Cancellation of Acoustic Waves

CE 291 F | Control and Optimization of Distributed Parameters Systems
Professor Alexandre Bayen
University of California, Berkeley

December 6, 2007
by
Trucy Phan

Outline

- Introduction
- Project steps
- 1D wave cancellation
-2 D wave cancellation
- Upcoming work
- References

Introduction

- Interference: when two waves meet
- Destructive interference: when two waves meet and cancel each other
- Why reduce, or cancel, acoustic waves?
- Reduce unwanted sound (background noise, mufflers, machines)
- Reduce transmission of vibration energy, decrease wear on machine components
- Health and psychological effects (hearing loss, loss of sleep, stress, etc.)

Project Steps

- 1 D wave equation cancellation
- 2 D wave cancellation approaches
- Analytical
- Differential flatness
- 2D wave cancellation scenarios
- Equidistant input and control

- Input and control are not equidistant from the desired point of noise cancellation

1D wave cancellation

- 1 D wave equation:

$$
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=0
$$

- Solve using method of characteristics:

$$
u(x, t)=F(x+c t)+G(x-c t)
$$

- Solution for canceling wave is intuitive:

$$
u(x, t)=-F(L-x+c t)-G(L-x-c t)
$$

1D wave cancellation

2D wave cancellation

- 2 D wave equation:

$$
\frac{\partial^{2} u}{\partial t^{2}}-c^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)=0
$$

- Transform into cylindrical coordinates and solve using separation of variables:

$$
u(r, \theta, t)=B J_{\alpha}\left(\frac{\omega r}{c}\right) \cos (\alpha \theta) \cos (\omega t)
$$

where B is an unknown constant, ω is frequency, and α is an integer

BC:

$$
\lim _{r \rightarrow \infty} u(r, \theta, t)=0
$$

2D wave cancellation

- For equidistant input and control, solution is intuitive, i.e.

$$
\mathrm{u}\left(\mathrm{r}_{\mathrm{c}}, \theta_{\mathrm{c}}, \mathrm{t}\right)=-\mathrm{u}\left(\mathrm{r}_{\mathrm{i}}, \theta_{\mathrm{i}}, \mathrm{t}\right)
$$

Upcoming work

- Solve 2D wave cancellation problem for sources not equidistant

Upcoming work

- Solve for the 'controlling' wave
- Will use solution in the following form:

$$
u(r, \theta, t)=\sum_{i=0}^{\infty} \alpha_{i} J_{i}\left(\frac{\omega r}{c}\right) \cos (i \theta) \cos (\omega t)
$$

- Would like the following condition to be true:

$$
\mathrm{u}(\mathrm{r}, \theta, \mathrm{t})=\mathrm{u}\left(\mathrm{r}_{\mathrm{i}}, \theta_{\mathrm{i}}, \mathrm{t}\right)+\mathrm{u}\left(\mathrm{r}_{\mathrm{c}}, \theta_{\mathrm{c}}, \mathrm{t}\right)=0
$$

- Calculate eigenfunction coefficients, eigensolutions, plot the results

Upcoming work

- Canceling a human wave

References

[1] www.bonluxat.com/a/jurgen-bey-ear-chair.html
[2] http://cache.viewimages.com/xc/495122.jpg? $\mathrm{v}=1 \& \mathrm{c}=$ ViewImages\&k=2\&d=17A4A D9FDB9CF193CEF9A2866663FA43C6CD391E83164853284831B75F48EF45
[3] Reynolds, W.C. Course Reader for ME 200B. Solution of Partial Differential Equations for Engineers. Stanford University. Preliminary Ed. - Winter 1999 version. Chapters 3, 6.
[4] Bayen, Alexandre. Course Reader for EE 291c/ME 236/CE 291F. Control and optimization of distributed systems and partial differential equations. Fall 2007 version. Chapters 3, 7.

Questions \& Comments?

