
Optimal Network Topology Design in Multi-Agent Systems for Efficient

Average Consensus

Mohammad Rafiee Alexandre M. Bayen

Abstract— The problem considered in the present article is
optimal design of network topologies in multi-agent systems
in order to make communication on the network as efficient
as possible for the continuous-time average-consensus protocol.
The network design problem can be posed in two different ways.
(1) Assuming that the maximum communication cost, i.e. the
maximum number of communication links, is known, the goal
is to find the network topology which results in the fastest
convergence to the consensus (in presence of communication
time delays on the links). (2) If a minimum performance of
the protocol is required, the design problem can be posed as
finding the network with lowest possible communication cost
which fulfills the required performance. In both approaches, we
formulate the problem of finding the optimal communication
graph among a class of directed graphs, strongly balanced
digraphs, as a Mixed Integer Semidefinite Program (MISDP).
By solving this MISDP, the optimal graph and the weights on
communication links are obtained.

I. INTRODUCTION

Distributed consensus algorithms have received a lot of

attention among researchers in the last few years. This is

mainly because of their application in various multi-agent

systems, including formation control in robotic systems [9],

[15] and flocking [13], cooperation in networked multi-agent

systems [14]- [16], distributed sensor fusion and estimation

[1]-[6], [8] among other examples.

The average-consensus algorithm mainly developed in [5]

has received tremendous attention in recent years due to its

applicability and elegance. Authors in [5] have studied the

convergence and performance of the average-consensus algo-

rithm under different conditions. It is shown that the conver-

gence speed of the average-consensus protocol is determined

by the second smallest eigenvalue of the Laplacian matrix of

the mirror graph of the network which is itself determined

by the topology of the network. A natural question that arises

is how to choose the weights on communication links, the

entries of the adjacency matrix of the graph, in order to

achieve the best performance. In most cases, the network

designer can also determine which agents communicate with

each other. Therefore, one can go even further and investigate

the best communication topology, i.e. the communication

graph as well as the weights on the links, so that the

performance of the consensus algorithm is optimized.

Since the development of the average-consensus algo-

rithm, extensive efforts have been made to improve the
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performance of the algorithm. Authors in [19] consider the

problem of fast distributed linear averaging in discrete time.

They define the asymptotic convergence factor which they

maximize by taking the weights on the links as decision

variables. They formulate this maximization problem for

networks with undirected graphs as a semidefinite program.

Authors in [2] show that the convergence speed of the

average-consensus protocol may be increased dramatically

by adding a few long-range communication links. Authors

in [18] use genetic algorithm (GA) methods to optimize

the long-range link configuration to obtain a small-world

network with a faster consensus. In [11] assuming that the

weights for a link between two nodes is a function of

the distance between the nodes, the authors find the best

positional configuration of the nodes in order to maximize

the convergence speed of the average-consensus protocol.

In the present article, we consider the network design

problem for fast consensus in a general setting. We introduce

two approaches to design an efficient network. In the first

approach, with a given number of agents, the goal is to

find the network topology such that the communication cost

of the network is less than a given value and the average-

consensus protocol converges as fast as possible in presence

of communication time-delays on the links. In the second

approach, a minimum performance is required for the proto-

col and the goal is to find the most efficient communication

topology, which is a topology with the lowest communication

cost, which fulfills the required performance condition. Here,

by communication topology, we mean the configuration

of the communication graph as well as the weights on

the communication links. We formulate both forms of the

problem as a Mixed Integer Semidefinite Program (MISDP).

The resulted MISDP can be used as a powerful network

design tool in other ways as well. For instance, consider a

case where a network has already been designed. The method

presented here can be used to investigate how much the

performance of the network can be improved if a number of

communication links are added. Depending on the extent of

the improvement, the designer may consider slight increase

of the number of communication links. Similarly, as will

be seen in examples in the last section of this article, in

some cases, eliminating some of the communication links

does not affect the convergence speed of the protocol. In

such cases, the communication cost of the network can be

reduced without degrading the performance of the network.

The more general setting of directed graphs is considered.

In fact, the case of undirected graphs will be included as

a special case. Also, a more interesting case which is the
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case of networks with undirected graphs but non-symmetric

weights is included in this setting. To this end, we first

generalize a few theorems that are previously proven for

undirected graphs to the case of directed graphs in section III;

to our knowledge the extension of these results for undirected

graphs have not previously been proven in the literature.

The rest of this article is organized as follows: Some

background on average-consensus problem is summarized in

section II. Specific theorems on directed graphs are proven

in section III as extensions of known results. In section IV,

we describe two different approaches of the network design

problem and formulate the problem as a MISDP. We provide

a few numerical examples in section V. Finally, we conclude

the paper in section VI.

II. BACKGROUND

We consider a network of n agents with underlying

communication graph G. Let G = (V, E ,A) be a weighted

directed graph with V = {v1, · · · , vn} the set of n nodes of

the graph, E ⊆ V × V the set of edges of the graph, and

A = [aij ] the weighted adjacency matrix of the graph. If

agent i does not communicate with agent j, i.e. eij /∈ E ,

aij = 0, otherwise aij is a positive number. An edge of G
can be denoted by eij = (vi, vj). The set of indices of the

nodes is denoted by I = {1, 2, · · · , n}. The set of neighbors

of a node vi is defined as Ni = {vj ∈ V|(vi, vj) ∈ E}.

Let xi ∈ R be the state of node vi which might represent

a physical quantity, e.g. position, velocity or the heading

angle of agents. A network is defined as Gx = (G, x) with

x = [x1, · · · , xn]
T where G is called the topology of the

network and x is called the state (value) of the network. The

nodes vi and vj are said to agree if xi = xj . We say that a

consensus has been reached among the nodes of a network

if xi = xj for all i, j ∈ I, i 6= j in which case the common

value of all nodes is called the group decision value.

A dynamic network is a dynamical system with state

(G, x) where the value of x evolves in time ac-

cording to the network dynamics ẋ = F (x, u) =
[f(x1, u1), · · · , f(x1, u1)]

T . The average-consensus prob-

lem is the problem of calculating
1

n

∑n

i=1
xi(0) in a dis-

tributed way, meaning that the input of each node ui only

depends on the states of the node and its neighbors. The

state feedback ui = ki(xj1 , · · · , xjmi
) is called a protocol

if we have
{

vj1 , · · · , vjmi

}

⊆ {vi} ∪ Ni. A protocol is

said to asymptotically solve the average-consensus problem

if
1

n

∑n

i=1
xi(0)1 with 1 a 1-by-n vector of ones is an

asymptotically stable equilibrium of ẋ = F (x, k(x)).
For a weighted digraph, the in-degree and the out-degree

of node vi is defined as follows:

degin(vi) =

n
∑

j=1

aji, degout(vi) =

n
∑

j=1

aij (1)

The degree matrix of a graph is defined as ∆ = diag(A1) or

equivalently as a diagonal matrix with the ith diagonal entry

being equal to the out-degree of the ith node vi.

A few definitions and previously-proven theorems that are

used in the subsequent sections are stated here. We refer the

reader to [5], [3] and [4], for further details.

Definition 1: A directed graph (digraph) is said to be

strongly connected if there exists a path between any two

distinct nodes of the graph.

Definition 2: A digraph is said to be balanced if the in-

degree of each node is equal to its out-degree.

Consider the following protocol

ẋ(t) = −Lx(t) (2)

where L is the Laplacian of the graph G which is defined

as L = ∆−A, or equivalently

ẋ(t) = u(t) (3)

with

ui(t) =
∑

vj∈Ni

aij(xj(t)− xi(t)) (4)

Theorem 2.1: Let G be a digraph with Laplacian matrix

L. Denoting the maximum node out-degree of G by dmax(G),
all eigenvalues of L lie in the following disk in the complex

plane:

D = {z ∈ C | |z − dmax(G)| ≤ dmax(G)} (5)

Theorem 2.2: In a network with a directed graph, the

above protocol globally asymptotically solves a consensus

problem if the graph is strongly connected. With this assump-

tion, this protocol globally asymptotically solves the average-

consensus problem if and only if the graph is balanced.

Definition 3: Let G = (V, E ,A) be a weighted digraph.

The mirror of G denoted by Ĝ is the underlying undirected

graph of G with the adjacency matrix Â = [âij ] where

âij = âji =
aij + aji

2
(6)

Theorem 2.3: Let G be a digraph with Laplacian L. Then

Ls = Sym(L) = (L+ LT )/2 is the Laplacian matrix of the

mirror of G, Ĝ, if and only if G is balanced.

Theorem 2.4: In a network of integrators with a balanced

strongly connected digraph, the protocol (2) solves the

average-consensus problem globally asymptotically with a

speed equal to λ2(Ĝ), the Fiedler eigenvalue of the mirror

graph of G. λ2(Ĝ) is also called the algebraic connectivity

of Ĝ.

Assuming that there is time-delays on communication

links, protocol (4) changes to

ui(t) =
∑

vj∈Ni

aij(xj(t− τij)− xi(t− τij)) (7)

where τij is the delay on the communication link between

vi and vj .

Theorem 2.5: In a network of integrators with a fixed,

undirected and connected graph and equal time-delay τ > 0
on all links, protocol (7) globally asymptotically solves the

average-consensus problem if and only if τ < π/2λmax(L),
where λmax(L) is the maximum eigenvalue of L.

Theorem 2.6: If a directed graph G is strongly connected,

then rank(L) = n−1 where L is the Laplacian of G and n is
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the number of nodes of the graph. For the case of undirected

graphs, this is a necessary and sufficient condition, i.e. an

undirected graph G is connected if and only if rank(L) =
n− 1.

Definition 4: The communication cost of a network is

defined as the number of its communication links, i.e.

C =

n
∑

i,j=1

sgn(aij) (8)

sgn denotes the sign function which takes negative numbers

to -1, 0 to 0 and positive numbers to 1.

III. PRELIMINARY RESULTS

The in-valency and out-valency of a node in a directed

graph is defined as the number of edges ending on the node

and starting from the node, respectively. A weak path in a

directed graph is a sequence of distinct nodes vi1 , · · · , vim
such that either (vik , vik+1) or (vik+1, vik) belong to the set

of edges of the graph for i = 1, · · · ,m. A digraph is called

weakly connected if any two distinct nodes of the graph can

be connected by a weak path.

Definition 5: We call a weighted directed graph strongly

balanced if the graph is balanced and the in-valency of each

node of the graph is equal to its out-valency.

The following theorem states that strongly-connectedness

is equivalent to weakly-connectedness for the case of

strongly balanced graphs. Note that it is necessary that the

in-valency and out-valency of each node are equal for the

following result to hold. This condition is not satisfied for

any balanced graph; in balanced graphs the in-degree and

out-degree of each node are equal.

Theorem 3.1: Let G be a digraph such that the in-valency

of each node is equal to its out-valency. Then G is strongly

connected if and only if it is weakly connected.

Proof: We refer the reader to any book on algebraic

graph theory, e.g. [10], for a proof.

The following theorem generalizes Theorem 2.6 to the

case of directed graphs.

Theorem 3.2: Let G be a strongly balanced digraph. Then

G is strongly connected if and only if rank(L̂) = n−1 where

L̂ is the Laplacian of the mirror graph of G and n is the

number of nodes of G.

Proof: It is quite easy to see that a digraph is weakly

connected if and only if its mirror graph Ĝ is connected.

From Theorem 2.6, we know that Ĝ is connected if and

only if rank(L̂) = n− 1. Finally, according to Theorem 3.1,

G is strongly connected if and only if it is weakly connected.

The following theorem provides a sufficent condition for

convergence of protocol (7) for the case of directed graphs.

Theorem 3.3: In a network of integrators with a fixed,

strongly connected and balanced digraph and equal time-

delay τ > 0 on all links, protocol (7) globally asymptotically

solves the average-consensus problem if τ ≤
1

2dmax(G)
where dmax(G) is the maximum degree of the graph G.

Proof: The first part of the proof follows directly

from the proof of Theorem 2.5 [5]. Since the time delay

on all links are assumed to be equal, we have
∑n

i=1
ui = 0

which implies that Ave(x) is invariant under protocol (7).

Therefore, we just need to prove that (7) is stable. Since

X(s) = (sIn + e−τsL)−1x(0), it suffices to show that all

zeros of Zτ (s) = (sIn + e−τsL), lie in the left half plan or

at the origin for a graph with the prescribed properties. First,

note that any eigenvector v of Zτ (s) is an eigenvector of L
and vice versa. Since the graph is assumed to be strongly

connected, L has a simple eigenvalue at the origin. In fact,

s = 0 in the dirction of v0 is a zero of Zτ (s) where v0 is

an eigenvector corresponding to the eigenvalue of L at the

origin. Let us denote any nonzero eigenvalue of L by λ and

its corresponding eigenvector by v. For s 6= 0 being a zero

of Zτ (s) in the direction of v, i.e. Zτ (s)v = 0, we must

have
1

λ
+

e−τs

s
= 0 (9)

Thus, using the Nyquist stability criterion, protocol (7) is

stable if the net encirclement of the Nyquist plot of Ω(s) =
e−τs

s
around −

1

λ
is zero.

We have

Ω(jv) =
e−jvτ

jv
= −

sin(vτ)

v
− j

cos(vτ)

v
(10)

Note that Re(Ω(jv)) ≥ −τ meaning that the Nyquist plot of

Ω(s) is entirely on the right side of −τ .

According to Theorem 2.1, we know that all eigenvalues

of L lie on or inside the disk D = {z = zr + jzim ∈
C | (zr − dmax(G))2 + z2im ≤ dmax(G)2} where dmax(G) is

the maximum out-degree of the graph G. For any z = zr +
jzim ∈ D \ {0}, we have

(zr − dmax(G))2 + z2im ≤ dmax(G)2 (11)

⇐⇒ z2r + z2im ≤ 2zrdmax(G) (12)

⇐⇒
−zr

z2r + z2im
≤

−1

2dmax(G)
(13)

This implies that the map f(z) = −
1

z
transforms D \ {0 +

j0} into the half space H = {z = zr + jzim ∈ C | zr ≤
−1

2dmax(G)
}. Therefore, Re

(

−
1

λ

)

lies in H for all nonzero

eigenvalues λ of L. As a result, if τ ≤
1

2dmax(G)
, the net

encirclement of the Nyquist plot of Ω(s) =
e−τs

s
around

−
1

λ
is zero and protocol (7) is stable.

IV. OPTIMAL NETWORK DESIGN

A. Network design for fast consensus

Our goal is to design a communication topology for

a network with a given number of nodes such that the

convergence speed of protocol (7) is maximized while the

communication cost of the network is below a predefined
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value Cmax and an equal non-zero time-delay which is less

than τmax exists on all communication links.

According to Theorems 2.4, 3.2 and 3.3, the network de-

sign problem can be formulated as the following optimization

program:

max
L∈Rn×n

λ2(L̂) (14)

s.t. L̂ =
L+ LT

2
(15)

L̂ � 0 (16)

lij ≤ 0 ∀i, j ∈ I, i 6= j (17)

L1 = 0 (18)

1
TL = 0 (19)

The underlying graph of L is strongly connected.

(20)

dmax(G) ≤
1

2τmax

(21)

C =

n
∑

i,j=1,i 6=j

sgn(−lij) ≤ Cmax (22)

where lij is the entry of L located at the ith row and jth

column of L.

In the above optimization program, equation (15) ex-

presses L̂ in terms of L, constraints (17) and (18) ensure

that L is a legitimate Laplacian matrix. Constraint (19)

is imposed to make L correspond to a balanced graph.

According to Theorem 3.3, constraints (19), (20) and (21) are

needed to ensure the convergence of the average-consensus

protocol. Finally, constraint (22) imposes the bound on the

communication cost of the network.

Our goal is to transform the above optimization program

to a standard convex optimization program which can be

solved efficiently using the available solvers. As will be seen

later, we transform the above problem to a Mixed Integer

Semidefinite Program (MISDP).

We start with the constraints. We shall transform all

constraints to affine equalities or Linear Matrix Inequalities

(LMI). In fact, constraints (15), (17), (18) and (19) are

already in the desired form. We deal with constraint (20) after

constraints (21) and (22). Constraint (21) may be formulated

as

lii ≤
1

2τmax

∀i ∈ I. (23)

In order to transform constraint (22), we prove the follow-

ing theorem

Theorem 4.1: For each lij ≤ 0, i, j = 1 · · · , n, i 6= j
introduce a binary variable γij ∈ {0, 1}. Assuming an

arbitrarily small lower bound M < 0 on lij for i, j =
1 · · · , n, i 6= j, the following two sets of expressions are

equivalent:

1)

lij ≤ 0 i, j = 1, · · · , n, i 6= j (24)
n
∑

i,j=1,i 6=j

sgn(−lij) ≤ Cmax (25)

2)

γij ∈ {0, 1} i, j = 1, · · · , n, i 6= j (26)

lij ≤ 0 i, j = 1, · · · , n, i 6= j (27)

lij < 1− γij i, j = 1, · · · , n, i 6= j (28)

lij ≥ γijM i, j = 1, · · · , n, i 6= j (29)
n
∑

i,j=1,i 6=j

γij ≤ Cmax (30)

Proof: We first show that equations (26), (27), (28)

and (29) state that lij = 0 if and only if γij = 0 for i, j =
1, · · · , n, i 6= j. Suppose lij = 0, then equation (29) implies

that γij = 0, and all other inequalities remain valid. If γij =
0, then equations (27) and (29) imply that lij = 0 and other

inequalities are valid. Equivalently, we have lij < 0 ⇔ γij =
1 for i, j = 1, · · · , n, i 6= j and this completes the proof.

If we restrict the graph to strongly balanced digraphs, we

can write constraint (20) in the desired form. We use the

boolean variables defined in the above theorem to enforce

the condition that the in-valency and out-valency of all nodes

of the underlying graph of L are equal. This can be written

as

Γ1 = ΓT
1 (31)

where Γ ∈ {0, 1}
n×n

is a binary matrix with Γij = γij for

i, j = 1, · · · , n, i 6= j and Γii = 0 for i = 1, · · · , n.

By using Theorem 3.2, we can replace constraint (20) by

the following condition

rank(L̂) = n− 1 (32)

Since L̂ is a positive semidefinite matrix with one eigenvalue

equal to zero, we have the following equivalence:

rank(L̂) = n− 1 ⇐⇒ λ2(L̂) > 0 (33)

Consequently, constraints (20) and (16) can be replaced

by conditions (31) and (33).

Performing all transformations so far, the optimization

program (14) can be written as the following mixed integer

program:

max
L∈Rn×n,Γ∈{0,1}n×n

λ2(L̂) (34)

s.t. L̂ =
L+ LT

2
(35)

lij ≤ 0 ∀i, j ∈ I, i 6= j (36)

L1 = 0 (37)

1
TL = 0 (38)
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lii ≤
1

2τmax

∀i ∈ I (39)

γij ∈ {0, 1} i, j = 1, · · · , n, i 6= j (40)

γii = 0 i = 1, · · · , n (41)

lij < 1− γij i, j = 1, · · · , n, i 6= j (42)

lij ≥ γijM i, j = 1, · · · , n, i 6= j (43)
n
∑

i,j=1,i 6=j

γij ≤ Cmax (44)

λ2(L̂) > 0 (45)

Γ1 = ΓT
1 (46)

We are now left with the cost function and constraint (45)

which need to be transformed to LMIs.

For the second smallest eigenvalue of the Laplacian of a

graph, we can write [10]

λ2(L̂) = min
z 6=0

zT L̂z

‖z‖2
: 1

T z = 0 (47)

By defining W = zzT , we can write

λ2(L̂) = min
W∈Sn

〈W, L̂〉 (48)

s.t. W � 0 (49)

TrW = 1 (50)

W1 = [0]n×1 (51)

rank(W ) = 1 (52)

where the inner product between two matrices, W and L̂
is defined as 〈W, L̂〉 = Tr(L̂W ). We first relax the rank

constraint and form the dual. Then we show that the rank

relaxation is exact. After eliminating the rank constraint, i.e.

constraint (52), the dual problem can be written as follows

L(W,V, ν1, ν2) =〈W, L̂〉 − 〈W,V 〉

+ ν1(1−TrW ) + νT2 W1 (53)

where V ∈ Sn
+, ν1 ∈ R, ν2 ∈ R

n.

g(V, ν1, ν2) = min
W∈Sn

〈W, L̂− V − ν1I + ν21
T 〉+ ν1 (54)

=

{

ν1 if L̂− V − ν1I + ν21
T = 0

−∞ otherwise
(55)

Therefore,

d∗ = max
V ∈Sn

+
,ν1∈R,ν2∈Rn

g(V, ν1, ν2) (56)

= max
ν1∈R,ν2∈Rn

ν1 (57)

s.t. (ν2)1 = · · · = (ν2)n = α (58)

ν21
T − ν1I + L̂ � 0 (59)

= max
ν1,α∈R

ν1 (60)

s.t. α11T − ν1I + L̂ � 0 (61)

We now show that the rank relaxation, i.e. relaxation

of constraint (52), is exact. In other words, eliminating

constraint (52) does not change the optimal value.

The primal and the dual problems are both strictly feasible.

Hence, according to the Slater’s theorem, strong duality

holds and the primal and dual problems are both attained

by some primal-dual triplet (W ∗, ν∗1 , α
∗). Therefore, the

Karush-Kuhn-Tucker (KKT) conditions are necessary and

sufficient for the optimal solutions [7]. These conditions are

as follows

• Primal feasibility: W ∗ � 0, TrW ∗ = 1, W ∗
1 =

[0]n×1

• Dual feasibility: α∗
11

T − ν∗1I + L̂ � 0
• Complementary slackness: (α∗

11
T −ν∗1I+ L̂)W ∗ = 0

Suppose W ∗ is a primal optimal solution. The last

KKT condition proves that (α∗
11

T − ν∗1I + L̂)W ∗ = 0,

therefore for any non-zero column w∗ of W ∗ we have:

(α∗
11

T − ν∗1I + L̂)w∗ = 0. After normalizing w∗ we have:

w∗(w∗)T � 0, Trw∗(w∗)T = 1, w∗(w∗)T1 = [0]n×1.

Hence, w∗(w∗)T is a primal optimal solution whose rank is

equal to 1. This proves the exactness of the rank relaxation.

Finally, the optimization program (34) can be formulated

as the following MISDP

Optimization Program.I:

max
L∈Rn×n,Γ∈{0,1}n×n,ν,α∈R

ν (62)

s.t. L̂ =
L+ LT

2
(63)

lij ≤ 0 ∀i, j ∈ I, i 6= j (64)

L1 = 0 (65)

1
TL = 0 (66)

ν > 0 (67)

α11T − νI + L̂ � 0 (68)

lii ≤
1

2τmax

∀i ∈ I (69)

γii = 0 i = 1, · · · , n (70)

lij < 1− γij i, j = 1, · · · , n, i 6= j
(71)

lij ≥ γijM i, j = 1, · · · , n, i 6= j
(72)

Γ1 = ΓT
1 (73)

1
TΓ1 ≤ Cmax (74)

Note that constraint (67) is imposed as a replacement for

constraint (45).

A few remarks are in order:

Remark 1: For cases in which some constraints exist on

communications between agents due to geometric config-

uration, hardware capabilities, etc., appropriate constraints

may be imposed in the above program. For instance, if

agent i may not communicate with agent j because of long

distance between them, the constraint lij = 0 can be added
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to the constraints of the above program to incorporate this

condition.

Remark 2: If the communication topology of the network

is fixed a priori, the weights on the links may be chosen

optimally by solving a SDP obtained from Optimization

Program I after omitting constraints (70), (71), (73) and (74).

B. Network design for low communication cost

In this section, we adapt the previous results to another

situation, in which a minimum performance in terms of

the convergence speed of the consensus protocol (7) is

desired and the goal is to design a network with the lowest

possible communication cost which fulfills the performance

requirement.

We assume that the desired performance is given in terms

of the Fiedler eigenvalue of the mirror graph, i.e. a network

is desired such that λ2(L̂) ≥ λmin
2 where L̂ is the Laplacian

of the mirror graph. Note that this assumption is valid since

λ2(L̂) determines the speed of convergence of the group

disagreement.

According to the results of the previous section, this

design problem can be formulated as the following mixed

integer semidefinite program:

Optimization Program.II:

min
L∈Rn×n,Γ∈{0,1}n×n,ν,α∈R

1
TΓ1 (75)

s.t. Equations (63) − (66)

Equations (68) − (73)

ν > λmin
2 (76)

Note that constraints (68) and (76) guarantee that λ2(L̂) >
λmin
2 .

V. NUMERICAL EXAMPLES AND SIMULATION RESULTS

In this section, we provide some numerical examples and

simulation results. The optimization programs are solved

using YALMIP [12] with SeDuMi [17] as the SDP solver. In

all of the following examples, the communication time-delay

upper bound is taken as .1 second, i.e. τmax = 0.1.

Fig. 1: Optimal graphs, n = 5 (left), n = 9 (right), corresponding to
Example 1, obtained by solving Program.I.

Example 1: In this example, we implement Optimization

Program I for two cases, a network of 5 agents with Cmax =

14, and a network of 9 agents with Cmax = 20. Figure 1,

shows the optimal graphs in both cases. The eigenvalue

distribution of the Laplacian matrices of the optimal mirror

graphs are shown in Tables I and II. As can be seen in Table I,

for the first network, n = 5, all eigenvalues of the Laplacian

of the optimal mirror graph, except the smallest one which

has to be 0, are equal to 6.2500. Furthermore, by solving

Optimization Program I for larger Cmax, we realize that

increasing the maximum allowable communication cost does

not change the optimal solution. This means that this com-

munication topology provides the best possible performance

that one could possibly achieve for the average-consensus

algorithm in terms of the convergence speed. On the other

hand, note that the optimal graph has only 10 links. This

means that adding any number of communication links to the

network will not have any effect on the convergence speed

of the average-consensus protocol.

In the second network, it can be seen in Figure 1 that the

optimal graph has only 18 links although Cmax was set to

20. This is due to the fact that we are restricting the feasible

set to the case of strongly-balanced graphs for which the

in-valency of each node must be equal to its out-valency.

TABLE I: Eigenvalues of the Laplacian of the optimal mirror graph for
the first network in Example 1.

λ1(L̂) λ2(L̂) λ3(L̂) λ4(L̂) λ5(L̂)
0.0000 6.2500 6.2500 6.2500 6.2500

TABLE II: Eigenvalues of the Laplacian of the optimal mirror graph for
the second network in Example 1.

λ1(L̂) λ2(L̂) λ3(L̂) λ4(L̂) λ5(L̂)
0.0000 4.0672 4.0672 4.0672 4.0672

λ6(L̂) λ7(L̂) λ8(L̂) λ9(L̂)
5.6734 5.6734 8.6922 8.6922

Example 2: In this example, we design the cheapest (in

the sense of communication cost) network for a network

of 7 agents for different values of λmin
2 which is a user

defined parameter that determines the minimum required

convergence speed of the protocol. Optimization Program

II is solved for all cases. Figure 2 shows the optimal graphs

for four values of λmin
2 , 2.5, 4, 4.75, 5. As can be seen in

Figure 2, the communication cost of the optimal network

is 12, 14, 18 and 21 for these four cases, respectively.

The eigenvalue distribution of the Laplacian matrices of the

optimal mirror graphs for different values of λmin
2 is shown

in Table III. Figure 3 shows the communication cost of the

optimal network for different values of λmin
2 . This plot can be

very useful in designing network topologies. It can be seen

in Figure 3 that improving the network topology for a faster

consensus is very costly in terms of communication cost

when λmin
2 = 4.5. In fact, changing λmin

2 = 4.5 to λmin
2 = 5

increases the communication cost by 50%. However, the

network topology can be improved from λmin
2 = 3 to

λmin
2 = 4.5 without increasing the communication cost of

the network.
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Fig. 2: λ2(L̂) ≥ 2.5 (top, left), λ2(L̂) ≥ 4 (top, right), λ2(L̂) ≥ 4.75
(bottom, left), λ2(L̂) ≥ 5 (bottom, right), corresponding to Example 2,
obtained by solving Program.II.

VI. CONCLUSION

After generalizing some results proven for undirected

graphs to the case of directed graphs, the problem of design-

ing a network with optimal communication topology for effi-

cient average-consensus protocol was considered. We posed

the problem in two different ways. One approach was to find

the topology which results in the fastest possible average-

consensus while the communication cost, i.e. the number

of communication links, is less than a given value and the

network tolerates communications time delays of smaller

than a given bound. In the second approach, under the same

conditions, a minimum convergence speed is desired and

the design problem is posed as finding the communication

topology with the lowest communication cost that provides

the desired speed performance. We formulated both design

problems as a mixed integer semidefinite program.

The problem was solved for the case of directed graphs

and the case of undirected graphs can be considered as a

special class. Moreover, in applications where an undirected

communication topology is desired, the convergence speed of

the protocol can be improved by considering non-symmetric

weights on the communication links, i.e. an undirected graph

with a non-symmetric adjacency matrix.
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