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Abstract— This article develops a model of Air Traffic Flow
using an Eulerian description with hyperbolic partial differ-
ential equations. Existence and uniqueness (well-posedness) of
a solution to the system of partial differential equations on
a network is established. Subsequently, an optimal control
problem is studied with the junction coefficients as control
variables. We use a continuous adjoint approach and we
implement it on a network with 16 links and 5 junctions,
demonstrating the computational efficiency of this method.

I. INTRODUCTION

The projected continued growth of air traffic in the next

decades, and in particular the expected development of air

transportation in the Middle East and Asia has increased the

congestion of airspaces, as well as the complexity of the

task assigned to Air Traffic Controllers across the globe. For

example, the 20 million yearly passengers currently using air

transportation in India are expected to become 90 million

by the year 2010; the two main Indian airports of Delhi

and Mumbai are already operating at twice their capacity

causing considerable delays and strain on local Air Traffic

Controllers. This forecast has led to the development of

decision support tools to model, simulate and optimize air

traffic with the objective of helping Air Traffic Controllers

in their daily tasks.

Air Traffic Control (ATC) is operated at the sector level,

where a sector is a small portion of the airspace controlled by

a single human Air Traffic Controller. Traffic Flow Manage-
ment (TFM) typically deals with traffic at the Center level,

i.e. 10 to 20 sectors. TFM problems include maintaining

the aircraft count in each sector below a legal threshold in

order to ease the human ATC workload, as well as to ensure

the safety of the flights [1]. This task is quite cumbersome;

furthermore, extensive traffic forecast simulations (including

all airborne aircraft) are computationally too expensive to

include systematic investigations of traffic patterns that lead

to sector overload. As a result, a new class of traffic flow

models has emerged from recent studies: Eulerian models,

which are control volume based. This is in contrast to

Lagrangian models, which are trajectory-based and take into

account all aircraft trajectories. Unlike Lagrangian models

which focus on the history of a given material element

therefore using the position vector of the material element

and time as variables, the Eulerian models provides a picture
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Fig. 1. A junction with m incoming links (1 � i � m) and n outgoing links
(m+1 � j � m+n)

of the spatial distribution of the flow in function of position

in space and time.

Eulerian models have two main advantages over La-

grangian models. (i) They are computationally tractable,

and their computational complexity does not depend on the

number of aircraft, but only on the size of the physical

problem of interest. (ii) Their control theoretic structure

enables the use of standard methodologies to analyse them.

The field of Eulerian models for the NAS has been

pioneered by the article of Menon et al. [2]. Adjoint

based techniques were subsequently developed for a fully

continuous [3] NAS model (i.e. using partial differential

equations), which has then been further used for modeling

behavior of single agents (airlines) in the NAS [4], [5]. In

order to alleviate the problems due to network splits (this

problem will be explained in detail later in this article and

affects all previous models), a delay system model based

on network flow techniques (inspired by the work [6]) was

finally proposed [7] and successfully implemented.

The Eulerian viewpoint will be used throughout this

article. We will start by establishing the existence and

uniqueness of a solution to the partial differential equations

modelling air traffic on a network. Then we will solve an

optimal control problem using a continuous adjoint method

on a network that includes the arrival airspace at Oakland

International Airport (OAK). We wish to make it clear that

this article is fundamentally different from the earlier work

[3] as the existence and uniqueness on a general network are

proved in this article, the adjoint method that we develop uses

new mathematical techniques and the control variables are

different.

II. A MODEL OF AIR TRAFFIC NETWORKS

We will now present an Eulerian model of air traffic flow.

We describe the flow streams as a continuum and attempt to

study their evolution.

We divide the airspace into line elements on which we

model the density of aircraft. These line elements are called
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paths and in practice often coincide with jetways. We rep-

resent a link on a path as a segment [0,L] and we denote

by u(x, t) the number of aircraft between distances 0 and

x at time t. In particular, u(0, t) = 0 and u(L, t) is the total

number of aircraft in the path modeled by [0,L] at time t. We

make the additional assumption of a steady velocity profile

v(x) > 0 which depicts the mean velocity of aircraft flow at

position x and time t. Applying the conservation of mass to

a control volume comprised between positions x and x + h,

and letting h tend to 0, one easily finds the following relation

between the spatial and temporal derivatives of u(x, t):

⎧⎨
⎩

∂u(x,t)
∂ t + v(x) ∂u(x,t)

∂x = q(t) (x, t) ∈ (0,L)× (0,T ]
u(x,0) = u0(x) x ∈ [0,L]
u(0, t) = 0 t ∈ [0,T ]

where q(t) represents the inflow at the entrance of the link

(x = 0) or in terms of the density q(t) = ρ(0, t)v(0).
We can define the density of aircraft as the weak derivative

of u(x, t) with respect to x: ρ(x, t) = ∂u(x,t)
∂x . The aircraft

density is a solution of the partial differential equation:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ρ(x,t)
∂ t + v(x) ∂ρ(x,t))

∂x
+v′(x)ρ(x, t) = 0 (x, t) ∈ (0,L)× (0,T ]
ρ(x,0) = ρ0(x) x ∈ [0,L]
ρ(0, t) = q(t)

v(0) t ∈ [0,T ]

This is a linear advection equation with positive velocity v(x)
and a source term: v′(x)ρ(x, t). Clearly, these two partial

differential equations are equivalent and model the same

physical phenomenon. We will use the latter in this article

as it enables us to impose constraints in terms of aircraft

density.

We now consider a junction with m incoming links num-

bered from 1 to m and n outgoing links numbered from m+1

to m + n; each link k is represented by an interval [0,Lk]
(Figure 1). One can see that any network is composed of

a number of such junctions. We define an allocation matrix

M = (mi j(t)) for 1 � i � m, m+1 � j � m+n where 0 �
mi j(t) � 1 denotes the proportion of aircraft from incoming

link i going to the outgoing link j; we should also have

∑m+n
j=m+1 mi j(t) = 1 for 1 � i � m. The system of partial

differential equations on the network can be written as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρk(x,t)
∂ t + vk(x)

∂ρk(x,t))
∂x

+v′k(x)ρk(x, t) = 0 1 � k � m+n
(x, t) ∈ (0,Lk)× (0,T ]

ρk(x,0) = ρ0,k(x) x ∈ [0,Lk]
ρi(0, t) = qi(t)

vi(0) 1 � i � m
t ∈ [0,T ]

ρ j(0, t) = ∑m
i=1 mi j(t)ρi(Li,t)vi(Li)

v j(0,t) m+1 � j � m+n
t ∈ [0,T ]

We will now show that on such a network, the preceding

system of partial differential equations admits a unique

solution hence that the problem is well-posed.

First we consider the case of a single link [0,L]. Since the

velocity is always positive, a boundary condition shall be set

on the left (x = 0) but not on the right (x = L). Using classical

partial differential equations techniques, more precisely the

theory of characteristics to compute the solution and prove

the existence and energy methods for the uniqueness, it can

be shown that the advection equation will have a unique

solution on this interval (see for example [8] or [3] for

a proof). On a network, this ensures the existence and

uniqueness of a solution on the incoming links. For the

outgoing links, we need to impose a boundary condition on

the left, that is immediately after the junction. This is done

using the coefficients of the allocation matrix. Indeed for the

j-th outgoing link, the density at the origin will be related to

the densities at the right extremity of the incoming links by:

ρ j(0, t) =
∑m

i=1 mi j(t)ρi(Li, t)vi(Li)
v j(0, t)

Then the advection equation on each outgoing link has a

unique solution, thus defining uniquely a density on both

the incoming and outgoing links. Therefore, the problem for

any network, which is made of several such junctions, is

well-posed.

III. CONTINUOUS ADJOINT APPROACH FOR THE

OPTIMAL CONTROL OF AIR TRAFFIC NETWORKS

In this section, we study an optimal control problem for

a network. We try to mitigate congestion on the network

by acting on the coefficients of the allocation matrix. To

evaluate the gradient of the objective function, we will use

a continuous adjoint system. We consider the following

problem:

Minimise the functional H(mi j) =
m+n

∑
k=1

∫ T

0

∫ Lk

0
ρk(x, t)dxdt

with the additional constraints

0 � mi j(t) � 1 for 1 � i � m, m+1 � j � m+n

m+n

∑
j=m+1

mi j(t) = 1 for 1 � i � m

ρk(x, t) � ρmax
k for 1 � k � m+n

Minimising this functional is equivalent to maximising the

outflow of the network; indeed the value of H represents

the total amount of time aircraft spend in the network. The

control variables are the coefficients of the allocation matrix

(mi j(t)). This is in fact a case of boundary control since as

explained earlier, the density at the left of an outgoing link

is directly related to the value of (mi j(t)) by:

ρ j(0, t) =
∑m

i=1 mi j(t)ρi(Li, t)vi(Li)
v j(0, t)

, m+1 � j � m+n, t ∈ [0,T ]

The first two constraints are used to make sure that the

model is realistic; all the aircraft have to leave an incoming
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link and enter an outgoing link. The third constraint

implements a maximum density not to be exceeded for each

link.

Adjoint methods were first introduced in the late 1980s as

a tool for shape optimisation, in particular aircraft design (see

[9], [10]). The direct approach which consists in calculating

the gradient of the cost functional using finite differences

is only possible when the number of control variables is

small. In most real life problems, this number is too large

making this approach unfeasible. A more efficient way of

calculating gradients is to use the adjoint equations and

boundary conditions, which can be solved using numerical

schemes to yield the gradient of the cost functions.

We illustrate this technique on a simple optimisation

problem:

min
x

F(x,u(x)) subject to the constraint C(x,u(x)) = 0

where u = (u1, . . . ,un), C = (C1, . . . ,Cn), x = (x1, . . . ,xm).
For a small variation of the control variable x → x + ε x̄,

the variation in u will be:

u(x) → u(x+ ε x̄) = u(x)+ ε ū+O(ε2)

A linearisation of the constraint equation gives a relation

between x̄ and ū:

∂C
∂x

x̄+
∂C
∂u

ū = 0

The variation of F is:

F(x+ ε x̄,u(x+ ε x̄))−F(x,u(x)) = δF

= ε
(

x̄T ∂F
∂x

+ ūT ∂F
∂u

)
+O(ε2)

which would suggest using x̄T ∂F
∂x + ūT ∂F

∂u as a descent

direction. However this quantity depends on ū, the first

variation of u which can only be computed after setting a

direction of change x̄ for the control variable x. To avoid

these complications, we try to eliminate ū from the variation

of the functional F .

Noticing that ūT ∂C
∂u

T
+ x̄T ∂C

∂x
T

= 0, we multiply this quan-

tity by an arbitrary vector λ = (λ1, . . . ,λn) and we add

this term (of value zero) to the variation of the functional.

Then choosing a specific value for λ , we will eliminate the

dependence in ū:

δF = ε
(

x̄T ∂F
∂x

+ ūT ∂F
∂u

)
+ε

(
ūT ∂C

∂u

T

+ x̄T ∂C
∂x

T
)

λ +O(ε2)

which can be written as:

δF = ε x̄T

(
∂F
∂x

+
∂C
∂x

T

λ

)
+ε ūT

(
∂F
∂u

T

+
∂C
∂u

T

λ

)
+O(ε2)

Fig. 2. Network used for the optimisation containing 16 links and 5
junctions. This is an idealised figure representing the portion of the airspace
considered, and links are not drawn to scale. The links are numbered
according to the jetways they represent. We will focus on the junction circled
in red.

If we choose λ such that ∂F
∂u

T
+ ∂C

∂u
T

λ=0, the variation of

the functional becomes:

δF = ε x̄T

(
∂F
∂x

+
∂C
∂x

T

λ

)
+O(ε2)

with the additional constraint:

∂F
∂u

T

+
∂C
∂u

T

λ = 0

which is called the adjoint equation. The variation of the

functional no longer depends explicitly on ū, and a descent

direction is:

x̄ = −
(

∂F
∂x

+
∂C
∂x

T

λ

)

Using these results, the adjoint method can be written as

the following algorithm:

1 For a fixed x, solve C(x,u(x)) = 0 for u(x).
2 For a fixed x and u(x), solve ∂C

∂u
T

λ + ∂F
∂u = 0 for λ .

3 Update x as x ← x−δ
(

∂F
∂x + ∂C

∂x
T
)

λ .

We will use this technique to determine the gradient of

the functional H. We consider links of length Lk, which

in our example will be equal to the actual length of the

corresponding links of the Air Traffic network considered,

and we assume the network is empty at time t = 0. We bring

the reader’s attention to the fact that the following results

can be applied to any functional

H(mi j) =
m+n

∑
k=1

∫ T

0

∫ Lk

0
hk(ρk(x, t))dxdt

for any functions hk(x).

In order to compute the gradient of H we form the adjoint

system corresponding to the partial differential equations

developed at the end of Section II:
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Fig. 3. Map of the enroute high altitude jetways used for this study.

∂uk(x, t)
∂ t

+ v′k(x)uk(x, t)+ vk(x)
∂uk(x, t)

∂x
= 0, 1 � k � m+n

with terminal and boundary conditions:

uk(x,T ) = 0, 1 � k � m+n

ui(0, t) =
qi(t)
vi(0)

, 1 � i � m

u j(0, t) =
∑m

i=1 mi j(t)
dui(L,t)

dt vi(L)
v j(0)

+
∑m

i=1 δmi j(t)ui(L, t)vi(L)
v j(0)

m+1 � j � m+n

We construct the Lagrangian:

L(mi j) =
m+n

∑
k=1

∫ T

0

∫ L

0
ρk(x, t)

+
m+n

∑
k=1

∫ T

0

∫ L

0
uk(x, t)

(
∂ρk(x, t)

∂ t
+

∂ (vk(x)ρk(x, t))
∂x

)
dxdt

We then linearise the Lagrangian to find the gradient of L
with respect to the control variables mi j:

∂L(mi j)
∂mi j

=
m+n

∑
k=1

∫ T

0

∫ L

0
(−∂uk(x, t)

∂ t

−(v′k(x)ρk(x, t)− vk(x)
∂ρk(x, t)

∂x
)

∂uk(x, t)
∂x

)
∂ρk(x, t)

∂mi j
dxdt

+
m+n

∑
k=1

∫ L

0

∂ρk(x,T )
∂mi j

(uk(x,T )
∂ρk(x,T )

∂mi j

−uk(x,0)
∂ρk(x,0)

∂mi j
)dx

+
m+n

∑
k=1

∫ T

0
(uk(L, t)(v′k(x)ρk(L, t)

−vk(x)
∂ρk(L, t)

∂x
)

∂ρk(L, t)
∂mi j

−uk(0, t)
∂ρk(0, t)

∂mi j
)dt

After using the boundary conditions to simplify the lin-

earised expression, we can now compute the gradient of H:

∂H(mi j)
∂mi j

=
∫ T

0
(ui(L, t)vi(L)(u j(0, t)−

m+n

∑
k=m+1,k �= j

uk(0, t))

−
m+n

∑
j=m+1

du j(0, t)
dt

δmi j(t))dt

At each iteration, we solve the original and adjoint equa-

tions using an upwind finite difference scheme and modify

the descent direction accordingly.

Several methods are available to solve optimisation prob-

lems. The Newton method when applied to a function f with

a starting point x0 approximates f near x0 by its second order

Taylor expansion:

f (x0 + ε x̄0) = f (x0)+ ε x̄T
0 ∇ f +

1

2
ε2x̄T

0 ∇2 f x̄0

where ∇ f and ∇2 f denote the gradient and Hessian of f .

Assuming the Hessian is definite positive, the corresponding

descent direction would be −(∇2(x))−1∇ f (x); therefore this

method requires computing the Hessian at each step which

involves evaluating O(n2) partial derivatives. While one

might be tempted to use a finite difference approximation of

the Hessian, this would require at least n evaluations of the

gradient ∇ f . Additionally, the Hessian may not be positive

definite.

These weaknesses of the Newton method led to the

development of quasi-Newton methods in which the Hessian

is approximated by a symmetric positive definite matrix.

Indeed, the Taylor expansion for the gradient of f :

∇ f (x0 + ε x̄0) = ∇ f (x0)+ ε∇2 f (x̄0)x̄0 +O(ε2)

gives a possible approximation of the Hessian of f in

the direction x̄0 without computing approximations of the

individual elements of the Hessian:

x̄T
0 ∇2 f x̄0 ≈ x̄T

0 (∇ f (x0 + ε x̄0)−∇ f (x0))

Therefore, we can replace the Hessian in the Newton

method algorithm by any symmetric matrices verifying:

Mk+1(xk+1 − xk) = ∇ f (xk+1)−∇ f (xk)

In several dimensions, this relation does not determine

uniquely the matrices Mk and several choices are possible.

One possibility is given by the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) method:

Mk+1 = Mk − Mk(xk+1 − xk)(Mkxk+1 − xk)T

(xk+1 − xk)T Mk(xk+1 − xk)

+
(∇ f (xk+1)−∇ f (xk))(∇ f (xk+1)−∇ f (xk))T

(∇ f (xk+1)−∇ f (xk))T (xk+1 − xk)
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The BFGS method can be implemented according to the

algorithm:

1 For a starting point x0 and tolerance ε
compute the inverse of the Hessian approximation M0

2 k ← 0

3 while ‖∇ f (xk)‖ > ε
compute search direction: −Mk∇ f (xk)

4 xk+1 = xk −Mk∇ f (xk)
5 Compute Mk+1 using the above formula
6 k ← k +1

7 end(while)

While the BFGS method is efficient for small scale prob-

lems, it becomes quite impractical when dealing with large

scale systems for which the cost of manipulating the Hessian

approximations is too elevated. In this case, limited memory

methods are preferred, which store a few vectors rather than

a fully dense matrix thereby reducing storage requirements.

One such method is the limited memory BFGS known as

L-BFGS-B based on the BFGS formula. Rather than storing

the main Hessian approximation Mk, one can use a small

number of vector pairs {xk+1 − xk,∇ f (xk+1)−∇ f (xk)} that

are used in computing Mk. The product Mk∇ f (xk) can be

obtained by computing a number of inner products and vector

summations involving ∇ f (xk) and the preceding vector pairs.

After each iteration, the oldest vector pair is replaced by the

new one.

We chose to use this method on the optimisation problem

at hand through the L-BFGS-B routines developed by Byrd,

Lu, Nocedal and Zhu in [11], [12], [13]. Several other

software for nonlinear optimisation are available, such as

MINOS or NPSOL.

The following algorithm was implemented and converged

to a minimum of the optimisation program:

1 Solve the partial differential equations for the
density on each link.

2 Solve the adjoint equations.
3 Evaluate the gradient of the cost functional.
4 Use this result in an optimisation method

(L-BFGS-B in the present case).
5 Return to step 1.

We now implement this optimisation method on a network

represented in Figure 2; the links are taken from the high

altitude enroute jetways between Salt Lake City and Oakland

International Airport. We use jetways J56, J58-80, J84, J148,

J156, J158, J198, and J199. The input is constructed using

ETMS data to keep a sense of realism.

We use the methods developed in the article for congestion

mitigation, more precisely, we try to keep the aircraft flow

on the three outgoing links of the junction circled in red

in Figure 2 under a threshold value of 20 aircraft per hour.

We represent the flow on the outgoing and incoming links

with and without a control strategy being applied in Figure

4. We note that without control the flows are often above

Fig. 4. Evolution of the aircraft flow on the 6 links of the junction
considered. The outgoing links are represented on the left and the incoming
links on the right. The horizontal axis is the location and the vertical axis is
the flow in aircraft per hour. Air Traffic flow goes from right to left. The top
subfigure shows the situation without aircraft being reallocated while the
bottom one depicts the results when a control strategy is implemented. As
can be seen the threshold (represented by the red dotted line) is exceeded
in the first case while the flow is always below the limit with reallocation
of aircraft.

Fig. 5. Evolution of the cost function with respect to the number of
iterations; a large number of iterations are required to approach the
minimum value.
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the desirable threshold while with the application of the

optimal control strategy, we manage to maintain the flows

under the limit at all times. The method used here consists

in finding an optimal routing through the coefficients of

the allocation matrix that will prevent sudden jumps in

aircraft density. These coefficients are automatically adjusted

in order to allow the best repartition of aircraft on the

outgoing links; if a given link is becoming congested, the

allocation coefficient that regulates the inflow on this link

will decrease and correspondingly the other coefficients at

this junction will increase, thus redirecting the aircraft on

less congested links. Thus, we are able to maintain a regular

spacing between the aircraft even if sudden increases in

aircraft density are registered on the incoming links. In the

absence of control, these jumps in aircraft density are not

mitigated and eventually raise the aircraft flows above the

limit. Another implementation was presented in the article

[14] where the objective was to control the aircraft flow on

the final approach link to Oakland International Airport using

a given input into the network. In that case, a discrete adjoint

method was used and similarly, the flow without control

exceeded the threshold while when the optimal allocation

strategy was in place, the aircraft flow was maintained under

the desired limit at all times.

The variations of the cost function after each iteration are

represented in Figure 5. The functional H is not convex and

as a consequence a large number of iterations are needed

before approaching the minimum. The steep drops in the

cost function are due to the use of logarithmic barriers to

enforce the constraints.

IV. CONCLUSION

A continuous flow Eulerian model for Air Traffic Net-

works was analysed, and the existence and uniqueness of a

solution to the system of hyperbolic partial differential equa-

tions established. The second part of the article dealt with an

optimal control problem for which the control variables were

the junction coefficients. A continuous adjoint approach was

applied to a network with 16 links and 5 junctions and a

numerical simulation implemented. A comparison was made

between the aircraft flows on the three outgoing links of a

given junction with and without a control strategy. In the

absence of control, the aircraft flows frequently increased

over the required limit while they were maintained below

this limit at all times when the routing strategy was applied.

The results obtained show the efficiency of this method in

alleviating airspace congestion through the optimal routing

of flights. Future endeavours would include a comparison

with the discrete adjoint method established in [14] for this

problem, and last but not least, developing a new model of

Air Traffic flows that would allow optimal control problems

similar to the one studied in this article to be numerically

solvable at the scale of an entire center (a center containing

on average 200 to 300 links) in a short amount of time.
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