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Abstract— This article proposes a new method for sensor
fault detection, applicable to systems modeled by conservation
laws. The state of the system is modeled by a Hamilton-Jacobi
equation, in which the Hamiltonian is uncertain. Using a Lax-
Hopf formula, we show that any local measurement of the state
of the system restricts the allowed set of possible values of other
local measurements. We derive these constraints explicitly for
arbitrary Hamilton-Jacobi equations. We apply this framework
to sensor fault detection, and pose the problem finding the
minimal possible sensor error (minimal error certificate) as
a set of convex programs. We illustrate the performance of
the resulting algorithms for a highway traffic flow monitoring
sensor network in the San-Francisco Bay Area.

I. INTRODUCTION

In control theory and information theory, the problems
of system identification [14] and estimation [3] are closely
linked. System identification uses data to infer the value of
parameters in the model of a system. Estimation takes a given
mathematical model for which the model parameters have
been obtained (for instance using system identification) and
computes an estimate of the state of the system, from the
model. In artificial intelligence, these two steps are respec-
tively referred to as learning and inference [12]. In control
theory, traditional estimates are optimal in the least square
sense, for example the Kalman filter recursively provides
a least square minimizer of the error functional between
measurements and estimates. Extensions of the Kalman filter
have led to various generalizations of these minimizers.

When numerical values for model parameters are collected
(as in system identification), they usually form a distribution.
A possible approach to deal with distributions, is to maxi-
mize the log likelihood of the model, and to select the result
as a constitutive model, subsequently used to do inference
or estimation.

An alternative is to account for the uncertainty in the
model by creating a family of models (within a class),
represented by the distribution. The present article follows
a similar methodology for a class of nonlinear distributed
parameter systems. More specifically, the article follows the
framework and assumptions summarized below.
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Learning set: We assume the availability of a learning
set. This set encompasses prior physical realizations of the
system, known to be physically acceptable.

Family of model parameters: The model describing the
physical system of interest is described by a distributed
parameter (in the present case, a function). There exists a
family of distributed model parameters which characterize
the model (for example a parametric family of functions, or
the subset of a functional space).

Certificate: We assume the availability of a certificate, i.e.
a procedure to label a model parameter as acceptable or not,
based on the learning set.

Measurements: Measurements of the state of the system
are given, which we seek to evaluate.

An example of this framework is given in section II for
the specific case of highway traffic sensors, for illustrative
purposes.

Since a single model parameter does not fully capture the
underlying physics of the system, it is in general impossible
to exactly reconstruct the state of the system using the model
and partial measurements of the state. Equivalently, a partial
measurement of the state will not completely constraint the
value of another partial measurement. In other words, the
value of a given measurement only partially restricts the
possible values which other measurements could have to be
compatible. This is due to the fact that the system of interest
is not described by a single model, but by a family of models.
Since we want to detect faults in sensors measuring the state
of the system, we want to check if the measurements are
physically compatible with the family of models and the
learning set certificate or not. The natural question to ask
is thus:

Given some exact measurements, given the family of
models and the learning set certificate, can we find a set
of necessary conditions that these measurements have to
satisfy to be compatible? As a corollary, can we compute the
distance (minimal error) between noisy measurements and
the set of measurements which satisfy the family of models
and the learning set certificate?

The contributions of the article are as follows. It solves
the problem outlined above for a specific class of nonlinear
partial differential equations (PDEs) constitutive models: the
Hamilton-Jacobi (HJ) PDE. It makes the assumptions that
the Hamiltonians of the HJ PDEs are not known but belong
to a family. It derives necessary conditions that the state of
the system must obey, assuming that the model parameters
describing its evolution belong to the learning set. These
necessary conditions yield consistency conditions for the
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sensor measurements, which can be used directly to detect
any inconsistency in a set of exact sensor measurements.

The proposed method leads to a practical application. It
poses the problem of finding the minimal possible error of
the sensors in the L1, L2 and L∞ sense as a set of convex
programs, and demonstrates the applicability of the method
to sensor network fault detection. The applicability of this
framework is demonstrated with the example of a network
of traffic sensors, by computing a certificate assessing if
the minimal possible error of the sensors for a given set
of measurements is within the sensors certified range or not.

The rest of the article is organized as follows. Section II
presents the properties of the state considered in this article,
as well as the HJ PDE which models it. Section III derives
compatibility conditions between local state measurements,
provided that these measurements are exact. We apply these
results in section IV to the minimal error certificate problem,
in which we find the minimal possible error associated with
the measurements of a pair of sensors.

II. SOLUTIONS TO SCALAR HAMILTON-JACOBI
EQUATIONS

A. First order scalar hyperbolic conservation laws with
concave Hamiltonians

First order scalar hyperbolic conservation laws [11] are
partial differential equations derived from the conservation
principle of a physical quantity P (for instance mass, electric
charge or energy). If �(⋅, ⋅) represents the density of P , and
q(⋅, ⋅) represents the flow of P , the conservation of P at
location x ∈ X and for a time t ∈ [0, tmax] is expressed by:

∂�(t, x)

∂t
+
∂q(t, x)

∂x
= 0 (1)

In the remainder of the article, we assume that the spatial
domain X is defined by X := [�, �], where � and � represent
the upstream and downstream boundaries of the domain. In
numerous application fields such as thermodynamics, fluid
mechanics or traffic flow theory, there exists a constitutive
equation between the density �(⋅, ⋅) and the flow q(⋅, ⋅) of the
form q(⋅, ⋅) =  (�(⋅, ⋅)). This relation leads to the following
form for equation (1):

∂�(t, x)

∂t
+
∂ (�(t, x))

∂x
= 0 (2)

In conservation laws, the function  (⋅) is known as flux
function. In the context of Hamilton-Jacobi equations inves-
tigated later, it is called Hamiltonian. In the remainder of
the article, we assume that the Hamiltonian  (⋅) is an upper
semicontinuous concave function. Numerous fields make the
assumption of a single valued  (⋅) function to capture the
dynamics of the system, whereas experimental data strongly
suggests that a family of such  (⋅) would be required to
fully capture the state of the system.

B. Hamilton-Jacobi equations with concave Hamiltonians

Instead of solving equation (2) directly, we consider an
equivalent formulation obtained using the following standard
variable change:

Definition 2.1: [Integral formulation of the conserva-
tion law]. Given a density function �(⋅, ⋅) and a flow function
q(⋅, ⋅), we define the integral form M(⋅, ⋅) as:

⎧⎨⎩
M(0, 0) := 0
M(t2, x2)−M(t1, x1) :=

∫ x2

x1
−�(t1, x)dx

+
∫ t2
t1
q(t, x2)dt, ∀(t1, x1, t2, x2) ∈ ([0, tmax]×X)2

(3)
In the remainder of this article, M(⋅, ⋅) is denoted as state

of our problem. The state evolution equation is the follow-
ing Hamilton-Jacobi (HJ) PDE , obtained by integration of
equation (2):

∂M(t, x)

∂t
−  

(
−∂M(t, x)

∂x

)
= 0 (4)

In the illustrative applications presented later, the state
represents the cumulative number of vehicles function [16],
[9], [10], [5], which is a possible way of describing the flow
of vehicles on a highway section.

C. State estimation

For clarity, we define two different functions which rep-
resent the true state of the system, and its estimate, obtained
using a model as well as partial state information (estimated
state).

Definition 2.2: [True state and estimated state] The true
state M(⋅, ⋅) represents the state of the system, which could
be obtained if measured by errorless sensors covering the
entire space-time domain [0, tmax]×X .
The estimated state of the system represents the value of
the state inferred from partial knowledge of the true state
(denoted as value condition) on a subset D of [0, tmax]×X ,
and the state evolution equation (4):{

M(⋅, ⋅) solves equation (4) on [0, tmax]×X∖D
M(t, x) = M(t, x), ∀(t, x) ∈ D (5)

Note that D can be any subset of the space time domain
[0, tmax] × X . The set D is not necessarily included in
the boundary [6] of [0, tmax] × X , nor of empty inte-
rior [8]. The traditional Cauchy problem is defined by D :=
{{0} ×X}

∪
{[0, tmax]× {�}}

∪
{[0, tmax]× {�}}.

The modeled state of the system depends upon the choice
of the model parameters, i.e. the choice of the Hamiltonian
 (⋅) in the present case. Because of modeling errors, the true
state is in general not identical to the estimated state, as can
be seen in Figure 1, in the context of traffic. As can be seen
in the figure, the solution M(⋅, ⋅) of (4) with the proper value
of M(⋅, ⋅) as initial and boundary conditions does not lead
to M(⋅, ⋅) everywhere in the domain. This is the motivation
of the present article.
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Fig. 1. Illustration of the difference between true state and
modeled state. We consider here the traffic flow on a highway section near
Emeryville, CA. The state of traffic is represented by a scalar function of
time and space known as cumulative number of vehicles function [16], [9],
[10]. The upper left figure represents the true state of the system (obtained
in the present case using video cameras monitoring the entire domain
of interest [5], [7]). The upper right figure represents the modeled state,
reconstructed from the knowledge of the initial, upstream and downstream
conditions (illustrated in Figure 3). The difference (in absolute value)
between the true state and the modeled state is shown in the lower figure
as a colormap. The dark areas represent areas where the true state is close
to the modeled state, while the true state is far from the modeled state in
pale areas.

The fact that the state M(⋅, ⋅) does not solve (4) exactly
can also be inferred from Figure 2. Indeed, as can be seen
from the figure, there is no single valued relation between
−∂M(t,x)

∂x and ∂M(t,x)
∂t , due to the set valued nature of the

past realizations.

Fig. 2. Illustration of an experimental flow-density diagram  (⋅). This
plot represents the set of possible values of flow and density obtained from
an experimental data set [4]. The horizontal axis represents the density,
whereas the vertical axis represents the flow. Each point in this plot has
coordinates (− ∂M(t,x)

∂x
,
∂M(t,x)

∂t
) for some (t, x) ∈ [0, tmax]×X . Note

that M(t, x) is a solution (in the weak sense) of (4) if and only if almost all
points of coordinates (− ∂M(t,x)

∂x
,
∂M(t,x)

∂t
) (for all (t, x) ∈ [0, tmax]×X)

belong to the graph of some concave function  , which obviously cannot
be the case in the present situation.

Example 2.3: [Learning set, model parameters, cer-
tificate and measurements in the context of traf-
fic flow sensing] In the context of traffic flow sens-
ing, the learning set is the set of points P :={

(−∂M(t,x)
∂x , ∂M(t,x)

∂t ), ∀(t, x) ∈ [0, tmax]×X
}

. The con-
vex hull of P is denoted O. The certificate is a concave and

lower semicontinuous function  certificate(⋅) such that O ⊂
ℋyp( certificate). Any concave and lower semicontinuous
function  (⋅) such that  (⋅) ≤  certificate(⋅) pointwise is an
acceptable model parameter. These definitions are illustrated
in Figure 2.

In the present application of interest, the measurements
come from flow sensors, which measure ∂M(t,�)

∂t and ∂M(t,�)
∂t

for all t ∈ [0, tmax].
Fact 2.4: [Physical properties of the state] The true state

M(⋅, ⋅) is assumed to satisfy the following properties:
1) M(⋅, ⋅) is Lipschitz-continuous, and thus differentiable

almost everywhere.
2) The space and time derivatives of M(t, x) are bounded

and continuous almost everywhere.
The two above properties hold whenever the flow ∂M(t,x)

∂t

and density −∂M(t,x)
∂x associated with the conservation equa-

tion (1) are continuous almost everywhere and bounded.

D. Value conditions

Solving equation (4) requires the knowledge of value
conditions (for instance initial, boundary and/or internal con-
ditions [5], [6]) to characterize the existence and uniqueness
of the solution.

Definition 2.5: [Value condition] Let the true state
M(⋅, ⋅) be given. A value condition c(⋅, ⋅) is a function of
[0, tmax]×X satisfying the following condition:

c(t, x) = M(t, x), ∀(t, x) ∈ Dom(c) (6)

where Dom(c) is a subset of [0, tmax]×X .
A value condition c(⋅, ⋅) represents partial knowledge

of the state M(⋅, ⋅) on some domain Dom(c). Figure 3
illustrates the domains of definition of some value conditions.

Fig. 3. Illustration of the domains of the possible value conditions
used to construct the solution to the HJ PDE (4). The initial condition
ℳ0 is defined on {0} × X . The upstream and downstream boundary
conditions are defined on [0, tmax]×{�} and [0, tmax]×{�} respectively.
Internal conditions are defined on an empty interior domain included in
]0,+∞[×]�, �[.

Other types of value conditions exist, such as the hybrid
conditions [8]. In this article, we focus on upstream and
downstream boundary conditions, though the proposed al-
gorithm can be extended to the case of internal conditions.

Definition 2.6: [Boundary condition functions] The up-
stream and downstream boundary conditions, denoted by

(⋅, ⋅) and �(⋅, ⋅) are value conditions (6) defined on
[0, tmax]× {�} and [0, tmax]× {�} respectively.
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E. Properties of the solutions to the HJ PDE problem

In order to define the properties of the solution, we first
need to define a convex transform of the Hamiltonian  (⋅)
as follows.

Definition 2.7: [Convex transform] For a concave func-
tion  (⋅) defined as previously, the convex transform '∗ is
given by:

'∗(u) := sup
p∈Dom( )

[p ⋅ u+  (p)] (7)

In the remainder of this article, we use the results of [2],
[7], [5], [6] to characterize the solution to equation (4) by a
Lax-Hopf formula. The Lax-Hopf formula is derived in [2],
[5], using results from viability and control theory.

Proposition 2.8: [Lax-Hopf formula] The solution
Mc(⋅, ⋅) associated with a lower semicontinuous value
condition c(⋅, ⋅) can be computed using the following
Lax-Hopf formula:

Mc(t, x) = inf
(u,T )∈Dom('∗)×ℝ+

(c(t− T, x+ Tu) + T'∗(u))

(8)
The Lax-Hopf formula provides an explicit solution of

the problem defined in [2]. Equation (8) also implies a very
important inf-morphism property [2], [5], [6], [7], which is a
key property used to build the algorithms used in this article.
This property was initially derived using capture basins [2].

Proposition 2.9: [Inf-morphism property] Let us as-
sume that the value condition c is the minimum of a finite
number of functions ci, namely:

∀(t, x) ∈ [0, tmax]×X, c(t, x) := min
i∈I

ci(t, x) (9)

With the above assumption, the solution Mc defined by (8)
can be written as:

∀(t, x) ∈ [0, tmax]×X, Mc(t, x) = min
i∈I

Mci(t, x) (10)

Proof — The definition (9) of c(⋅, ⋅) and the Lax-Hopf
formula (8) imply:

Mc(t, x) = inf
(u,T )∈Dom('∗)×ℝ+

(
min
i∈I

(ci(t− T, x+ Tu)) + T'∗(u)

)
(11)

Equation (10) is obtained by reversing the order of the
infimums in equation (11). ■

The inf-morphism property is a practical tool to integrate
new value conditions for computing the modeled state
M(⋅, ⋅). In addition, we can use it to break a complex
problem involving multiple value conditions into a set of
more tractable subproblems [5], [6], [8].

In the next section, we use (8) to derive a set of compat-
ibility conditions that have to be satisfied by the value con-
ditions (obtained through measurements). These conditions
will enable us to construct convex optimization programs for
sensor error analysis in section IV.

III. CONSTRAINTS OF THE MODEL ON THE VALUE
CONDITIONS

A. Upper estimate of the Hamiltonian

We first need to define a particular class of Hamiltonians
satisfying the following property.

Proposition 3.1: [Learning set certificate]. For any given
state M satisfying the set of properties outlined in sec-
tion 2.4, there exists a concave and upper semicontinuous
function  certificate(⋅) such that:

∀(t, x) ∈ [0, tmax]×X,
∂M(t, x)

∂t
≤  certificate

(
−
∂M(t, x)

∂x

)
(12)

Proof — The proof of this proposition is immediate.
Indeed, we can always choose for  certificate(⋅) any constant
function greater than the upper bound of ∂M(t,x)

∂t . ■
Note that the choice of a function  certificate(⋅) com-

patible with (12) is not unique. An example of choice of
 certificate(⋅) satisfying (12) is illustrated in Figure 2.

B. Compatibility conditions

We now show that, for any finite set of value conditions,
there exist compatibility conditions between solutions and
value conditions.

Proposition 3.2: [Compatibility conditions] Let us de-
fine a set of value condition functions ci(⋅, ⋅) as in (6), an up-
per semicontinuous and concave Hamiltonian  certificate(⋅)
satisfying (12), and its associated convex transform '∗ as
in (7). We also define a set of solutions Mci(⋅, ⋅) associated
with ci(⋅, ⋅) as in (8). Given these assumptions, the following
set of conditions must be satisfied:

Mcj (t, x) ≥ ci(t, x), ∀(t, x) ∈ Dom(ci),
∀(t, x) ∈ Dom(ci),∀i ∈ [1, n], ∀j ∈ [1, n]

(13)

Proof — Let us consider i ∈ [1, n], j ∈ [1, n] and (t, x) ∈
Dom(ci).

We first express Mci(t, x) in terms of ci(⋅, ⋅) using the
Lax-Hopf formula (8):

Mci (t, x) = inf
(u,T )∈Dom('∗)×ℝ+

(ci(t− T, x+ Tu) + T'∗(u)) (14)

In the above formula, '∗ is the convex transform of the
Hamiltonian  certificate(⋅), which satisfies equation (7).

Since the value condition ci(⋅, ⋅) satisfies (6) and (t, x) ∈
Dom(ci), we have that M(t, x) = ci(t, x). Hence, we can
write the inequality Mcj (t, x) ≥ ci(t, x) as:

inf
(T,u)∈[0,tmax]×Dom('∗)

(
M(t− T, x+ Tu) + T'∗(u)

)
≥M(t, x)

(15)

Since the derivatives of M(⋅, ⋅) are continuous almost
everywhere and bounded, we can write:

M(t− T, x+ Tu) + T'∗(u)−M(t, x) =∫ T
0

(
−∂M(t−�,x+�u)

∂t + u∂M(t−�,x+�u)
∂x + '∗(u)

)
d�

(16)
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Since  certificate(⋅) is concave and upper semicontinuous,
it is equal to its Legendre-Fenchel biconjugate. Hence, we
have [5], [8] that  certificate(�) = inf

u∈Dom('∗)
(−�u+ '∗(u)),

and thus that  certificate(�) ≤ −�u + '∗(u) for all u ∈
Dom('∗). This result enables us to derive the following
inequality from equation (16):

M(t− T, x+ Tu) + T'∗(u)−M(t, x) ≥∫ T
0

(
− ∂M(t−�,x+�u)

∂t +  certificate

(
−∂M(t−�,x+�u)

∂x

))
d�

(17)
Since  certificate(⋅) satisfies (12), we have that

−∂M(t−�,x+�u)
∂t +  certificate

(
−∂M(t−�,x+�u)

∂x

)
≥ 0

for all (�, u) ∈ [0, T ] × Dom('∗). Since T > 0, the right
hand side of equation (17) is nonnegative, which implies
the following inequality:

∀(T, u) ∈ ℝ+ ×Dom('∗),
M(t− T, x+ Tu) + T'∗(u)−M(t, x) ≥ 0

(18)

Equation (15) is obtained from equation (18) by taking the
infimum over (T, u) ∈ ℝ+×Dom('∗), which completes the
proof. ■

We now present a practical application of the above
compatibility conditions: the computation of the minimal
error certificate for a pair of sensors.

IV. APPLICATION: LINEAR/QUADRATIC PROGRAMMING
FORMULATION OF THE MINIMAL ERROR CERTIFICATE

PROBLEM

A. Problem definition

Motivated by applications of sensor networks for highway
traffic monitoring systems, we consider a stretch of highway
located between the upstream and downstream boundaries
called � and � respectively, as illustrated in Figure 4. The
state of the system is described here by the cumulative
number of vehicles function, which is formally defined in [9],
[10], [15], [16]. Two fixed sensors located at � and � measure
the flow, i.e. the time derivative of the state, as illustrated in
Figure 4

Fig. 4. Illustration of the sensor layout. The traffic flow data is obtained
from two fixed sensors (arrows) located at the upstream and downstream
boundaries of the domain, and measuring the time derivative of the state
for all times t ∈ [0, tmax].

Our objective is to compute the minimal error certificate
on the observed data, which can be thought of as follows.
The vector of observed data smeas can be viewed as a point
in a multidimensional space S. The set C of consistent data,
that is the set of data points which obey (13) can also be
viewed as a subset of S. The exact data s, which is unknown
to us, is an element of C by Proposition 3.2. The distance d
between smeas and the set C is defined by:

d := inf
s∈C
∣s− smeas∣

Since s ∈ C, the error e := ∣s−smeas∣ satisfies e ≥ d. Note
that the error is unknown since the exact data s is unknown,
but the smallest possible value of e is d. This property is
illustrated in Figure 5.

Fig. 5. Illustration of the minimal error problem. This figure illustrates
the problem of interest in the space of data points S. The set of physically
possible elements of S (i.e. the set of points which satisfy 3.2) is denoted
as C (arrow). The real value of the data is a point s ∈ C, and is usually
unknown. The minimal error of the sensors generating a data point s is
measured by the distance d between s and C. If this distance is greater than
the maximal admissible error for a pair of working sensors (dashed line),
then the point d is necessarily created by a faulty pair of sensors. Note
however that the converse does not imply that the sensors are not faulty.

The maximal level of error em of a working sensor is
usually established by the manufacturer as part of the sensor
design. A distance d greater than em implies an error e
greater than em, which indicates the failure of at least one
of the sensors (wrong data, bad hypothesis on the sensor
placement,. . . ). However, note that a distance d lower than
this threshold does not indicate that the sensors are working
correctly. Indeed, the error e can be greater than em even if
d is lower than em.

The following section details the measurements and error
norms.

B. Sensor measurements

In the remainder of this article, we assume that the
upstream and downstream sensors generate the following
measurements:

Definition 4.1: [Sensor measurements] Let N be the set
of integers [0, nmax] such that (nmax + 1)T = tmax, where
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tmax is a finite time horizon. The discrete time measurements
of the upstream and downstream sensors are defined by:{

qmeas
in (n), ∀n ∈ N upstream sensor flow measurements
qmeas
out (n), ∀n ∈ N downstream sensor flow measurements (19)

The exact values of the parameters are denoted by:{
qin(n), ∀n ∈ N true upstream flow value
qout(n), ∀n ∈ N true downstream flow value (20)

They are not known in practice.
The difference between sensor measurements and exact

values is determined by the sensor error, which is usually
expressed using some norm, for instance in the L1, L2, or
L∞ sense. These norms are defined for qin (the case qout

follows similarly) as:

eL1
:=

n∑
i=0

∣∣∣∣qin(i)− qmeas
in (i)

qmeas
in (i)

∣∣∣∣
eL2

:=
n∑
i=0

(
qin(i)− qmeas

in (i)

qmeas
in (i)

)2

eL∞ := max
i∈N

∣∣∣∣qin(i)− qmeas
in (i)

qmeas
in (i)

∣∣∣∣
(21)

Using the slack variables e(⋅) and f , we can also express
equation (21) as:

eL1
= min

(
n∑
i=0

e(i)

)

s.t.

{
e(i) ≥ qin(i)−qmeas

in (i)
qmeas
in (i) , ∀i ∈ N

and e(i) ≥ − qin(i)−qmeas
in (i)

qmeas
in (i) , ∀i ∈ N

(22)

eL2 = min

(
n∑
i=0

e(i)

)
s.t. e(i) ≥ (

qin(i)−qmeas
in (i)

qmeas
in (i) )2, ∀i ∈ N

(23)

eL∞ = min f

s.t.

{
f ≥ qin(i)−qmeas

in (i)
qmeas
in (i) , ∀i ∈ N

and f ≥ − qin(i)−qmeas
in (i)

qmeas
in (i) , ∀i ∈ N

(24)

C. Decision variables

The vector of decision variables used later in the convex
programs is defined as follows.

Definition 4.2: [Decision variables] Let Δ represent the
value of M(0, �)−M(0, �). Let qin(⋅) and qout(⋅) be defined
as in (20). Let ein(⋅), eout(⋅), fin and fout be slack variables
defined as in (22), (23) and (24), and associated respectively
with the upstream and downstream sensors. The vector of
decision variables of interest is defined as:

X :=
(

Δ, qin(0), . . . , qin(n), qout(0), . . . , qout(n),

ein(0), . . . , ein(n), eout(0), . . . , eout(n), fin, fout

)T
(25)

We now express the physical constraints (13) for the
specific problem of interest (two fixed sensors) in terms of

the decision variables. For this, we need to express the value
condition functions 
(⋅, ⋅) and �(⋅, ⋅) of Definition 2.6, and
the solutions M
(⋅, ⋅) and M�(⋅, ⋅) to (4) as a function of
the decision variables qin(⋅), qout(⋅). This is the object of the
two following sections.

D. Piecewise affine boundary conditions

In this section, we define the piecewise affine boundary
conditions obtained from sensor measurements. The sensor
data is supposed to be sampled temporally, so that it takes
piecewise affine values on each sampling interval. Thus,
qin(⋅) and qout(⋅) are piecewise constant, and the boundary
conditions functions (integrated over time) are piecewise
affine. This property is very important, since the solution
to (4) associated with piecewise affine boundary conditions
can be computed semi-explicitly [6].

Definition 4.3: [Piecewise affine boundary conditions]
Let the vector of decision variables X be defined as in (25).
The upstream and downstream boundary condition functions

(⋅, ⋅) and �(⋅, ⋅) are defined as:


(t, x) =

n−1∑
i=0

qin(i)T + qin(n)(t− nT ) if x = � and

∃n ∈ N s. t.
t ∈ [nT, (n+ 1)T ]

�(t, x) = −Δ +

n−1∑
i=0

qout(i)T + qout(n)(t− nT ) if x = � and

∃n ∈ N s. t.
t ∈ [nT, (n+ 1)T ]

(26)
The functions 
(⋅, ⋅) and �(⋅, ⋅) are piecewise affine. For

all n ∈ N , the affine blocks 
n(⋅, ⋅) and �n(⋅, ⋅) are defined
by:


n(t, x):=

⎧⎨⎩
n−1∑
i=0

qin(i)T + qin(n)(t− nT ) if x = � and

t ∈ [nT, (n+ 1)T ]
+∞ otherwise

�n(t, x):=

⎧⎨⎩
−Δ +

n−1∑
i=0

qout(i)T + qout(n)(t− nT ) if x = � and

t ∈ [nT, (n+ 1)T ]
+∞ otherwise

(27)
Using equation (27), we can express (26) as:{


(⋅, ⋅) = inf
n∈N

(
n(⋅, ⋅))
�(⋅, ⋅) = inf

n∈N
(�n(⋅, ⋅)) (28)

We now compute the solutions M
(⋅, ⋅) and M�(⋅, ⋅)
respectively associated with the value conditions 
(⋅, ⋅) and
�(⋅, ⋅) analytically using the method developed in [6].

E. Solutions associated with affine boundary conditions

For this specific application, we assume that the Hamilto-
nian  certificate(⋅) is given by the following formula:

 certificate(�) :=

{
v� if � ≤ kc
w(km − �) if kc ≤ �

(29)
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The function  certificate(⋅) defined by (29) is both concave
and upper semicontinuous (indeed, continuous). It is com-
monly used in traffic flow modeling [9], [16]. Its parameters
v, w, kc and km are chosen such that the condition (12) is
satisfied on all available experimental data. This last condi-
tion enables us to use the constraints (13) for our present
application. The convex transform '∗(⋅) of  certificate(⋅) is
given [2], [5], [6] by:

'∗(u) =

{
kc(u+ v) if u ∈ [−v, w]
+∞ otherwise (30)

Since 
(⋅, ⋅) = inf
n∈N

(
n(⋅, ⋅)) and �(⋅, ⋅) = inf
n∈N

(�n(⋅, ⋅)),
the inf-morphism property (10) implies:{

M
(⋅, ⋅) = inf
n∈N

(M
n(⋅, ⋅))
M�(⋅, ⋅) = inf

n∈N
(M�n(⋅, ⋅)) (31)

where M
n(⋅, �) and M�n(⋅, �) are the solutions to (4)
associated with 
n(⋅, ⋅) and �n(⋅, ⋅) defined by (28). These
solutions can be computed analytically using the framework
developed in [6].

Proposition 4.4: [Explicit computation of the solu-
tions] The solutions M
n(⋅, ⋅) and M�n(⋅, ⋅) associated with

n(⋅, ⋅) and �n(⋅, ⋅) are given by the following explicit
formulas:

M
n (t, x)=

⎧⎨⎩

+∞ if t ≤ nT + x−�
v

n−1∑
i=0

qin(i)T + qin(n)(t−
x− �
v
− nT )

if nT + x−�
v
≤ t ≤ (n+ 1)T + x−�

v
n∑
i=0

qin(i)T + kcv(t− (n+ 1)T −
x− �
v

)

otherwise

M�n (t, x)=

⎧⎨⎩

+∞ if t ≤ nT + �−x
w

−Δ +

n−1∑
i=0

qout(i)T + qout(n)(t−
�− x
w

−nT ) + �−x
w

kc(v + w)

if nT + �−x
w
≤ t ≤ (n+ 1)T + �−x

w

−Δ +

n−1∑
i=0

qout(i)T + kcv(t− (n+ 1)T −
�− x
w

)

otherwise
(32)

Proof — This proposition is an instantiation of the result
of [6] for the specific Hamiltonian (29). ■

F. Expression of the compatibility conditions

The conditions (13) can be expressed in the present case
as: ⎧⎨⎩

(i) M
(t, �) ≥ 
(t, �) ∀t ∈ [0, tmax]
(ii) M�(t, �) ≥ �(t, �) ∀t ∈ [0, tmax]
(iii) M
(t, �) ≥ �(t, �) ∀t ∈ [0, tmax]
(iv) M�(t, �) ≥ 
(t, �) ∀t ∈ [0, tmax]

(33)

In the present case, checking that the constraints (33) are
satisfied amounts to checking that a set of linear inequalities
is feasible. The two following propositions enable us to find
the expression of (33) as linear inequalities.

Proposition 4.5: [Consistency check of a single bound-
ary condition] The conditions (33) (i) and (ii) are satisfied
if and only if the following inequalities are satisfied:

{
(i) qin(n) ≤ vkc ∀n ∈ N
(ii) qout(n) ≤ vkc ∀n ∈ N (34)

Proof — Let us choose t ∈ [nT, (n+1)T ]. The function
M
(t, �) can be computed by combining (31) and (32):

M
(t, �) =

min

[
min

k∈[0,n−1]

(
k∑
i=0

qin(i)T + (t− (k + 1)T )vkc

)
,

n−1∑
i=0

qin(i)T + qin(n)(t− nT )

]
(35)

Since 
(t, �) =

n−1∑
i=0

qin(i)T +qin(n)(t−nT ), we have that

M
(t, �) ≥ 
(t, �) for all t ∈ [nT, (n+ 1)T ] if and only if:

n−1∑
i=k+1

qin(i)T + (t− nT )qin(n)− (t− (k + 1)T )vkc ≤ 0

∀k ∈ [0, n− 1]
(36)

By choosing t = nT , equation (36) yields the necessary
condition

∀k ∈ [0, n−1],

n−1∑
i=k+1

qin(i)T − (n−k−1)Tvkc ≤ 0 (37)

Choosing k = n−2 in (37) yields the necessary condition
qin(n − 1) ≤ vkc. Similarly, choosing k = n − 3 yields
qin(n−2) ≤ vkc. This can be extended trivially by induction
for all n ∈ N , and yields inequality (i) of (34). Conversely,
the condition (i) of (34) is sufficient. Indeed, condition (36)
can be rewritten as:

n−1∑
i=k+1

(qin(i)− vkc)T + (t− nT )(qin(n)− vkc) ≤ 0

∀k ∈ [0, n− 1]
(38)

Since T > 0 and t − nT ≥ 0, the inequality (38) is
trivially satisfied when condition (i) of (34) is satisfied,
which completes the proof of (i). The proof of (ii) is
identical to the proof of (i). ■

Proposition 4.6: [Consistency check of multiple bound-
ary conditions] We assume that the conditions (34) hold.
The conditions (33) (iii) are satisfied if and only if the
following inequalities are satisfied:
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⎧⎨⎩

(i)

⌊n−�−�
vT
⌋−1∑

i=0

qin(i)T + qin(⌊n−
�− �
vT
⌋)(nT

−�−�
v
− ⌊n− �−�

vT
⌋T ) ≥ −Δ +

n−1∑
i=0

qout(i)T

∀n ∈ N

(ii)

n−1∑
i=0

qin(i)T ≥ −Δ +

⌊n+�−�
vT
⌋−1∑

i=0

qout(i)T

+qout(⌊n+ �−�
vT
⌋)(nT + �−�

v
− ⌊n+ �−�

vT
⌋T )

∀n ∈ N

(iii) −Δ +

⌊n−�−�
wT
⌋−1∑

i=0

qout(i)T + qout(⌊n−
�− �
wT

⌋)(nT

−�−�
w
− ⌊n− �−�

wT
⌋T ) ≥

n−1∑
i=0

qin(i)T

∀n ∈ N

(iv) −Δ +

n−1∑
i=0

qout(i)T ≥
⌊n+�−�

wT
⌋−1∑

i=0

qin(i)T

+qin(⌊n+ �−�
wT
⌋)(nT + �−�

w
− ⌊n+ �−�

wT
⌋T )

∀n ∈ N
(39)

Proof — The conditions (33) can be expressed in the
present case as:{

(i) M
(t, �) ≥ �(t, �) ∀t ∈ [0, tmax]
(ii) M�(t, �) ≥ 
(t, �) ∀t ∈ [0, tmax]

(40)

We only prove that the constraint (i) of (40) yields
inequalities (i) and (ii) of (39).
Let us fix t ∈ [nT + �−�

v , (n+ 1)T + �−�
v ]. We first express

the solution M
(t, �) using (32) and the inf-morphism
property (31):

M
(t, �) =⎧⎨⎩
min

[
n−1∑
i=0

qin(i)T + qin(n)(t−
x− �
v
− nT ),

min
k∈[0,n−1]

(
k∑
i=0

qin(i)T + kcv(t− (k + 1)T −
x− �
v

)

)] (41)

Since qin(k) ≤ kcv for all k ∈ N , we have that
n−1∑
i=0

qin(i)T+qin(n)(t− x− �
v
−nT ) ≤

k∑
i=0

qin(i)T+kcv(t−

(k + 1)T − x− �
v

) for all k ∈ [0, n − 1]. Hence, we have
that

M
(t, �) =

n−1∑
i=0

qin(i)T + qin(n)(t− �− �
v
− nT ) (42)

Thus, M
(t, �) is affine for all t ∈ [nT+ �−�
v , (n+1)T+

�−�
v ], for all n ∈ N . By construction, �(t, �) is also affine

for all t ∈ [nT, (n + 1)T ], for all n ∈ N . Hence, checking
that condition (i) of (40) is satisfied amounts to checking
that{

M
(nT, �) ≥ �(nT, �) ∀n ∈ N
M
(nT + �−�

v , �) ≥ �(nT + �−�
v , �) ∀n ∈ N

(43)

Indeed, checking that the continuous and piecewise affine
function M
(t, �) − �(t, �) is positive for all t ∈ [0, tmax]
amounts to checking that it is positive on all its kinks.

In addition, remarking that t ∈ [nT, (n+ 1)T ] if and only
if n = ⌊ tT ⌋ and t ∈ [nT + �−�

v , (n+ 1)T + �−�
v ] if and only

if n = ⌊ t−
�−�
v

T ⌋, we can express the functions M
(⋅, �) and
�(t, �) explicitly as:

M
(t, �)=

⌊
t−�−�

v
T ⌋−1∑
i=0

qin(i)T + qin(⌊
t− �−�

v

T
⌋)(t− �− �

v

−⌊ t−
�−�
v

T ⌋T ), ∀t ∈ [0, tmax]

�(t, �)=−Δ +

⌊ tT ⌋−1∑
i=0

qout(i)T + qout(⌊
t

T
⌋)(t− ⌊ t

T
⌋T )

∀t ∈ [0, tmax]
(44)

The conditions (i) and (ii) of equation (39) are obtained
from (43), using formula (44) for expressing the boundary
conditions. One can similarly prove that inequality (ii)
of (40) yields inequalities (iii) and (iv) of (39). ■

G. Convex programming formulation of the minimal error
certificate problem

Proposition 4.7: [Minimal error of a sensor] The min-
imal error �in (respectively �out) of the fixed upstream
(respectively downstream) sensor in the L1 sense is the
solution to the following linear program (LP):

�in/out := min

(∑
i=0n

ein/out(i)

)

s.t.

⎧⎨⎩

ein(i) ≥ qin(i)−qin(i)meas

qin(i)meas , ∀i ∈ N
ein(i) ≥ − qin(i)−qin(i)meas

qin(i)meas , ∀i ∈ N
eout(i) ≥ qout(i)−qout(i)meas

qout(i)meas , ∀i ∈ N
eout(i) ≥ − qout(i)−qout(i)

meas

qout(i)meas , ∀i ∈ N
(34) holds
(39) holds

(45)

The minimal error �in (respectively �out) of the fixed
upstream (respectively downstream) sensor in the L2 sense
is the solution to the following convex quadratically con-
strained quadratic program (QCQP):

�in/out := min

(∑
i=0n

ein/out(i)

)

s.t.

⎧⎨⎩
ein(i) ≥ (

qin(i)−qin(i)meas

qin(i)meas )2, ∀i ∈ N
eout(i) ≥ (

qout(i)−qout(i)meas

qout(i)meas )2, ∀i ∈ N
(34) holds
(39) holds

(46)

The minimal error �in (respectively �out) of the fixed
upstream (respectively downstream) sensor in the L∞ sense
is the solution to the following LP:
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�in/out := min f

s.t.

⎧⎨⎩
f ≥

qin/out(i)−qin/out(i)
meas

qin/out(i)
meas , ∀i ∈ N

f ≥ −
qin/out(i)−qin/out(i)

meas

qin/out(i)
meas , ∀i ∈ N

(34) holds
(39) holds

(47)

Proof — The proof follows from the definition of the
error terms (22), (23) and (24), and from the inequality
constraints (13) (that is, from (34) and (39) with our as-
sumptions), since the Hamiltonian (29) satisfies (12). Note
that the inequalities (34) and (39) are linear in terms of the
decision variable (25). ■

H. Fault detection in traffic sensor networks

We apply the above results to sensors of the PeMS
system [1], which is a network of loop detectors measuring
traffic on California highways. The PeMS system is one of
the data feeds currently integrated in the Mobile Millennium
traffic monitoring system [17], [18], operated jointly by
Nokia and UC Berkeley. One of the main challenges arising
when using data from the PeMS system is the automated
identification of the mislocated or faulty sensors. Previous
approaches such as [13] have successfully implemented sen-
sor fault detection algorithms based on statistical correlation
with adjacent sensors. In the present case, the use of a flow
model enables us to provide a fault certificate, by proving
that the level of error in a pair of sensors exceeds its design
value.

The main difficulty solved by this approach is the iden-
tification of “realistic looking” faulty data. The data in
question, when looked at for a single sensor is not abnormal.
However, when checked with the data from other sensors,
the approach developed earlier enables the identification of
incompatibility, thus resulting in the detection of faults,
which results from the proper use of the model and the
method.

We solve the fault detection problem by applying the
LP (47) on all pairs of consecutive sensors present on the
highway network. We first create a learning set based on
the data of a subset of traffic sensors which are known to be
valid. This learning set is shown in Figure 2. We then choose
a function  certificate(⋅) of the form (29) which satisfies
the condition (12). This function  certificate(⋅) will be our
learning set certificate.

We assume that the maximal allowable error of a PeMS
sensor is 15%. There are multiple sources of uncertainty
arising when dealing with loop detectors, such as pavement
depth, loop layout, which typically creates maximal errors
of this magnitude. The maximal allowable error on a pair
of PeMS sensors will thus be set to 30% in the considered
scenario.

As an application, we consider the results of (47) for
five consecutive sensors, labeled 401339, 401714, 401376,
400609 and 400835 respectively, as illustrated in Figure 6.
For each one of the four adjacent pairs of sensors, we com-
pute the minimal value of the error �in+�out in equation (47),

during a one month period at the frequency of one day. The
distribution of these results is shown in Figure 6.

Figure 6 shows that there is no indication of malfunction
for the first and the last pairs of sensors. Note that the success
to the minimal error test does not guarantee that a pair of
sensors is working, since the actual error of the pair of
sensors can be above the maximal allowable error.

The second and third pairs exhibit L∞ errors that are
higher than 30%, which indicates a malfunction of the
corresponding pairs. Further analysis has shown that the
pair 401714− 400609 is passing the minimal error test, and
thus that sensor 401376 is likely either failing or incorrectly
mapped.

Fig. 6. Faulty sensor detection. We consider here the traffic flow on
highway I880-S near Oakland, CA. The linear program (47) is run each
day on a one-month period. The sensors of interests are highlighted in the
top figure, and their corresponding minimal error distribution over the one-
month period is represented in the four bottom figures. Bottom: The top
left and bottom right subfigures represents the minimal errors of the pair
401339− 401714 and 40609− 400835. These minimal errors fall in the
allowable range. In contrast, the minimal errors of the pair 401714−401376
and 401376−400609 are above the allowable range. This means that there
must exist a fault in one of the sensors 401714, 401376, or 400609.

The present method is currently implemented in the Mo-
bile Millennium system, as a filtering method for the PeMS
feed to the system. The results have shown to greatly improve
the performance of the system [18].
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V. CONCLUSION

This article presents a new method for fault detection
in networks of sensors monitoring systems modeled by
Hamilton-Jacobi partial differential equations. The state of
the system of interest does not usually follow a partial dif-
ferential equation characterized by a well known parameter,
but by a distribution of parameters. Based on the solution
methods of Hamilton-Jacobi equations, we show that any
local knowledge of the state provides constraints on the
possible values of the state in the space-time domain. We
subsequently use this fact to pose the problem of minimal
error certificate of a pair of sensors as a set of convex pro-
grams. The minimal error certificate is the minimal possible
error of the sensors given a set of measurements. It is a
very effective tool for detecting inconsistencies. When the
error is above a preset threshold depending on the sensor
type, the corresponding set of sensors is identified as faulty.
This work has been successfully implemented in the Mobile
Millennium [18] system, and is part of the consistency check
methods used in this system. It checks the consistency of the
data generated by more than 1400 sensors every 30 seconds
in real time with streaming data for all PeMS sensors in
northern California.
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