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Abstract— We consider the problem of scheduling arrival air traffic
in the vicinity of large airports. The problem is posed as a single queue
problem, from which aircraft can be pulled out and put “on hold”,
in holding loops, each loop taking a fixed amount of time to traverse,
before they join the queue again. The difficulty of deriving efficient
solutions to this problem (which is currently controlled non optimally
by human Air Traffic Controllers) is the minimization of “idle time”
generated by traversing an integer number of loops. We formulate this
problem as a single machine scheduling problem where we are given
N jobs characterized by release times and deadlines. We are given a
processing time and and a holding time. In a feasible schedule, each
job is assigned a starting time within a constraint set corresponding
to an integer number of processing times and holding times. Our goal
is to find feasible schedules to alternatively minimize two objectives:
the sum of the starting times of all jobs and the makespan (the time at
which all jobs are finished). We present approximation algorithms which
can alternatively approximate two objectives with factors of 5 and 3,
respectively. Our main algorithm consists of solving two subproblems,
one of which is solved optimally using dynamic programming, while the
other is solved approximately using linear programming relaxation and
rounding.

I. INTRODUCTION

Motivation. The almost uninterrupted growth of air

traffic in the US in the last decades has motivated

the design of a semi-automated Air Traffic Control
(ATC) system to help Controllers managing the in-

creasing complexity of traffic flow in the vicinity of

major airports. However, some of the crucial tasks of

ATC are still performed manually: conflict avoidance,

and some aspects of scheduling. In the current ATC

system, scheduling arriving flights incoming into busy

airports is facilitated by CTAS [11], a software used to

compute optimal descent routes for aircraft arriving

to destination airports. The combinatorial aspect of

incoming traffic optimization in the direct vicinity of

airports (i.e. up to 200 nautical miles before landing)

has not been addressed in a global manner to this day:

the solutions implemented by Controllers result from

combinations of procedures established and validated
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over time with heuristics [5]. The ATC problem

which the controllers currently solve manually is

the following: each aircraft has an earliest possible

arrival time, and a delayed arrival time (if it achieves

minor path deviations on the way). The aircraft is

allowed to arrive in the interval between these two

times. Ideally, these intervals are such that there

exists an assignment which guarantees the delivery

of one aircraft at most every ∆ time units at the

airport. ∆ is sometimes called the metering time.

This problem is referred to as the single interval
problem. If such an assignment is not possible, ATC

decides to put certain aircraft “on hold” in order to

meet the ∆ metering constraint of the airport. The

choice of aircraft which are put on hold today is not

optimized, but obeys experienced-based rules (called

playbooks). This problem can be formulated as a

single machine scheduling problem as follows. We

are given N jobs denoted by J1, J2, · · · , JN . Each

job Jj is characterized by two nonnegative numbers

rj and dj . We are given two nonnegative numbers ∆
(processing time), and T (holding time). In a feasible

schedule (i) each job Jj is assigned a starting time

τj , such that rj + l ·T ≤ τj ≤ dj + l ·T −∆, for some

integer l ≥ 0 which represents the number of holding

patterns used; (ii) if j �= j′ then |τj − τj′ | ≥ ∆.

Our goal is to find a feasible schedule such that one

of the two following objectives are minimized: the

makespan Cmax = max1≤j≤n τj + ∆ (the time at

which all jobs are finished) and the sum of the starting

times of all jobs
∑n

j=1 τj .

Related Results. Combinatorial optimization is

emerging as a powerful tool for real time systems

applications, in particular for Air Traffic Control (see

for example [14], [13]). In [5], the authors posed

the general aircraft scheduling problem with holding

time. They used an integer programming approach

to solve the problem, using CPLEX, and showed the

limit of this approach (the computational time grows

exponentially with the number of aircraft, making this

approach unattractive for online implementations). In

[6], the authors present a polynomial time algorithm

for solving the single interval case: the objective is to

maximize δ := mini<j |τj − τj′ | without putting the

aircraft on hold. In the general case, δ < ∆, which
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forces ATC to put aircraft on hold: the present al-

gorithm has been developed to address this situation.

In [4], we present an implementation of this algorithm

for the particular Dallas DFW airport, in a NASA-

developed software called TCSim.

Our problem generalizes those studied by Dantzig

and Fulkerson [9], and Gertsbakh and Stern [12]

where each job’s starting time can only be in a single

interval [rj , dj − ∆]. To find a feasible schedule for

the given jobs, one can schedule them on parallel

identical machines. Here, the goal is to minimize

the number of machines needed. One can easily see

that this problem is equivalent to our problem when

the objective is to minimize the number of periods

we have to use and when all dj ∈ [0, T ]. The

problem can be solved to optimality if rj = dj − ∆
for for j. If rj < dj − ∆, the complexity of the

problem is still open. This work can also be related

to the job interval selection problem (JISP) [8], [10].

If the maximum number of intervals required for

feasibility of our problem is known a priori, our

problem might be reduced to the JISP. However,

the number of intervals of the corresponding JISP

is O(L) where L = O(maxj dj − minj rj), which

is an undesirable feature. Given the similarity of our

problem with the JISP, we believe that our problem

is NP-complete, and are currently working on the

proof. Another closely related scheduling problem

is the one studied by Carlier [7] and Baptiste [3]

where the job’s starting time is restricted to a single

interval [rj , dj −∆] and the objective is to maximize

the number of jobs which can be scheduled. This

problem can be solved in polynomial time [3]. Their

results imply that for our problem, if all the jobs can

be scheduled in the first available interval for each

aircraft, the problem is polynomial time solvable.

Notice that when the processing time for each job is

the same, minimizing the sum of starting times of jobs

is equivalent to minimizing the sum of completion

times of jobs. Designing approximation algorithms

for various scheduling problems with the objective

minimizing the sum of completion times has received

considerable attention during the last decades, see

for example an excellent survey by Chen, Potts and

Woeginger [2].1

Our Results and Techniques. Our first attempt at

this problem is based on a simple observation that

the starting time of the jobs can be restricted to a

polynomial bounded set. Therefore, the problem can

1However, because of the structure of our problem, it seems that
none of the algorithms can be applied to give an approximation for
our problem. In most of the models, only release times of jobs are
present, but here, each job has a deadline, although the job can
be scheduled in a prescribed later range if this deadline cannot be
met.

be formulated as a constrained assignment problem:

assign the jobs to those possible starting points, with

the constraints that at most one job can be assigned

to any interval of length ∆. As a standard approach,

we solve the linear programming (LP) relaxation of

this constrained assignment problem. The key in our

algorithm is the rounding of the LP solution x, which

is fractional in general, into an integer solution for

the original problem. Here we observe that there is

a way to modify the fractional solution x and obtain

another fractional solution x̄ (which still satisfies the

constraints of the LP) such that the corresponding

costs (both makespan and the sum of the starting

times) are increased by a factor of at most 3 if

all rj ≥ T . Then we construct an instance of the

(unconstrained) assignment problem such that x̄ is a

feasible solution of the assignment problem and any

integer solution of the new instance will automatically

satisfy the constraints of the original problem. Using

the fact that we can find an integer solution for

the (unconstrained) assignment in polynomial time,

whose cost is not worse than that of x̄, we find

an approximation solution for the original problem

with guaranteed error factor if all rj ≥ T . However,

bounding the ratio of the algorithm if there are jobs

with rj less than T requires an initial step to schedule

these jobs.

Motivated by the results of Baptiste [3] that for the

single interval case, there exists a polynomial time

algorithm that can schedule the maximum number

of jobs, we treat the jobs with rj < T separately.

We thus develop a greedy approach: we schedule

the maximum number of jobs in the first period

[0, T ], and then apply the above mentioned LP-based

algorithm to the rest of the jobs. Two issues need

to be addressed. (i) After we schedule the jobs in

the first interval, how do we bound the optimal cost

of the rest of the jobs? Indeed, when we apply the

LP-based algorithm to the rest of the jobs, we are

comparing their cost in this schedule with their cost

if they were scheduled by the optimum solution. Our

proof provides a bound on the ratio of these two costs.

(ii) Scheduling the maximum number of jobs in the

first period does not necessarily imply that the sum of

starting times of this set of jobs is minimized. Here,

we generalize the algorithm and result of Baptiste [3]

and apply it to the set of aircraft which can arrive

before T : we derive a polynomial-time algorithm for

the single interval problem, which schedules (feasi-

bly) the maximum number of jobs; furthermore, we

show that among all feasible schedules that schedule

the same number of jobs, the algorithm produces a

solution that has the minimum sum of starting times.

The algorithm is based on dynamic programming.
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Combining the above algorithms, we obtain an ap-

proximation algorithm which approximates the opti-

mal solution of minimizing the sum of starting times

with factor 5. For makespan, we modify both parts of

the algorithm and obtain a ratio 3.

This article is organized as follows. Section II de-

scribes the optimization program formulation of the

physical problem. Section II-A shows a trivial 2

approximation algorithm for the case in which T ≤
∆, which works when the objective function is sum

of arrival times or makespan. Section II-B provides a

high level description of the approximation algorithm

for the sum of arrival times in the case T > ∆. The

part of the algorithm which schedules the first set of

jobs before T (dynamic programming) is explained

in detail in Section III. Section IV presents the part

of the algorithm which schedules the rest of the jobs

after T (LP rounding) and explains how to modify

the algorithm to provide a 3-approximation algorithm

for makespan.

II. HIGH-LEVEL DESCRIPTION

We call ai the earliest arrival time of aircraft i, and

bi the latest arrival time of aircraft i without holding

pattern. In the absence of holding pattern, the problem

of scheduling aircraft i in [ai, bi] for all i ≤ N such

that two aircraft are separated by at least ∆ is equiv-

alent to scheduling N jobs on a single machine, with

processing times ∆, release times ri = ai, deadlines

di = bi +∆. We call T the time of a holding pattern,

and let [aj , bj ]+TN :=
⋃∞

k=0[aj +kT, bj +kT ]. The

problem can be formulated as follows:

min:
∑

j∈{1,··· ,N} τj

s.t.: τj ∈ [aj , bj ] + TN ∀j∈ {1, · · · , N}
|τj − τ ′

j | ≥ ∆ ∀(j, j′) ∈ {1, · · · , N}2,

such that j �= j′
(1)

A. A Trivial Algorithm for the T ≤ ∆ Case

Theorem 1. The first come first served algorithm
below is a 2 approximation algorithm for makespan
and sum of arrival times.

1) Sort the aircraft by earliest possible time of arrival:

without loss of generality, we can write a1 ≤ a2 ≤
· · · ≤ aN−1 ≤ aN .

2) Construct the following schedule:

τ1 = a1

τj = min{x | x ∈ [τj−1 + ∆,+∞)∩
([aj , bj ] + TN)} ∀j∈ {2, · · · , N}

Proof of Theorem 1: Sum of arrival times: Divide the
N aircraft into K subsets: S1 = {N1, · · · , N2 − 1}, S2 =

{N2, · · · , N3 − 1}, · · · , SK = {NK , · · · , N}, where

N1 = 1
Nk = min{p|aNk−1 + (p − Nk−1)(∆ + T ) < ap}

For all k∈ {1, · · · , K − 1}, for all j ∈ Sk , the algorithm provides
τj ≤ aNk

+ (j − Nk)(∆ + T ). Indeed, if it were not true, we
would have a j ∈ Sk such that τj > aNk

+ (j − Nk)(∆ + T ),
which would contradict the definition of Nk+1. We call c the cost
of this algorithm:

c ≤ ∑K
k=1

∑
j∈Sk

τj

≤ ∑K
k=1

∑
j∈Sk

(
aNk

+ (j − Nk)(∆ + T )
)

≤ ∑K
k=1

∑
j∈Sk

(aNk
+(j−Nk)(∆+T ))(aNk

+(j−Nk)∆)

aNk
+(j−Nk)∆

Since we know that OPT ≥ ∑K
k=1

∑
j∈Sk

(aNk
+ (j −Nk)∆),

we get the following approximation ratio β for the sum of arrival
times:

β = maxK
k=1 maxj∈Sk

{
aNk

+(j−Nk)(∆+T )

aNk
+(j−Nk)∆

}

= maxK
k=1 maxj∈Sk

{
1 +

(j−Nk)T
aNk

+(j−Nk)∆

}

≤ 1 + T
∆

≤ 2

(2)

Makespan: We know that τN ≤ aNK
+(N−NK)(∆+T ). Since

the jobs have been ordered such that a1 ≤ a2 ≤ · · · ≤ aN−1 ≤
aN , the arrival time τ∗

N of aircraft N in the optimum schedule has
to satisfy τ∗

N ≥ aNK
+(N −NK)∆. The approximation ratio α

for makespan thus satisfies:

α ≤ aNK
+(N−NK)(∆+T )+∆

aNK
+(N−NK)∆+∆

≤ 1 +
(N−NK)T

aNK
+(N−NK)∆+∆

≤ 2

�
B. The Case T > ∆

Before presenting our algorithm, we introduce some

notation and initial steps.

(i) Sort the aircraft by earliest possible time of arrival:

without loss of generality, we can write a1 ≤ a2 ≤
· · · ≤ aN−1 ≤ aN .

(ii) Divide the N aircraft into K + 1 subsets:

S0 = {N0, · · · , N1 − 1},

S1 = {N1, · · · , N2 − 1}, · · ·
SK = {NK , · · · , N}
where N0 = 1, and Nk is given by

Nk = min{p|aNk−1 + (p − Nk−1)(∆ + T ) < ap}.

(iii) Let σk =
{⋃

l∈Sk
{al + ∆N + TN}} ∩

[aNk
, aNk

+(Nk −Nk−1)(∆+T )] for each k. Index

the elements ti of Σ =
⋃K

k=1 σk by i∈ {1, · · · , |Σ|}
in increasing order.

Step (i) is used for notational convenience. Step (ii)
enables us to construct a grid of polynomial size: it

separates aircraft into groups for which we have at

least a feasible solution (which we can construct using

the trivial algorithm of Section II-A). In step (iii),
the K groups are gridded (σk) and assembled in a

single grid Σ of size O
(

T
∆N2

)
. The set

⋃
l∈Sk

{al +
∆N + TN} is the set of earliest arrival times plus

an integer number of T (holding patterns) and/or ∆
(aircraft separation). It follows from Proposition 1 that

2762

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 4, 2009 at 12:21 from IEEE Xplore.  Restrictions apply.



Main Algorithm

1) If a1 < T , call F the set of i such that [ai, bi] ∩ {t|t ≤ T} is not empty. Call [ai, b
′
i] = [ai, bi] ∩ {t|t ≤ T}. Schedule the

maximum number of aircraft of F according to the algorithm of Section III. If this number is equal to N , stop.
2) Solve the relaxed LP (3) for the remaining aircraft. If a1 ≥ T , solve the relaxed LP (3) directly.

Minimize:
∑

j

∑
i∈G(j) tixij

Subject to:
∑

i∈G(j) xij = 1 ∀j∈ {1, · · · , N}
xij ≥ 0 ∀j∈ {1, · · · , N}, ∀i ∈ G(j)∑

i′∈I(i)

∑
j xi′j ≤ 1 ∀i∈ {1, · · · , |Σ|}

(3)

where ∀i∈ {1, · · · , |Σ|}, I(i) = {i′ ≤ |Σ| | ti′ ≥ ti ∧ ti′ − ti < ∆}, and ∀j∈ {1, · · · , N}, G(j) = Σ ∩ {[aj , bj ] + TN}.
3) Modify the xij using the procedure xij = TransformLPsol(xij).
4) Compute the integer solution x̃ij = Matching(xij) of the matching problem constructed by the Matching procedure. The result

is a feasible schedule for the remaining aircraft.

the optimum schedule lies on this grid (the optimum

is sometimes referred to as left shifted).

In the Main algorithm shown next page, I(i) repre-

sents the set of aircraft for which the arrival times are

less than ∆ time units after ti, and thus not allowed

if ti is chosen by an integer solution of (3). G(j)
represents the set of i such that ti is available for

aircraft j. We call n the number of aircraft scheduled

before T by the algorithm of Step 1 of the Main
Algorithm, and m = N − n the number of aircraft

scheduled after T . We use the following notation:

C(n) cost of scheduling n jobs before T with
Step 1 of the Main Algorithm
(cost means sum of arrival times)

C(LP, m) min. cost of relaxed LP (3) for the m jobs
C(IP, m) min. cost of a feasible integer solution to

(3) for the m jobs
C(x, m) cost of the fractional solution (for the

m jobs) xij of (3) produced by Step 3
of the Main algorithm

C(x̃, m) cost of the fractional solution (for the
m jobs) x̃ij produced by Step 4 of the
Main Algorithm

OPT(m) cost of the m jobs when they are
scheduled by the optimal solution OPT

OPT(n, first) cost of the first n jobs when they are
scheduled by OPT

OPT(m, last) cost of the last m jobs when they are
scheduled by OPT

Lemma 1. Consider the |F | aircraft of F (Step 1
of the Main Algorithm). Step 1 schedules the largest
number of them in

⋃|F |
i=1[ai, b

′
i], with minimum sum of

arrival times. The complexity of Step 1 is O(|F |9).
Lemma 2. The sum of starting times for the m = N−
n other aircraft scheduled after T is bounded above
by 5 · OPT(m, last). The complexity of scheduling
these m aircraft is dominated by solving the LP (3).

Theorem 2. The Main Algorithm has a 5-
approximation ratio for the sum of arrival times. Its
complexity is O(N9), and is dominated by Step 1 of
the Main Algorithm.

Proof of Theorem 2: Let cn be the cost of the n jobs
scheduled before T by Step 1. Let cm be the cost of the m

jobs scheduled after T by Step 4. By Lemma 1, we have cn ≤
OPT(n, first). By Lemma 2, we have cm ≤ 5 ·OPT(m, last). Now
combining the two bounds for cn and cm, we get:

cn + cm ≤ OPT(n, first) + 5 · OPT(m, last)
≤ 5 · OPT

The complexity of Step 1 is O(|F |9). The worst case is when

|F | = N (all jobs can be scheduled in F ), therefore the com-

plexity of Step 1 is O(N9). The complexity of the other steps

is determined by solving the linear program (3), so the overall

complexity is O(N9). �

III. DYNAMIC PROGRAMMING ALGORITHM FOR

STEP 1 OF THE MAIN ALGORITHM

We call |F | = f ∈ N. We are given a set of time

intervals [ri, di], i ∈ {1, · · · , f}, and assume that

the di have been sorted in chronological order: d1 ≤
d2 ≤ · · · ≤ df . A schedule {ti}i∈{1,··· ,l} is said to be

admissible if for all i in {1, · · · , l}, ti ≥ ri (jobs start

after their release time), ti+∆ ≤ di (jobs are finished

before their deadline), and ∀i �= j, |ti−tj | ≥ ∆ (jobs

are separated by ∆). For l given (l ≤ f ), we want to

compute min
∑l

p=1 tip
, the minimum of the sum of

starting times of l of the f jobs.

Definition 1.
• We call Θ = {t | ∃i ∈ {1, · · · , f}, ∃l ∈
{0, · · · , f}, such that t = ri + l∆}.
• We call Uk(s, e) = {Ji | i ≤ k and s ≤ ri < e}
the set of jobs of index less than k released between
s and e.
• For a given l, we call Ck(s, e, l) the minimum
sum of starting times among the set of admissible
schedules containing l jobs in Uk(s, e), which satisfy

(i) for all i, ti ≥ s + ∆
(job i starts after s + ∆)

(ii) for all i, ti + ∆ ≤ e
(job i is processed before e)

(iii) for all i, ti ∈ Θ
(starting times are in Θ).

We pose Ck(s, e, l) = +∞ for all l > k.

Proposition 1. There exists an optimal schedule such
that ti ∈ Θ for any i scheduled.
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The proof is an extension of Carlier [7], Baptiste [3].

Proposition 2. Ck(s, e, l) can be computed recur-
sively by the following formula:

Ck(s, e, l) = Ck−1(s, e, l)

if rk /∈ [s, e) for the kth job Jk, and

Ck(s, e, l) = min
{

Ck−1(s, e, l) ,

min (Ck−1(s,s′,l−q)+s′+Ck−1(s
′,e,q−1))

s′ ∈ Θ
1 ≤ q ≤ l − 1
max(rk, s + ∆) ≤ s′ ≤ min(dk, e) − ∆

}

otherwise.

Proof of Proposition 2: Please see Appendix.

Proof of Lemma 1: The aircraft scheduling problem can
be transformed into a job scheduling problem by letting ri = ai

and di = b′i + ∆, for i ∈ F , as defined in the Main Algorithm.
We call f = |F |. For notational convenience, we can relabel these
jobs from 1 to f . Note that f can range from 1 to N . We can now
apply Proposition 2. For all k, s, e, l, such that

k ≤ f

s ≥ minf
i=1 ri − ∆

e ≤ maxf
i=1 di

l ≤ f

one can compute recursively Ck(s, e, l), and find l0, the largest l

such that Cf (minf
i=1 ri − ∆, maxf

i=1 di, l0) is finite.

k and l range from 1 to f , e and s are on the grid Θ of

Proposition 1, thus they are in a set of size O(f2). The size of

the dynamic program table to build is thus O(f6). In building the

table, we take the minimum over a set of size O(f3), since it is

indexed by s′ ∈ Θ and q∈ {1, · · · , l − 1}. Thus, the total cost of

the algorithm is O(f9). �

IV. LINEAR PROGRAMMING BASED ALGORITHM

FOR STEPS 2-3-4 OF THE MAIN ALGORITHM

This section summarizes steps 2-3-4 of the Main
Algorithm. We first solve the relaxed LP (3). This

LP is a constrained assignment problem: aircraft j are

assigned arrival times ti; the last constraint means that

any integer solution of this problem can only assign

one ti every ∆ (by definition of the interval I(i)). In

the relaxed version, it means that the xij (fractional

assignments) sum to at most 1 over a period of ∆.

The fractional solution x is transformed to another

fractional solution x by the procedure TransformLP-
sol (illustrated in Figure 1). The fractional solution

is decomposed into sets of ti such that ti ∈ [qT, (q +
1)T ), where q ∈ N. Each of these sets is decomposed

into chunks of length ∆. Figure 1 shows one of these

intervals (eight chunks of length ∆, and the last chunk

of length less than ∆). The xij in each of these chunks

is shifted by (2q − 2)T or (2q − 1)T depending on

parity, in order to insert idle time of length ∆ between

the corresponding chunks (see arrows in Figure 1).

Because of the last chunk (interval {i∆9 , · · · , i∆q+1} in

Figure 1), it is necessary to insert a period of idle

time of length at least ∆ after the highest shifted

xij (the black chunk coming from {i∆8 , · · · , i∆9 } in

Figure 1). This is done by adding a full interval

[3qT, (3q + 1)T ) of idle time after 3qT . This is not

optimal, but enables us to construct x systematically.

The result is another fractional solution x which

satisfies (3) and has idle time periods of length ∆
alternating with non idle time periods of length ∆.

This means sets in which x̄ij = 0 for ti ranging in

an interval of length ∆ alternate with sets of the same

length with nonzero x̄ij .

The procedure Matching takes the new fractional

solution x, and constructs a feasible instance of a

weighted assignment problem. An illustration is given

in Figure 2. Every chunk {i∆m, · · · , i∆m+1 − 1} with

nonzero xij is reduced to a single node indexed by

r. Any aircraft j which has one (or more) nonzero

xij with i ∈ {i∆m, · · · , i∆m+1 − 1} is now linked to r
(Figure 2 right). The weight on the corresponding link

is the smallest ti with nonzero xij in {i∆m, · · · , i∆m+1−
1}. For example in Figure 2 right, the weight on

the link r → (j − 1) is t27 because in Figure 2

left, node j − 1 was such that x27, x29 and x35

are nonzero. The corresponding weighted assignment

problem is (4). A fractional feasible solution x̃ is

obtained from x by adding all xij emanating from

the same chunk towards aircraft j. We know that (4)

has an integer optimal, which is therefore less or equal

to our fractional feasible solution. We can now prove

Lemma 2 (notations are defined on page 5).

Proof of Lemma 2: Let us call cm the cost of the m
jobs scheduled after T . For each of these jobs, we compute an
upper bound of the ratio by which the cost is increased by the
procedure TransformLPsol for each nonzero xij . The minimum
cost C(IP, m) of scheduling the m jobs after T is less than the
cost of scheduling these m jobs within OPT and shifting them by
T . Therefore:

C(LP, m) ≤ C(IP, m) ≤ OPT(m) + mT

Let us define Bq as the sum of fractional xij in interval [qT, (q +
1)T ):

Bq =
∑

i:qT≤ti<(q+1)T

∑
j

xij .

Let us call r the largest q such that Bq �= 0. By construction of
the LP (3), we have

r∑
q=1

Bi = m and

r∑
q=1

Bq · qT ≤ C(LP, m)

Let us define C(Bq) as the cost of the fractional LP solution of
(3) corresponding to the interval [qT, (q + 1)T ). As shown in
Figure 1, the amount by which xij is shifted is either (2q − 2)T
or (2q − 1)T , and therefore the increase in cost of the xij in
interval [qT, (q + 1)T ) due to the procedure TransformLPsol is
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Procedure TransformLPsol
Input: fractional solution xij of (3).
Output: xij , another feasible fractional solution of (3).

Perform the following assignment:

• xij = xi′j where ti = ti′ + (2q − 2)T , if ∃q ≥ 0, ∃l ≥ 0, such that l < 	 T
∆

 is even, and ti′ ∈ [qT + l∆, qT + (l + 1)∆) or

such that l = 	 T
∆

 is even, and ti = ti′ + (2q − 2)T for ti′ ∈ [qT + l∆, (q + 1)T ).

• xij = xi′j where ti = ti′ + (2q − 1)T , if ∃q ≥ 0, ∃l ≥ 0, such that l < 	 T
∆

 is odd, and ti′ ∈ [qT + l∆, qT + (l + 1)∆) or

such that l = 	 T
∆

 is odd, and ti = ti′ + (2q − 1)T for ti′ ∈ [qT + l∆, (q + 1)T ).

The two last items correspond to the last (incomplete) chunk of [qT, (q + 1)T ).

x

x

ti1 ti2ti3 ti4ti5ti6 ti7 ti8 ti9 ti10 ti11 ti12 ti13 ti14 ti15 ti16

qT

nonzero xijcorresponding ti

(q + 1)T (3q − 2)T (3q − 1)T 3qT (3q + 1)T

iTq = i∆1 iTq+1 iT3q−2 iT3q−1 iT3q iT3q+1

i∆2

i∆2

i∆3

i∆3

i∆4

i∆4

i∆5

i∆5

i∆6

i∆6

i∆7

i∆7

i∆8 i∆9

(2q − 1)T shift

(2q − 2)T shift

Fig. 1. Illustration of the procedure TransformLPsol. This procedure transforms the feasible fractional solution x = xij of (3) into
another feasible fractional solution x = xij with idle time. Half of the fractional xij in the interval [qT, (q + 1)T ) is shifted to
[(3q−2)T, (3q−1)T ) (shift by (2q−2)T ), and the other half to [(3q−1)T, 3qT ) (shift by (2q−1)T ). The interval [3qT, (3q+1)T )
is empty for now; this is a waste of space, but this enables us to satisfy the constraints of (3) for the part of the fractional solution
between i∆Q (i9 on the figure) and iTq+1.

t27
t29
t35
t42

t58
t78
t89

x27 j−1

x29 j−1
x35 j−1

x78 j−1

x58 j
x78 j

x42 j+2

x89 j+2

t27

t42

t58

t78

t89

iTq

i∆m−1

i∆m

i∆m+1

i∆m+2

i∆m+3

i∆m+4

j − 1j − 1

jj

j + 1j + 1

j + 2j + 2

r

r + 1

node of

matching problem

fractional LP (3) matching problem (4)

arrival times aircraft aircraft

Fig. 2. Illustration of the procedure Matching. This procedure transforms the feasible fractional solution xij into a weighted matching
problem. In the fractional LP solution, only the nonzero xij are represented (solid if they are in the range of the figure, dashed if they
connect aircraft with arrival times outside the figure). On the right plot, the weights are the arrival times from the fractional LP solution:
for example, Θrj−1 = t27.
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Procedure Matching

Input: fractional solution xij of (3).
Output: integer solution of a matching problem solving (3).

1) Construct the following set of Θqj :
q = 1, r = 1
while ∃ti > qT such that ∃j∈ {1, · · · , N} such that xij �= 0

i∆1 = iTq , m = 1

while i such that ti = ti∆m
+ ∆ is less than iTq+1

i∆m+1 = i such that ti = ti∆m
+ ∆, r = r + 1

for j = 1 to N
if ∃i ∈ {i∆m, · · · , i∆m+1 − 1} s.t. xij �= 0

Θrj = min{ti | i∈ {i∆m, · · · , i∆m+1 − 1}, xij �= 0} end if
end for

end while
for j = 1 to N

if ∃i ∈ {i∆m, · · · , iTq+1 − 1} s.t. xij �= 0

r = r + 1, Θrj = min{ti | i∈ {i∆m, · · · , iTq+1 − 1}, xij �= 0} end if
end for
q = q + 1

end while
for all j, call H(j) the set of r for which Θrj has been assigned.

2) Solve for the integral solution x̃ij of the following weighted matching problem:

Minimize:
∑

j

∑
q∈H(j) Θqj x̃qj

Subject to:
∑

q∈H(j) x̃qj = 1 ∀j∈ {1, · · · , N}
0 ≤ x̃qj ≤ 1 ∀j∈ {1, · · · , N}, ∀q ∈ H(j)∑

j x̃qj ≤ 1 ∀q ∈ ⋃N
j=1 H(j)

(4)

at most Bq · (2q− 1)T . Thus, we have the following upper bound
on the cost cm of the m jobs scheduled after T by our algorithm.

C(x, m) ≤ ∑r
q=1 (C(Bq) + Bq · (2q − 1)T )

= C(LP, m) +
∑r

q=1 Bq · (2q − 1)T
≤ OPT(m) + mT +

∑r
q=1 Bq · (2q − 1)T

= OPT(m) + 2
∑r

q=1 qBqT + mT
−∑r

q=1 BqT
= OPT(m) + 2

∑r
q=1 qBqT

≤ OPT(m) + 2C(LP, m)
≤ OPT(m) + 2 (OPT(m) + mT )
≤ 3 · OPT(m) + 2mT
≤ 5 · OPT(m, last)

cm is the optimal solution of the weighted matching problem (4)

obtained by the procedure Matching. We know [1] that there exists

at least one integral solution which achieves cm, which we can find

in polynomial time. Thus, for this solution, cm ≤ C(x, m) �

Theorem 3. The algorithm below is a 3-
approximation algorithm for makespan.

Proof of Theorem 3: If Carlier’s algorithm schedules the

N aircraft before T , it follows from [7] that this schedule provides

the optimum makespan. If n < N , Carlier’s algorithm implies that

it is not possible to schedule N aircraft in [0, T ]. Therefore the

optimum makespan C∗
max satisfies C∗

max > T . Applying Steps

2-3-4 directly provides a feasible solution Cmax. A similar proof

as for Lemma 2 provides the ratio 3 for makespan. �
V. SUMMARY

We formulated the problem of air traffic scheduling

near large airports as a single machine scheduling

problem, which to our best knowledge is new, de-

spite similarities with other known problems. Our

first algorithm minimizes the sum of arrival times

(and therefore the sum of delays). It provides an

approximation ratio 5 for the sum of arrival times,

and for the sum of delays when all aircraft have the

possibility to arrive simultaneously at time zero. The

second algorithm minimizes the makespan, (i.e. the

arrival time of the last aircraft) with approximation

ratio 3.

1) In Step 1, replace the algorithm of section III by

Carlier’s algorithm [7]. If this algorithm schedules N
aircraft, Stop. Else, apply Step 2 directly to the N
aircraft.
2) In step 2, given Cmax, let us replace (3) with the
following feasibility problem:∑

i∈G(j) xij = 1 ∀j∈ {1, · · · , N}
xij ≥ 0 ∀j∈ {1, · · · , N}, ∀i ∈ G(j)∑

i′∈I(i)

∑
j xi′j ≤ 1 ∀i∈ {1, · · · , |Σ|}

(5)

where ∀i∈ {1, · · · , |Σ|}, I(i) = {i′ ≤ |Σ| | ti′ ≥
ti ∧ ti′ − ti < ∆}, and ∀j∈ {1, · · · , N}, G(j) =
Σ ∩ {[aj , bj ] + TN} ∩ [0, Cmax]. If there exists a

fractional solution to the set (5) of constraints with

corresponding Cmax-dependent G(j), it represents

a fractional schedule of makespan less than Cmax,

which provides a lower bound on the makespan of

the original problem. We can compute the smallest

possible Cmax solving (5) to ε using bisection. (In

fact, we can compute it in O(log |Σ|) bisection steps,

since the total number of grid points is |Σ|.)
3,4) Steps 3 and 4 are identical with those in the

Main Algorithm. The complexity of the algorithm is

dominated by the solution of the LPs (5) and (4).
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Appendix: Proof of Proposition 2

Case 1: rk /∈ [s, e)

We have Jk /∈ Uk(s, e) by definition of Uk(s, e). We know that
Uk(s, e) ⊆ Uk−1(s, e)+{Jk}. Since Jk /∈ Uk(s, e), this implies
Uk(s, e) ⊆ Uk−1(s, e). The reverse inclusion Uk−1(s, e) ⊆
Uk(s, e) holds by definition of Uk(s, e), and we therefore have
Uk(s, e) = Uk−1(s, e). By definition of Ck(s, e, l), this implies
that Ck(s, e, l) = Ck−1(s, e, l).

Case 2: rk ∈ [s, e)

We have Jk ∈ Uk(s, e). We call

C′ = min

{
Ck−1(s, e, l) ,

min (Ck−1(s,s′,l−q)+s′+Ck−1(s′,e,q−1))
s′ ∈ Θ
1 ≤ q ≤ l − 1
max(rk, s + ∆) ≤ s′ ≤ min(dk, e) − ∆

}

We prove that C′ = Ck(s, e, l) in two steps.

Step 1: C′ ≥ Ck(s, e, l).

• If C′ = Ck−1(s, e, l), the inclusion Uk−1(s, e) ⊆ Uk(s, e)
implies C′ = Ck−1(s, e, l) ≥ Ck(s, e, l)

• If C′ = Ck−1(s, s′, l− q) + s′ + Ck−1(s′, e, q − 1) for some
s′ and q achieving the min, we separate the jobs into three subsets:
X , the l−q first jobs; job Jk; and Y , the set of q−1 jobs after s′.
We first show that X ∪ Y ∪ {Jk} ⊆ Uk(s, e).

1) ∀j ∈ X , Jj ∈ Uk−1(s, s′) ⊆ Uk(s, s′) ⊆ Uk(s, e).
2) ∀j ∈ Y , Jj ∈ Uk−1(s′, e) ⊆ Uk(s′, e) ⊆ Uk(s, e).
3) Jk ∈ Uk(s, e) by assumption.

Therefore, X ∪ Y ∪ {Jk} ⊆ Uk(s, e), and |X| + |Y | + 1 =
l − 1 + q − 1 + 1 = l. From this, we see that X ∪ Y ∪ {Jk} is a
particular element of the set among which the min is taken in the
definition of C′ above. Therefore, C′ ≥ Ck(s, e, l) which is the
min among all elements of this set.

Step 2: C′ ≤ Ck(s, e, l)

Call B the instantiation of the l jobs which realizes Ck(s, e, l).

• If Jk /∈ B, then B ⊆ Uk(s, e)\{Jk} ⊆ Uk−1(s, e), and
|B| = l. B is also an instantiation of Ck−1(s, e, l), there-
fore Ck(s, e, l) ≥ Ck−1(s, e, l). By definition of C′, we have
Ck−1(s, e, l) ≥ C′. Therefore Ck(s, e, l) ≥ C′.

• If Jk ∈ B, we first show that ∀j ∈ Y , rj > s′, where s′ is the
starting time of job Jk .

Let j be in Y. Assume rj ≤ s′. We know that rk ≤ s′
by construction. We know that j ≤ k, because Jj ∈ Y (and
Y ⊆ B ⊆ Uk(s, e); in Uk(s, e), all jobs have index less than k).
By assumption, the deadlines have been indexed chronologically,
therefore, dj ≤ dk . Call z the completion time of job j. We have
dj ≥ z. Summarizing all information above, this means that both
Jj and Jk can start at s′ and finish at z. Therefore switching Jj

and Jk is possible and will not change the sum of the starting times
of all jobs. The conclusion of this paragraph is that any job of Y
with release time less than s′ can be put in X without change of
cost. We can therefore assume that all jobs Jj of Y have a starting
time rj > s′

Let Jj be in Y . Because Jj ∈ Uk(s, e), j ≤ k. Since
Jj ∈ Y , Jj is scheduled after Jk by the previous paragraph.
Therefore, j ≤ k − 1. This implies Jj ∈ Uk−1(s′, e). Therefore
Y ⊆ Uk−1(s′, e). Let us call C(Y ) the cost of scheduling all
jobs of Y (C(Y ) is the sum of their starting times). C(Y ) ≥
Ck−1(s′, e, |Y |) by definition of C·(, ·, ·, ·). For X , similarly,
Jj ∈ X ⊆ B ⊆ Uk(s, e) implies rj ≥ s.

Also, rj < s′ (because rj ≤ s′ − ∆). j �= k because Jj ∈ X ,
therefore j ≤ k − 1. From this we deduce X ⊆ Uk−1(s, s′).
This implies C(X) ≥ Ck−1(s, s′, |X|) where C(X) is the cost
of scheduling the jobs of X .

C(X) ≥ Ck−1(s, s′, |X|)
C(Y ) ≥ Ck−1(s′, e, |Y |)

Therefore, writing explicitly the contributions of the different terms
in B, we have:

Ck(s, e, l) = C(X) + s′ + C(Y )
≥ Ck−1(s, s′, |X|) + s′ + Ck−1(s′, e, |Y |)
≥ C′

The last inequality results from the min in the definition of C ′.�
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