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Abstract— The recent emergence of navigational tools has
enabled new types of congestion-aware routing control like
fastest path routing, eco-routing, or dynamic road pricing.
Using the fundamental diagram of traffic flows – used in
many macroscopic and mesoscopic traffic models – the ar-
ticle introduces a new N -player dynamic routing game with
explicit congestion dynamics. The model is well-posed and can
reproduce heterogeneous departure times and congestion spill
back phenomena. However, as Nash equilibrium computations
are PPAD-complete, solving the game becomes intractable
for large but realistic numbers of vehicles N . Therefore, the
corresponding mean field game is also introduced. Experiments
were performed on several classical benchmark networks of
the traffic community: the Pigou, Braess, and Sioux Falls
networks with heterogeneous origin, destination and departure
time tuples. The Pigou and the Braess examples reveal that
the mean field approximation is generally very accurate and
computationally efficient as soon as the number of vehicles
exceeds a few dozen. On the Sioux Falls network (76 links, 100
time steps), this approach enables learning traffic dynamics
with more than 14,000 vehicles.

I. INTRODUCTION

A. Motivations

In 2019, the Texas A&M Transportation Institute estimated
that the U.S. loses $166 billion per year due to the impact
of congestion on fuel usage and productivity loss [1]. The
average auto commuter spends 54 hours in congestion and
wastes 21 gallons of fuel every year due to congestion at a
cost of $1,010 in wasted time and fuel. With the emergence
of navigational applications, the traffic patterns have evolved
due to congestion-aware routing behaviors [2], [3]. Being
able to model traffic and especially routing choice adequately
would enable traffic control to leverage the new routing
behaviors in order to improve the network efficiency.

However, solving realistic routing choice problems re-
quires the consideration of large scale multi-agent systems,
where the number of vehicles making strategic decisions
is not tractable within classical algorithms [4]. This work
focuses on finding a scalable approach to model the routing
behavior of each vehicle in a dynamic road traffic environ-
ment as a large multi-agent dynamic system.

The current article summarizes the work that has been
explain with more context in [3, Chapter 6].

B. Contributions and outline

The first main contribution of this work (see section II)
is to introduce a novel dynamic mesoscopic traffic model
viewed as a dynamic routing game with explicit conges-
tion dynamics, i.e., congestion effects directly in the state
evolution. We first propose a finite-player game which can
easily be interpreted in terms of vehicles, and then derive
the corresponding mean-field game (MFG). It is proved
that Nash equilibria exist for both games. Furthermore,
theoretical arguments supporting the MFG approximation are
discussed. The reader can refer to [5] to understand how
MFGs solve the curse of dimensionality in large population
systems.

The second main contribution (see section III) is to
demonstrate numerically that the MFG provides an efficient
way to approximately solve the finite-player routing game
with very large population: the MFG is much less costly
to solve and yet provides a very good approximate Nash
equilibrium policy. This is illustrated on small networks for
which baselines are available and on the Sioux Falls network
– a realistic network with 76 links and 100 time steps with
14,000 vehicles. Although this network is often used as a
benchmark in the literature, to the best of our knowledge,
it is the first time that a method is able to solve a dynamic
routing game with a very large number of vehicles on this
network.

C. Related work

Several works study mean-field routing games. First,
continuous time models have been studied. The existence
and uniqueness of the Nash equilibrium of a MFG with
congestion on a graph has been shown in [6], where the state
space is the set of nodes. Models in which the state space
is given by the edges have been analyzed e.g. in [7], which
proved existence and uniqueness for a forward -backward
system of equations with suitable conditions at the vertices of
the network. In [8], the authors analyzed an MFG model for
traffic flow on networks by using an extended state space that
includes the distribution of players on the network and they
studied Wardrop equilibria. In existing discrete time MFG
models for routing, the players move one edge per time step
and pay a cost that increases with the proportion of players
on the same edge. In [9], the authors analyzed an MFG model



and studied the impact of adding or removing edges on the
equilibrium traffic flow. Their work provides a discrete time
resolution of a mean field routing game with on an 11 link
network with 6 time steps. In [10], the authors proposed
an MFG model that reduces to a linearly solvable Markov
Decision Process and showed connections with Fictitious
Play [11] in some cases.

The fact that existing models take congestion into account
only through the cost functions leads to paradox such as
an ambiguity about the definition of travel time: the graph
traversal time and the player cost can differ. Such issues
make these models hardly applicable for traffic engineering.
Also, the main motivation for using an MFG-based routing
method is to obtain an efficient equilibrium policy in the
finite-player routing game, which has not been checked in
existing works.

II. DYNAMIC N-PLAYER AND MEAN FIELD ROUTING
GAMES

This section introduces the dynamic routing game and the
corresponding MFG. This dynamic routing game models the
evolution of N vehicles on a road network. The vehicles are
described by their current link location, the time they will
spend on the link before exiting it, and their destination.
The action of a vehicle is the successor link they want to
reach when exiting a given link. Pure actions for a player
on link ℓ, with a negative waiting time are the successors
link of ℓ. When arriving on a link, the waiting time of
the player is assigned based on the number of players on
the link at this time. As time goes by, the waiting time
of a vehicle decreases until it becomes negative, then the
vehicle moves to a successor link and the waiting time gets
reassigned. The total cost for the vehicle is its travel time. In
the corresponding MFG, the vehicles of the N -player game
are replaced by a representative vehicle and the probability
distribution of the vehicles states.

A. Network and game set up

Time is represented as an interval T “ r0, T s of R. The
road network is described by a directed graph G “ pV,Aq,
where V and A Ă V ˆ V respectively denote the sets of
vertices and links of the road network. When exiting a link
ℓ P A, a vehicle chooses one of the possible successor links.
In case the link has no successor, the vehicle stays on the
link until the end of time. When joining a link, a vehicle
get assigned a travel time on this link, that depends on the
volume of traffic on the link. More specifically, congestion
induces a travel time spent on link ℓ P A which is a function
cℓ P Rr0,1s

ą0 of the proportion of vehicles on link ℓ. We assume
that cℓ is continuous. The congestion functions pcℓqℓPA
encode the heterogeneity of the roads’ sensitivity to traffic
volume within the network. The following typical congestion
function is based on an example provided by the 1964
traffic assignment manual of the U.S. Bureau of public road
functions, see [12, table 1.1]: cℓ : µ ÞÑ t0p1 ` αpµ{µℓ,cqβq,
where α and β are positive constants, t0 is the free flow travel
time (i.e., the travel time when the link is empty), and µℓ,c

is the relative capacity of the link ℓ (which, in our context,
is to be understood as a capacity in terms of proportion of
players).

B. N-player dynamic routing game

Given the above network, this subsection defines a finite-
player game. Most of the notations are chosen to ease the
presentation of the MFG in the next subsection.

1) Traffic flow environment: For the sake of convenience,
we assume that the time horizon T is large enough so that
any driver will have time to travel through the network.

Let N be a positive integer. The set of players is N “

t1, 2, . . . , Nu. Because the congestion functions are defined
in terms of ratio of the total number of players (to ease the
corresponding MFG definition), the number of players in the
game is not necessarily the total number of vehicles N0 in
the real-life scenario. Each player of the model corresponds
to a proportion of the real number of vehicles, which allows
to define a player as an infinitesimal portion of flow that
does not impact network travel time in the MFG. In the case
where N “ N0, a player is a vehicle. Player i P N starts
at an origin link Li

0 P A with a departure time W i
0 P T ,

and has a destination link Di
0 P A. This is the initial state

of the player. Intuitively the player wants to start moving at
time W i

0 from Li
0 and tries to reach Di

0. We assume that
the players’ initial state are distributed according to a finite-
support distribution m0. Both the origin and the destination
are modeled as links, so that the location of the vehicle is
always described as a link. In experimental setups, a origin
link is added before each origin node and a destination link
is added after each destination node. Being on the origin link
means having not departed yet, and being on the destination
link means having finished their trip.

Then, at any time step t, the state of a player i is not only
the link Li

t where they stand, but also their waiting time
W i

t before exiting this link together with their destination
Di

t. Li
t and W i

t are random variables due to the random-
ness in the action choices. Even though the destination is
constant through time (Di

t “ Di
0 for all t), including this

information in the state allows to keep track of the objective
in the player’s policy. So the state space for each driver
is X “ A ˆ T ˆ A, where the first component is for
the current location and the last one is for the destination
(recall that the destination is represented by a link in our
model). Then, the space of vehicle trajectories is X “ X T .
The state trajectories are in the space of triples (location,
waiting time, destination), which provide more information
than the physical trajectories just in terms of locations. At
the population level, the states of all the agents is a vector
X “ pXiqiPN . The state space for the whole population
is X “ XN , and the corresponding space of trajectories
is X “ X T ˆN . We respectively call game state and game
trajectory the state and trajectory of the population.

2) Routing policy: When at link ℓ, a player can try to
move to another link among the successors of ℓ, and the
transition is realized provided the waiting time is 0. The
players are allowed to randomize their actions. We thus call



strategy function and denote by π a function from X to
P pAq such that for any x “ pℓ, w, dq, πpxq has support
in the successors of ℓ. We denote by Π the set of such
strategy functions. A (feedback or closed-loop) policy π is a
function that associates to each time a strategy function, so
it is an element of the set Π “ ΠT of policies. The notation
πtpℓ

1|ℓ, w, dq represents the probability at time t with which
the agent would like to go from ℓ to ℓ1 given the fact that
their waiting time is w and their destination is d. A policy
profile π is a vector of policy functions with one policy for
each player, i.e., it is an element of Π “ ΠN . Studying this
class of policies can be justified by the fact that it allows
each player to take a decision based only on their own state,
which is realistic if the players do not know the situation of
the rest of the population. More information could be added
in the inputs of the policy (e.g., the proportion of agents on
the current link), but this is beyond the scope of this work.

3) State dynamics: Since the players’ initial states and ac-
tions are randomized, their trajectories are stochastic. Given
a policy profile π P Π, Xt “ pLt,W t, Dtq P X denotes the
random variable corresponding to the links, waiting times
and destinations for all the players at time t P T . The
stochastic process of the population state is denoted X “

pXtqtPT P X . As indicated above, the players’ interactions
are through the travel time functions pcℓqℓPA taking into
account congestion levels. So the interaction between a driver
and the rest of the vehicles is only through the proportion of
vehicles on the same link. It is thus convenient to introduce
the empirical distribution νNℓ P P pAq corresponding to a
location profile ℓ “ pℓiqiPN P AN : for every ℓ P A,
νNℓ pℓ1q “ 1

N#ti | ℓi “ ℓ1u P r0, 1s, which is the proportion
of players on the link ℓ1, given ℓ. This is all the information
one needs from the game state to compute the interactions
between players at link ℓ1. Note that νNℓ pℓ1q is invariant by
permutation of the components of the vector ℓ.

Let us fix a policy profile π P Π. We denote by
U the AT ˆXˆN -valued random variable assigned to the
probability distribution given by the policy profile: for each
pt, x, iq P T ˆX ˆN , U i

t pxq is an A-valued random variable
with distribution πi

tp¨|xq.
The evolution of the state of the game Xt “ pLt,W t, Dtq

is given by the following dynamics. At initial time,
pLi

0,W
i
0, D

i
0q, i P N are given, and then the dynamics is:

tk`1 “ tk ` mintW i
tk
, i P N u

Li
tk`1

“

#

U i
tk`1

pXi
tk

q if i P Itk`1

Li
tk

otherwise;

W i
tk`1

“

#

cLi
tk`1

`

νNLtk`1

pLi
tk`1

q
˘

if i P Itk`1

W i
tk

´ ptk`1 ´ tkq otherwise;

Li
t “ Li

tk
@k,@t P rtk, tk`1r,@i P N

W i
t “ W i

tk
´ pt ´ tkq @k,@t P rtk, tk`1r,@i P N

Di
t “ Di

0, t P T ,

where Itk`1
:“ ti P N , W i

tk
` tk ´ tk`1 “ 0u and using

ptkqkPN the sequence of times where one of the vehicles

changes link with t0 “ 0 and tk “ T if all the players have
arrived their destination. The destination is constant through
time and is not affected by the policy’s randomness. Note
that U i

“ pU i
t qtPT is defined for all t but used only when

the player moves from one link to the next one, i.e., when the
waiting time has vanished. This enables reducing any pure
(i.e. deterministic) policy as a path choice.

4) Cost function: Given a policy profile π P Π, the cost
for player i is the average arrival time which can be defined
as:

JN
i pπi,π´iq “ Eπ

“

mintt P T , Li
t “ Diu

‰

“ Eπ

„
ż

tPT
rpXi

tqdt

ȷ

where π´i “ pπ1, . . . ,πi´1,πi`1, . . . ,πN q, and the in-
stantaneous cost is defined as: for every x “ pℓ, w, dq,
rpxq “ 1ℓ‰d. Note that the running cost is independent of
the (rest of the) population state, contrary to other models
for routing or crowd motion in which the interactions are not
in the dynamics but in the cost function.

Furthermore, the population is homogeneous (all players
have the same dynamics evolution and same running cost),
and player i interacts with the other players only through
νN and for this reason, the cost function JN

i does not
depend directly on the index i but only on πi: as a function,
JN
i “ JN

i1 for all i1. The policy profile π´i for the rest
of the population is used only to compute νN “ pνNt qtPT .
Although π´i is necessary, it is not sufficient because νN is
also influenced by the policy πi chosen by the player under
consideration. However, the influence of each player decays
as N increases, which will be the basis for the mean-field
approach presented in § II-C.

5) Nash equilibrium: Considering that all the players are
individually optimizing their own cost leads to the following
notion of solution for the game. We refer to e.g. [13] for
more details.

Definition 1 (Nash equilibrium): A Nash equilibrium is a
policy profile π‹ “ pπi‹qiPN P Π such that:

@i P N , @π P Π, JN
i pπi‹,π´i‹q ď JN

i pπ,π´i‹q.
The following result says that, in our model, such equilibria
exist.

Theorem 1 (Existence of N -player Nash equilibrium):
Assuming the continuity of the cost function with respect
to the policy profiles, there exists a Nash equilibrium in the
N -player routing game.

Proof: The proportion of players on each link is always
a multiple of 1{N . Since the number of links and the time
horizon are finite, there is a finite set of times at which a
vehicle can switch link. The set of policy profiles can thus be
restricted to a finite set. Therefore, the game can be restated
as a game with finite state and action spaces. Assuming the
continuity of the cost function with respect to the policy, it
has a Nash equilibrium (Kakutani-Fan-Glisckberg theorem
[14]).

Besides the above definition, another way to express that
a policy profile π is a Nash equilibrium is to say that the



deviation incentive is 0 for every player, where the deviation
incentive for player i is:

DN
i pπi,π´iq “ JN

i pπi,π´iq ´ argmin
π1PΠ

JN
i pπ1,π´iq.

This also serves as a basis to assess the convergence of
algorithms towards a Nash equilibrium using the average
deviation incentive:

D
N

pπq “
1

N

N
ÿ

i“1

DN
i pπi,π´iq. (1)

C. Mean Field approximation

As mentioned in the introduction, solving the above N -
player game is infeasible as N is very large. We thus
turn to an MFG version of the above routing game, which
can be used to provide approximate Nash equilibria and
whose quality improves as N Ñ `8. This is based on
considering the interactions between a typical player and a
distribution representing the rest of the population. This is
possible thanks to the anonymity and the symmetry in the
interactions, which allows us to focus on symmetric Nash
equilibria. Intuitively, the law of large numbers allows to
consider the state distribution instead of a large number of
random variables induced by it.

1) Traffic flow environment: The state of a typical player
at time t is a random variable denoted by Xt “ pLt,Wt, Dtq

which takes values in X “ A ˆ T ˆ A. At time 0, the
population’s state distribution is m0 and is known to the
players.

2) Routing policy: The space of policies is still Π. For
a policy π, we denote by πtpℓ

1|ℓ, w, dq the probability with
which a typical player using policy π would like to go from
ℓ to ℓ1 given that their waiting time is w and their destination
is d. The routing random variable is denoted by U .

3) State dynamics: Assume that an infinitesimal agent
uses policy π while the rest of the population uses π1. Let
ν “ pνtqtPT P P pAq

T be the flow of distributions on A
induced by the population that uses π1. The evolution of a
typical player’s state is given by the following dynamics. Let
t0 “ 0 and let pL0,W0, D0q be a given initial state. Then,
the dynamics follow:

tk`1 “ Wtk ` tk

Ltk`1
“ UtkpXtkq

Wtk`1
“ cLtk`1

`

νtk`1
pLtk`1

q
˘

Lt “ Ltk @k,@t P rtk, tk`1r

Wt “ Wtk ´ pt ´ tkq @k,@t P rtk, tk`1r

Dt “ D0, t P T .

Here ptkqkPN denotes the sequence of times where the rep-
resentative player changes link (we take tk “ T when there
are no more changes), and νtpℓq P r0, 1s is the proportion of
the mean field population on link ℓ at time t.

4) Cost function: The cost of the typical player using
policy π when the population uses policy π1 is defined as:

Jpπ,π1q “ Eπ,π1

„
ż

tPT
rpXtqdt

ȷ

where the state of the representative player X “ pXtqtPT has
the above dynamics with policy π, and the instantaneous cost
function r is the same function as in the finite player game
(see § II-B.4). Analogously to the N -player game, the policy
π1 is used only to deduce ν “ pνtqtPT that appears in the
evolution of W . So the cost function J could alternatively
be written as a function of pπ,νq instead of pπ,π1q. In
contrast with the finite player regime, we highlight that
here π1 completely determines ν because the player under
consideration is infinitesimal and hence their policy π does
not affect the flow ν of distributions of locations of the
population.

5) Nash equilibrium: The counterpart of the N -player
Nash equilibrium in the mean-field regime can now be
introduced.

Definition 2 (Mean field Nash equilibrium): Definition
3.1. of [15]: A mean field Nash equilibrium (MFNE) is a
policy π‹ P Π such that: Jpπ‹,π‹q ď Jpπ1,π‹q for all π1,
or equivalently:

π‹ P argmin
πPΠ

Jpπ,π‹q.

Another way to express that π P Π is a MFNE is to say
that the average deviation incentive D vanishes, where:

Dpπq “ Jpπ,πq ´ argmin
π1PΠ

Jpπ1,πq.

Theorem 2 (Existence of mean field Nash equilibrium):
Assuming the continuity of the cost function with respect
to the policy profiles, and assuming that the support of the
initial distribution of the waiting time is a finite set, there
exists a mean field Nash equilibrium.

Proof: The set of pure policies for the representative
player can be restricted to the choice of a path given a
departure time. This set is finite as long as the support
of the initial distribution of waiting time is. Therefore the
argmin map (also called Best response map) is a Kakutani-
Fan-Glisckberg map providing the continuity of the cost with
respect to the policy of the representative player and of the
mean field.

One of the advantages of considering a mean field setting,
is that any MFNE is automatically a dynamic Wardrop
equilibrium.

Theorem 3 (Dynamic Wardrop equilibrium [16]): For
any mean field Nash equilibrium, all induced trajectories
of players with the same initial state (origin, waiting time,
destination), have the same travel time (i.e., the same total
cost).

Proof: In case a trajectory used by the representative
player has a higher travel time than another one, then the
player has an incentive to deviate, and the game is not a
Nash equilibrium.

Any mean field Nash equilibrium policy π‹ can be used
by the players in an N -player game. Intuitively, the larger N



is, the closer the population is to the mean field regime. In
fact, it can be shown under suitable conditions that π‹ “

pπ‹, . . . ,π‹q P ΠN is an approximate Nash equilibrium
whose quality improves with N in the sense that:

D
N

pπ‹q Ñ 0, as N Ñ `8.

So if all the agents use the mean field Nash equilibrium
policy, then any single player’s incentive to deviate decreases
when the population becomes larger. For example, [15] prove
in their setting that: if π‹ is an MFNE, then for every ϵ ą 0,
there exists N0 P N such that for every N ě N0, the N -
player policy profile pπ‹, . . . ,π‹q P ΠN satisfies: D

N
pπq ď

ϵ.
Next, to illustrate this property in our model, an explicit

computation is carried out in the simple Pigou network
and then is empirically verified on both Pigou and Braess
networks.

III. EXPERIMENTS

This section shows experimentally that (1) computing the
mean field equilibrium is easier than computing the N -player
Nash equilibrium using state of the art algorithms (sampled
counterfactual regret minimization [17]) and (2) it gives an
excellent approximation of the N -player equilibrium when
N is large (above 30 in the case of the Pigou [18] and the
Braess [19] network). The experiments also show that (3)
online mirror descent algorithm [20] enables computing the
mean field equilibrium on the Sioux Falls network [21], a
classic use case in road traffic network games, with 14,000
vehicles (across two origin-destination pairs) and realistic
congestion function.

A. Context

All the experiments are conducted within the OpenSpiel
framework [22], an open source library that contains a collec-
tion of environments and algorithms to apply reinforcement
learning and other optimization algorithms in games. The
code is publicly available on GitHub1.

Networks. As classical network games consider demand
between nodes, we add artificial origin and destination links
before and after each node in the network (Pigou [18], Braess
[19] and Sioux Falls [21]). This enables defining vehicle
location only using links, and defining state of not having
begun a trip and having finished it.

The Pigou network [18] has two links ℓ, ℓ1 and two nodes
(an origin and a destination one) which come from the
conversion of the origin and the destination nodes. A time
discretisation of 0.01, with a time horizon of 2 is used. The
cost functions are cℓpxq “ 2, cℓ1 pxq “ 1 ` 2x and all the
demand leaves the origin link at time 0 and head towards
the destination link.

The Braess network game is the dynamic extension of
the game described in [19]. The network has 5 links AB,
AC, BC, BD and CD, one origin node A converted to
an origin link OA and a destination node D converted to a

1https://github.com/deepmind/open_spiel

destination link DE. The cost functions are cABpxq “ 1`x,
cACpxq “ 2, cABpxq “ 0.25, cBDpxq “ 2, cCDpxq “ 1`x.
All the demand leaves the origin link at time 0 and head
towards the destination link. We use a time step of 0.05 and
a time horizon of 5.

The Sioux Falls network game is used by the traffic
community for proof of concepts on network with around
100 links. The network (76 links without the origin and
destination links), the link congestion functions, and an
origin-destination traffic demand are open source [23]. As
the classical routing game [24, Chapter 18] is a static game,
the demand is only a list of tuple origin, destination and
counts, and does not provide any departure time. We use
the network data (including the congestion functions) and
generate a demand specific to the game. We model 7,000
vehicles departing at time 0 from node 1 to node 19, and
7,000 vehicles departing at time 0 from node 19 to node 1.
We use a time step of 0.5 and a time horizon of 50.

B. Mean field game solves the curse of dimensionality in the
number of players

In this section, the mean field equilibrium policy is com-
puted for both the Braess and the Pigou network games. In
addition to being considerably faster to compute compared to
the N -player Nash equilibrium, the mean field equilibrium
provides an excellent approximation when N is above 30.

In the Braess mean field Nash equilibrium policy, the
travel time on the three possible paths are equals, which
encodes the Nash equilibrium condition of the MFG provided
that the travel time on each link is a multiple of the time step,
accordingly to theorem 3.

1) While solving N -player game is intractable for large
number of players, this can be done for the mean field
game: We compare the running time of the algorithms
for solving the N -player game and the mean field player
game depending on the number of players it models. The
counterfactual regret minimization with external sampling
(ext CFR) is used in the N -player game, as it is the fastest
algorithms to solve the dynamic routing N -player game
within the OpenSpiel library of algorithms (comparison done
within the OpenSpiel framework are not reported here).
Online mirror descent (OMD) is used in the MFG. As
the mean field Nash equilibrium does not depends on the
number of vehicles the MFG models, the computation time
of 10 iterations of OMD is independent of the number of
vehicles modeled. On the other hand, the computational cost
of 10 iterations of ext CFR increases exponentially with
the number of players, making the computation of a Nash
equilibrium with a large number of players intractable with
the algorithms of the OpenSpiel library.

2) The mean field equilibrium policy is a good approx-
imation of the N -player equilibrium policy whenever N is
large enough: In the Pigou network game, the mean field
equilibrium policy is almost a Nash equilibrium in the N -
player game as soon as N is larger than 20 players, see
fig. 1.

https://github.com/deepmind/open_spiel


Fig. 1. Average deviation incentive of the Nash equilibrium mean field
policy in the N -player game as a function of N in the case of the Pigou
game. The sampled value is the value computed in OpenSpiel by testing all
the possible pure best responses, and sampling game trajectories to get the
expected returns.

Fig. 2. Online mirror descent average deviation incentive in the Sioux Falls
MFG as a function of the number of iterations of the descent algorithm.

In the Braess network game, the mean field equilibrium
policy is almost a Nash equilibrium in the N -player game
as soon as N is larger than 30 players.

C. Mean field game approach can be extended to more
complex set ups

The MFG approach solves the curse of dimensionality in
the number of players (whenever the number of possible
states is much below the number of players). It can be
extended to more complex setups than the Pigou and Braess
networks such as realistic traffic networks with demand. This
section focuses on the extension of MFG approach to one
of the classical benchmark network game used by the traffic
community: the Sioux Falls network [21].

The experiment shows the ability to learn the mean field
equilibrium policy on this 76 links network, with 14,000
vehicles going to two different destinations. Using online
mirror descent, we see that the average deviation incentive
decreases to 1.55 (for a travel time of 27) over 100 iterations,
see fig. 2. We use a fixed learning rate of 1 in the 30 first
iterations of the algorithm, 0.1 in the 31 to the 60 first
iterations and a fixed learning rate of 0.01 in the 40 remaining
iterations to produce fig. 2.

The resulting mean field policy is not exactly the Nash
equilibrium policy of the MFG as its average deviation
incentive is 1.55 (for a travel time of 27.5).

Average deviation of the learned mean field policy cannot
be computed numerically in the 14,000 player game, due to
the large number of players.
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