approach to those that require
more rigid assumptions on agent behavior. Thus, we study networks of different sizes and complexities, different driver
behavior models, and trade-offs for different sensor placements. We additionally present preliminary investigation on the
effect of measurement and model error on the accuracy of the approach.

4.1. Sensor configurations

We have two main types of data: link sensors data (loop based) and cellpath sensors (cell based). We consider link sensors
on a subset of the links in the network (ranging from 5% to 100% coverage). For the highway network with UE/SO flow, the
subsets of links are chosen such that the most congested links are observed, i.e. links with highest traffic volumes or flows,
whereas in the full large-scale network, we use locations of real highway (PeMS (Choe et al., 2002)) and arterial loop sensors
where the coverage is 5%.

Although the use of real cellular network data from a service provider would demonstrate even stronger applicability of
our framework, its availability is restricted for privacy issues. Our team at the present time is not able to share findings based
on collaborations with companies such as AT&T. Nevertheless, the use of well-designed simulators remains necessary for
demonstrating how of our framework may apply to different networks and settings, and also for the ease of validation, as
route flows are not yet measurable in real-world settings. Our model for cell placement is based on employee population
density and locations of major roads. Most notably, many ordinances prohibit towers in residential areas but promote towers
in industrial and commercial centers. For both networks, the locations ðXi;YiÞ 2 R2 of the cell towers are randomly sampled
on the plane such that the distribution models realistically represent the coverage based on region demographics. The overall
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Fig. 4. Our experiment flow block diagram, where the model is comprised of a network, traffic assignment model, and sensor configuration. The solver is
presented in Section 3. The error metric represented here is a function of the estimated and actual route flow. We may compute the percent flow error or,
using additional information (e.g. network topology and actual link flow), we may also compute the link flow GEH error.
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sensor configuration Eqs. (21)–(23) consists of N ¼ NB þ NS þ NL total cell towers, where NB;NS;NL are predetermined for
each experiment and the weights of the multinomial distributions are determined by demographics and geometry. Our sen-
sor configurations are drawn from three distribution models:

1. Within the whole region delimited by a bounding box: NB cell tower locations fðXB
i ;Y

B
i Þgi¼1;...;NB are sampled uniformly (21).

2. Within sub-regions S comprising the full region: For each sub-region s 2 S, delimited by a rectangle
ðXs

min; Y
s
minÞ; ðX

s
max;Y

s
maxÞ;N

s additional cell tower locations fðXs
i ;Y

s
i Þgi¼1;...;Ns are sampled (22). The number of base stations

Ns for each sub-region s is sampled from a multinomial distribution with NS trials and weights proportional to demo-
graphic information for each region (e.g. employee population). That is, NS ¼

P
s2SNs is the total number of cell towers

among all the sub-regions (excluding those sampled from the entire bounding box).
3. Near major links in the network: Along each link a 2 ~A � A (also called arcs), where ~A denotes a pre-selected subset of

major links in the network, Na cell tower locations are sampled uniformly along the link with Gaussian noise (23) where
ðXa

s ;Y
a
s Þ is the location of the start of link a, and ðXa

t ;Y
a
t Þ is the location of the end of link a. The numbers of base stations Na

along links a 2 A are sampled from a multinomial distribution with NL trials and weights proportional to the length of a,
where NL is the total number of cells along links.
7 The
8 Bas
9 Hig
Bounding box : XB
i � Uð½XB

min; XB
max�Þ; YB

i � Uð½YB
min; YB

max�Þ; for i ¼ 1; . . . ;NB ð21Þ
Sub-region S : Xs

i � Uð½Xs
min; Xs

max�Þ; Ys
i � Uð½Ys

min; Ys
max�Þ; for i ¼ 1; . . . ;Ns ð22Þ

Link a :
Xa

i � Xa
s þ tiðXa

t � Xa
s Þ þ Nð0;rÞ

Ya
i � Ya

s þ tiðYa
t � Ya

s Þ þ Nð0;rÞ

(
such that ti � Uð½0;1�Þ; for i ¼ 1; . . . ;Na ð23Þ
4.2. Scenarios 1 and 2: UE and SO on the highway network

We consider first the highway network of the I-210 region in Los Angeles.7 The roads are extracted from OpenStreetMaps
(OSM) and we retain only links with at least five (up to 11) lanes. This results in a directed graph G ¼ ðN ;AÞ with jN j ¼ 44
nodes and jAj ¼ 122 directed links. We calibrate the free flow delay sa for each link a 2 A using the link’s length and free flow
speed (provided by OSM) and empirical delays values (provided by Google Maps). An illustration of the network is provided in
Fig. 5.

The OD demands are based on census data and employment concentration in L.A. county, which are extracted from the
Census Bureau. The OD demand model is simplified to a static morning rush hour model8 of the region such that: (i) only 21
origins have positive flows emanating from them; (ii) all the trips terminate at three destinations: near Burbank at node 5,
towards Santa Monica at node 20, and in Downtown L.A. at node 22; (iii) we only have 42 OD pairs with positive flows ranging
from 1200 veh/hour to 12,000 veh/hour.9

In our equilibrium-based numerical study, we consider the traffic assignment model presented in (Sheffi, 1985,
Section 3.1) to generate route flows and cellpath flows. The delay on a given link a is assumed to be a strictly increasing func-
tion cað�Þ of the traffic volume (flow) va on that link. We choose the widely used delay function estimated by the Bureau of
Public Roads, where sa is the free flow delay (sec) and ma is the number of lanes on link a, and provide the Beckmann objec-
tive function /UE associated to the overall model (Beckmann et al., 1956)):
link delay : caðvaÞ ¼ sað1þ 0:15ðva=maÞ4Þ; 8a 2 A; UE objective : /UEðvÞ ¼
X
a2A

Z va

0
caðuÞdu ð24Þ
In this section only, we use the following notation: the nodes of the network are indexed by i 2 N , the 42 OD pairs with

positive OD flow are indexed by k 2 f1; . . . ;Qg;Afull 2 RjAj�jRj is the link-route incidence matrix, and N 2 f�1;0;1gjN j�jAj is the
node-link incidence matrix. For each OD pair k ¼ ðsk; tkÞ we define an associated vector ek 2 RjN j such that ek

i ¼ �dk at node
region has bounding box [�118.328299, 33.984601, �117.68132, 34.255881] in latitude and longitude coordinates.
ed on observed flows on 2014-06-12 at 9:14 AM from Google Maps.
hway experiment implementation (Python) is available at https://github.com/megacell/traffic-estimation-wardrop.

http://https://github.com/megacell/traffic-estimation-wardrop


Fig. 5. Benchmark (small-scale) example used for the first numerical run: The four subfigures present the highway network of the I-210 highway corridor in
L.A. county. Starting from the top left and in clockwise order: (1) The state of traffic on 2014-06-12 at 9:14 AM from Google Maps; (2) The nodes in blue and
red are nodes from which positive flows emanate, nodes in red are nodes from which positive flows terminate; (3) Network with 80 sampled cells, with a
higher concentration of cells near downtown. A random path from 25 to 22 is shown in red with the closest cell towers. (4) The highway network in user
equilibrium with the resulting delays. Best viewed in color. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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i ¼ sk (the origin), ek
i ¼ dk at node i ¼ tk (the destination), and ek

i ¼ 0 otherwise. Under the assumptions of our experiment,
the path-flow traffic assignment (PTA) is equivalent to the link-flow traffic assignment (LTA), i.e. they give the same unique
link flow solution (Ford and Fulkerson, 1962):
PTA : min /UEðAfullxÞ s:t: Tx ¼ d; x � 0 ð25Þ

LTA : min /UEðvÞ s:t: v 2 K :¼ v 2 RjAjþ j9wk 2 RjAjþ ; v ¼
XQ

k¼1

wk; Nwk ¼ ek; 8k 2 f1; . . . ;Qg
( )

ð26Þ
Since PTA is not tractable due to the computational cost of enumerating all the possible routes, we solve LTA in the first
step, then perform the following steps to generate a set of routes R with an associated UE route flow vector xUE 2 RjRjþ , and a

set P of cellpaths with a feasible UE cellpath flow vector f UE 2 RjPjþ :

1. We solve LTA and obtain the UE link flow vUE 2 RjAjþ and resulting link delays.
2. We find the K-shortest paths with the UE delays for each of the 42 OD pairs, using Yen’s algorithm (Yen, 1971). Note that

K is chosen large enough such that at least all used routes are extracted, i.e. all the routes with the (same) shortest delays
as characterized by the Wardrop equilibrium. We choose K ¼ 5 and extract 207 candidate routes.

3. We solve PTA with the 207 candidate routes starting from a random initial point. Let xUE be a route flow solution (the

resulting link flow AfullxUE should equal to vUE since the UE link flow is unique).
4. We sample cells on the highway network following the model presented in Section 4.1 (see Fig. 5).
5. Among the 207 routes, we found jfr jxUE

r > 0gj ¼ 90 used routes. We compute the sequence of cells that intersects with

each used route to determine the cellpath flows, given by: f UE
p ¼

P
r2Rp xp

r .

On a network with SO flow, the total delay is minimized (Wardrop and Whitehead, 1952; Kelly, 1991), hence the objective
function to be minimized is /SO in (27) subject to the constraints in (25) and (26), for the path-flow and link-flow formula-
tions, respectively. In fact, the SO link flow corresponds to the UE link flow with the modified delay function ~cað�Þ in (27),
called the marginal delay function (Roughgarden, 2003) (where the prime indicates the derivative function):
link marginal delay : ~ca ¼ caðvaÞ þ vac0aðvaÞ; SO objective : /SOðvÞ ¼
X
a2A

vacaðvaÞ ð27Þ
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Steps 1 to 5 are performed for the SO objective /SO via the link marginal delay formulation to generate a SO route flow xSO

and a SO cellpath flow f SO on the highway network described above, with a few minor differences:

� In step 2, we find the K-shortest paths under the marginal delays induced by the SO link flow. We choose K ¼ 10 and we
extract 411 candidate routes.
� In step 5, we found 164 routes with positive flow on it.

4.3. Scenario 3: activity-based agent model on the large-scale full network

We additionally consider a large full network, comprising of both the highway network and the arterial networks in the
region. We use the OpenStreetMaps network of the Greater Los Angeles Area, excluding residential links. Our network com-
prises of 20,513 edges (links) and 10,538 nodes (intersections). We take the origins to be the Traffic Analysis Zones (TAZ)
given by the US census, of which there are 778 in the region (see Fig. 6). We use a commercially available OD model for
the region, called the Census Transportation Planning Products (CTPP) model.

On this large-scale network, we utilize an activity-based agent model for simulating the traffic assignment. MATSim is a
well-known open-source traffic simulation framework (Illenberger et al., 2007), which takes in a set of K agent home and
work locations and outputs a set of K trajectories (time-stamped sequences of links) that each agent performed. MATSim
searches for a user equilibrium in terms of utility functions defined for the agents using a co-evolutionary optimization algo-
rithm. In our setting, we consider agent utility as a function of travel time. MATSim differs from the user equilibrium model
above in that it is quasi-static, by allowing slight variation in the departure times for each agent. MATSim is suitable for per-
forming large-scale agent simulations; we simulate the morning and evening rush-hours using 500,000 agents, as those are
the most vital times to understand the state of traffic. The home and work locations for each agent are distributed randomly
according to census demographics. Since these locations are selected randomly within origins and destination (as opposed to
selected randomly among the region centroids), typically all of the trajectories generated are unique. Viewing the full set of
trajectories as our set of possible routes lends itself to be a trivial problem in our formulation. Instead of all routes, we con-
sider the ’’important’’ routes in the network. Therefore, we examine trajectories between each OD pair and group them by
similarity as follows: (1) Find the trajectory which matches with the most other trajectories (P80% match in length). Add
this trajectory to the list of routes for the OD pair; (2) Remove all trajectories that match with this route and repeat. We stop
when 50 routes are selected or when there are no more trajectories. 50 routes empirically accounts for 99.4% of the 500 K
trajectories. This procedure yields a set of 304,695 routes.
4.4. Implementation

Our full system is available at https://megacell.github.io/ for validation and extension, including the optimization
routine, the small-scale network experiments, and the large-scale pipeline. We hope that our framework will be a bench-
mark for many future studies of estimation problems in transportation science. The software to run the full-scale experi-
ments was developed mostly in python 2.7, using the GEOS (v.3.4.2) library for geometric computations. All data is
managed and stored in a PostGIS 2.1.3 database. The geometries and other data about routes, cell tower Voronoi tessel-
lations, and the links of the road network are all stored in the database with spatial indices on all geometry columns, allow-
ing PostGIS spatial queries to be performed efficiently for extracting cellpath information associated with each route. The
convex optimization program10 was developed in Python, using scipy.sparse and numpy for matrix computation. The PAV
projection algorithm was written in C, and bindings were written so that it could be called from the Python optimization
algorithm.

The full network dataset for the I-210 corridor contains 280x691 routes, 778 origins, 1033 sensors, and was tested with a
variety of different cells, ranging in number from 250 to 8000. The incidence matrices U (roughly 250 K-by-300 K matrices)
are generated by finding the cellpath for each route from the database by ordering the sequence of Voronoi cells that inter-
sect with the respective route. The link-route incidence matrices A and are formed by finding all routes whose distance from
the sensor locations was less than some threshold empirically selected such that the maps matched well (� 10 m tolerance
for the PeMS loop sensor locations). All incidence matrices are saved in the scipy.sparse format.
5. Numerical results

We validate our approach by measuring our accuracy in terms of the route flow estimates, denoted x̂, given different sce-
narios. Note that we solve the reduced problem presented in (4) according to our algorithmic approach, and the solution in

z-space is converted to ~x-space following the simple relation in (13), and is subsequently rescaled to x̂ ¼ diagðf T UÞ~x. We addi-
tionally present our accuracy in terms of link flow estimates, to serve as a comparison to classical approaches to link flow
estimation:
10 Implementation (Python, C) is open source and available at https://github.com/megacell/block-simplex-least-squares.

http://https://megacell.github.io/
http://https://github.com/megacell/block-simplex-least-squares


Fig. 6. Full-scale network including highway and arterial networks of the I-210 corridor used for MATSim data generation, and for the estimation problem.
See Fig. 2 for the Voronoi tessellation model of the cellular network and the 700 origins given by the TAZ.
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� Route flow error: �r ¼ xtrue � x̂k k1= xtruek k1, with xtrue the true route flow and x̂ the estimated route flow. This relative error
may be thought of as the percent error of flow allocation among all routes.
� Link flow error for observed links and all links, respectively:
�obs
l ¼

j�GEHðbtrue
i ; b̂iÞ < 5;8i 2 1; . . . jb̂j

n o
j

jbtruej
; with btrue ¼ Axtrue

; b̂ ¼ Ax̂ ð28Þ

�full
l ¼

j�GEHðv true
i ; v̂ iÞ < 5;8i 2 1; . . . jv̂jf gj

jbtruej
; with v true ¼ Afullxtrue; v̂ ¼ Afullx̂ ð29Þ

where j � j denotes cardinality and �GEHðy; ŷÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy�ŷÞ2

0:5ðyþŷÞ

q
.

�GEHð�; �Þ is called the GEH statistic, a heuristic formula commonly used to compare two sets of traffic volumes, e.g. for cal-
ibration of microsimulation models (Dowling et al., 2004, Section 5.6) and for validating hourly traffic flows (Wisconsin
Department of Transportation (WisDOT), 2013, Section 11-13). For an individual link, a GEH value of less than 5.0 is consid-
ered to be a good match. For a vector of links, a fraction �l P 0:85 of good matches is considered a good match overall
between modeled and observed volumes.

Note that our method always achieves the optimal link flow error �obs
l ¼ 1 for all networks, traffic assignment models, and

sensor configurations, since our formulation minimizes the error to the observed link flows. However, we include this metric
because it is a metric upon which we can validate real network settings, without relying on traffic simulators.

5.1. Highway network

Using the highway network scenarios in Section 4.2, we vary the link coverage from 10% to 100% and the cell density from
10 to 120 cells such that the proportions are NB : NL : NS :: 1 : 2 : 1. We always observe the most congested links, and regions
S contains only 1 region and is roughly downtown Los Angeles (see 4.1). We analyze how the relative error �r in route flows
vary when sensors are more sparse. Since we choose random initial points in PTA (25) and in the solver (2) to generate syn-
thetic route flows and compute the estimate respectively, and since the cellular network is sampled randomly, all the results
presented in this section have been averaged over 100 trials. Fig. 7 presents the numerical results when link flows and
optionally OD demands are known, and cellular network data are assimilated into the model. That is, we solve and compare
both the problem without OD flows in (2) and with OD flows in (8).

In the left column of Fig. 7, we consider Problem (2), where we compare the performance of route flow estimation via
cellpath flow vs OD flow alone. As expected, the accuracy increases as we observe more links and/or more cells. We observe
that in the regime where we have low link sensor coverage, having even very few cells outperforms OD demands. It is inter-
esting that observing the additional links in the 40–70% region makes a significant difference in the accuracy for the OD
demands. In this region (and beyond), it is possible to achieve an accuracy of 98.8% and 98.4% (for UE and SO, respectively)
with a sufficient selection of cells. Finally, we note that 80 cells and 120 cells respectively achieves 96.0% and 98.7% accuracy
for UE and 93.5% and 98.0% accuracy for SO, in the absence of OD demands and with only 10% links observed. This indicates
that with a sufficient selection of cells, route flow estimation may be possible even without other kinds of sensor data.

In the middle column of Fig. 7, we consider Problem (8), which considers cellpath flows and OD demands together for
estimation. As expected, adding information from any number of cells performs strictly better than having no cells. With



Fig. 7. The six subfigures present the numerical results for the highway network. Top row, from the left to right: (1) the route flow error �r from OD
demands (red curve) and cellpath flows only (other curves) with different link coverage values and different numbers of cells for the network in UE; (2) the
route flow error �r from OD demands (red curve) and OD demands & cellpath flows (other curves) with different link coverage values and different numbers
of cells for the network in UE; (3) lower bound on the degree of freedom for the program with OD demands (red curve), cellpath flows only (other curves,
solid), and OD demands & cellpath flows (other curves, dotted) for the network in UE; Bottom row, left to right: (4) �r from OD demands (red curve) and
cellpath flows only (other curves) for different configurations of the network in SO; (5) �r from OD demands (red curve) and OD demands & cellpath flows
(other curves) for different configurations of the network in SO; (6) ratio of the number of observed cellpaths to the number of candidate routes. Best
viewed in color. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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both types of information, the highway network can achieve beyond 99.0% accuracy (with at least 70% links observed) and
98.4% accuracy (with at least 60% links observed), for UE and SO, respectively.

For both experiments above, the accuracy in the UE settings is generally better than that of the SO settings. In the bottom
right subfigure of Fig. 7, we see that the ratio of the number of cellpaths observed to the number of routes used is greater for
UE than SO for all the cell counts in our experimental setup; this is due to the tendency of agents to consider more routes in
SO, and thus the same number of cells provides less resolution into the route choice of the agents. This provides evidence
that the SO setting is more difficult for estimation.

The accuracy of the estimates is closely related to the degree of freedom of the solution in Problems (2) and (8). We com-
pute an upper bound on the degree of freedom as n� rank½AT

;UT � and n� rank½AT
; TT ;UT �, respectively, where n is the dimen-

sion of the problem. It is an upper bound because we do not consider how the non-negativity constraint x � 0 limits the
solution space. In the top right subfigure of Fig. 7, we observe that in all cases, the use of cellpath information limits the
degree of freedom moreso than with only OD information. As expected, the combined information from cellpaths and
ODs (the dotted lines) limits the degree of freedom more than cellpath information alone (the solid lines). As the number
of cells is increased, the degree of freedom tends towards zero, at which point we can fully recover the route flow. These
numerical results confirms the utility of cellular network data for addressing the traditionally highly underdetermined route
flow estimation problem.

5.2. Full network, activity-based model

Using the full network scenario in Section 4.3, we perform experiments using the actual locations of PeMS static highway
count sensors on 1033 links (about 5% coverage). We vary cell density from 250 to 8000 cells such that the proportions are
NB : NL : NS :: 3 : 1 : 16. 11 The sub-regions S is given by the bounding boxes for the TAZ within the whole region. We analyze
how the errors in route flows and link flows vary with the density of cell towers. Additionally, we study the effect of performing
inference on only a subset of routes from our dataset.
11 The I-210 region is 688mi2 and, with cell towers spaced 1
4 to 2 miles apart for suburban and urban areas, a reasonable range of cell towers for modern urban

areas is 180 to 5500. We select 1000 for our baseline model.



Fig. 8. Full (highway and arterial) network experiment results, corresponding to the regularized solution for the morning commute (rush hour). The top
row is specific to the noiseless setting; the bottom row includes experiments with modeling error (noise). The green dotted vertical line highlights the
results for 1000 cells, which is a reasonable setting for urban areas today. Top left: Route flow �r from OD demands (dotted) and cellpath flows (solid) for
varying cell counts. The different curves indicate the number of routes (per OD) considered; Top right: Approximate degrees of freedom for the program
with OD demands (dotted) and cellpath flows (solid) for varying cell counts. Bottom left: Including modeling error, the route flow �r from OD demands
(dotted line) and cellpath flows (curves) for varying cell counts. Bottom right: Link flow error evaluated on all links �full

l without model error (dotted) and
with model error (solid), shown for different link flow volume classes for 1000 cells. Best viewed in color. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 8 presents the numerical results for Problem (2), where we compare the performance of route flow estimation via
cellpath flow vs OD flow alone. To select a particular estimate from the solution space, we add an ‘2 regularization term
to the objective. In our dataset, selecting the top 50 routes per OD pair was sufficient to account for 99.4% of trajectories;
however, in general, the corresponding number of routes needed will vary based on the network, time of day, underlying
driver behavior, etc. Thus, to represent these different settings, we present trade-off curves for accuracy when varying the
number of routes from 3 up to 50. As expected, as more routes are considered by agents, the route flow accuracy �r declines,
since the solution space (and its corresponding nullspace) grows. Fortunately, the accuracy increases with the number of
cells. Thus, Fig. 8 (top left) shows that the same level of accuracy may be attained when considering different numbers of
routes (per OD pair) by varying also the number of cells. Our method performs comparably for the morning (shown in
Fig. 8) and evening (not shown) rush hours, achieving 89.5% and 89.9% route flow accuracy respectively and well exceeding
the GEH test (with 1000 cells and 50 routes per OD), indicating the versatility of our method for diverse traffic settings. Fig. 8

(bottom right) shows that we always achieve the link flow error �full
l ¼ 1 on all links (including those not observed) for var-

ious link volume classes, indicating that our method is effective for estimating link flows on unobserved links in noiseless
settings.

Similarly to the highway network experiment, the accuracy in the estimates is closely related to the degree of freedom in
Problem (2). For computational reasons, we compute an approximate measure of the degrees of freedom by
nullityðANÞP jzj � rankðAÞ, using notation from (11). Although the problem remains underdetermined (based on equality
constraints in the noiseless setting), the accuracy increases substantially as the degrees of freedom decreases (Fig. 8, top
right). In all scenarios except the lowest cell configuration (250 cells), we observe that performing inference using cellpath
flows (compared to using OD flow information) greatly improves the estimates of route flow.

However, selecting the top routes between each OD pair for a real network relies on sophisticated models and techniques.
Though this article focuses on the noiseless setting, here we present preliminary results for a noisy setting, motivated by
situations where not all top routes may be curated. That is, using the same flow measurements b; f , etc., we now estimate
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a route flow vector x 2 RjRj, where R#R denotes the curated routes; then, we compute the validation metrics as before, tak-
ing the corresponding entries of xtrue. We call modeling error the route flow that is not modeled by the curated subset of
routes. Fig. 8 (bottom subfigures) shows an experiment where we consider the performance of our method where, among
the top 50 routes (per OD), we are only able to curate the top 3–50 routes, and we evaluate our method in the presence
of this modeling error. We observe that curating 20–50 routes (per OD) is sufficient for achieving a low (< 15%) route flow
error and also sufficient for performing well on the GEH metric on all links. Our preliminary results show promise for esti-
mating route and link flows with our approach despite the challenge of selecting all routes that agents may take.
6. Conclusion

Our work demonstrates a data-driven method that is capable of estimating route-level flow accurately on a large scale
network and is versatile to different vehicle behaviors. We address the traditionally highly underdetermined problem by
introducing the concept of cellpaths for formalizing cellular network data as n-point network flows. We design a projected
gradient algorithm suitable for the route flow estimation problem, as well as the traffic assignment problem. We validate our
approach on several networks of varying sizes and underlying traffic assignment models, showing that the incorporation of
cellular network data dramatically improves estimates over the use of traditional data sources by providing flow information
on (coarse) routes.

Our methodology is highly compatible with past and present work in the transportation community. As route flows con-
tain strictly more information than link flows and OD flows, which underlie many transportation methods, the potential for
accurate route flow estimates in transportation applications is vast. Additionally, our solution method is shown to be com-
patible with related transportation problems, which may be combined for improved estimation.

Whereas work on traffic assignment, which models rather than estimates route flows, is critical for long-term land-use
planning, strong model assumptions limit their application to short time-horizon applications. Taking a data-driven
approach, our method enables new short time-horizon applications for the prediction and control of transportation such
as route guidance, re-routing (e.g. minimizing effects of road closures, disasters, large events, etc.), demand prediction,
and anomaly detection and analysis. Our framework aims to be widely deployable (wherever there is wide-spread cellular
network coverage) and extendable, thereby providing a baseline estimator of the state of our current traffic networks,
against which new controls and designs for intelligent transportation systems can compare.

The directions for future work are driven by our plans for integration with the decision support system for the I-210 cor-
ridor in California, US. We plan to analyze and improve the robustness of our model and methods in the presence of mea-
surement error. Real loop sensors are notoriously noisy and a sizable fraction of them are offline at any given point. Since
cellpath flow is not measured directly, but rather is inferred from cellular network data, it is prone to error from any infer-
ence procedure used. Fine-grained control applications will require even richer state estimates of the road network, for
which we plan to extend our work to the dynamic setting. The full pipeline (summarized in Fig. 1) will be implemented
to perform large-scale route flow estimation using cellular network traces from AT&T and actual cell tower locations for
the I-210 corridor in California, US.
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