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Block Simplex Signal Recovery: Methods,
Trade-Offs, and an Application to Routing
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Abstract— This paper presents the problem of block simplex
constrained signal recovery, which has been demonstrated to be
a suitable formulation for estimation problems in networks such
as route flow estimation in traffic. There are several natural
approaches to this problem: compressed sensing, Bayesian infer-
ence, and convex optimization. This paper presents new methods
within each framework and assesses their respective abilities
to reconstruct signals, with the particular emphasis on sparse
recovery, ability to incorporate prior information, and scalability.
We then apply these methods to route flow estimation in traffic
networks of various sizes and network topologies. We find that
both compressed sensing and Bayesian inference approaches
are appropriate for structured recovery but have scalability
limitations. The convex optimization approach does not directly
incorporate prior information, but scales well and has been shown
to achieve 90% route flow accuracy on a full-scale network of
over 10 000 links and 280 000 routes on a synthetic benchmark
based on the I-210 corridor near Los Angeles, CA, USA.

Index Terms— Compressed sensing, Bayesian inference, block
simplex, flow estimation, routing, signal reconstruction.

I. INTRODUCTION

IN THIS article, we examine a particular setting of signal
recovery where the signal is constrained by a block simplex,

and we refer to this problem as the block simplex signal recov-
ery problem. There are many applications for this problem,
e.g. computing equilibria for noncooperative games [1], [2] in
game theory, structural support vector machines (SVMs) [3] in
machine learning, and route flow estimation in transportation
networks [4] (see Section III). The standard simplex is a
natural way of encoding a discrete probability distribution,
thus lending itself to recovery problems whose signal takes the
form of multiple probability distributions, i.e. block probability
distributions, such as multiple agents interacting and taking
actions in a system. Prior work focuses on closely related but
fundamentally different signal recovery structures, including
�1-constrained signal recovery and signal recovery from a
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single probability simplex. In this article, we discuss the
fundamental limitations of these approaches for block simplex
signal recovery and propose a series of methods to address
these limitations.

Rather than general objective functions, our work studies
the special case of linear measurements, which is already a
very challenging setting. In the setting of underdetermined
linear measurements, it is already difficult to recover signals
both accurately and efficiently. To overcome these challenges,
we study the effects of placing assumptions on the signal (e.g.
sparsity or belief priors) or making use of additional problem
structure (e.g. constraints). Our aim is to study appropriate
mathematical formulations and algorithms that 1) scale well
to large problems, 2) recover sparse signals, and 3) encode
our beliefs about the solution.

We investigate several approaches to this signal recov-
ery problem–convex optimization, compressed sensing, and
Bayesian inference–and we examine empirical recovery,
to assess the effectiveness of these methods. We pro-
vide the first extensive view at the block simplex setting
of signal recovery. We present and assess the following
methods:
• Convex optimization (CO): A projected gradient method

based on isotonic regression [4].
• Compressed sensing (CS): A new oracle and two new

sampling-based methods for �∞-based regularization.
• Bayesian inference (BI): A new sampling approach based

on Markov chain Monte Carlo (MCMC), in particular,
Metropolis-Hastings.

Convex optimization is an important sub-field of optimization
which takes advantage of convex analysis tools to provide
efficient computational methods. However, this mathematical
framework is limited and naturally may not encode crucial
non-convex information, such as sparsity or probabilistic
information [5], [6]. Compressed sensing is a widely-used
signal processing technique for efficiently acquiring and
reconstructing a sparse signal in underdetermined linear sys-
tems. However as discussed in Section V-A.2, the classical
�1-based methods do not apply to our setting [7]–[9].
Bayesian inference is a statistical inference method which
uses Bayes’ theorem to update a probabilistic model given
some evidence and provides a principled way to incorpo-
rate beliefs. However its sampling-based techniques for gen-
eral probabilistic distributions typically do not scale well
computationally [10], [11].

We provide a numerical evaluation of the methods on a
practical application, where we assess both accuracy and
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scalability. We take our application to be route flow estimation
in transportation networks, presented in Section III.

Our contributions are as follows:
• We introduce and formalize the problem of block simplex

signal recovery.
• We derive and analyze a regularization scheme suit-

able for sparse recovery in the block simplex setting.
We accordingly propose the first methods for sparse block
simplex signal recovery. We present a novel oracle and
two sampling-based compressed sensing methods.

• We derive a simple probabilistic graphical model from the
block simplex structure, which encodes a known prior
on the spread of the signal. This model is suitable for
Bayesian inference methods such as Markov chain Monte
Carlo (MCMC), and in particular, Metropolis-Hastings.

• We perform numerical experiments on large-scale matri-
ces derived from a real-world application, rather than
on matrices with known recovery properties (such as
Gaussian random matrices).

• We demonstrate the scalability of the CO method.
We empirically determine that CS and BI are suitable
for recovery of small problems.

The remainder of the article is organized as follows:
Section III describes our motivating application to state estima-
tion in terms of route flow in road networks, and Section III-B
presents its corresponding signal recovery problem. Section II
describes related work. In Section IV, we present the prob-
lem. In Section V, we present three problem formulations
and analysis, from the perspective of convex optimization,
compressed sensing, and Bayesian inference. In Section VI,
we present the respective methods for each formulation. Then,
Section VII presents the experimental setup and numerical
results. Section VIII concludes the article.

II. RELATED WORK

A natural approach to incorporate domain-specific problem
structure for signal recovery is to extend classical compressive
sensing [7]–[9] by incorporating structured sparsity models,
which may occur as domain-specific information, as done
by [12]. Their work introduces and analyzes theoretical prop-
erties for model-based compressive sensing and explores sev-
eral such structured sparsity models, namely a tree structure
and block sparsity. Although the latter sounds similar to our
concept of block sparsity, they focus on the case where it is
equivalent to joint sparsity, where the supports of the blocks of
the signals are shared between all of the blocks. Importantly,
this specific structure avoids the curse of dimensionality in
recovering the supports. Unfortunately, this model does not
fit our application. For example, routes are different between
different origin-destination pairs in a road network, and thus
we naturally want to allow the support to be different for
each block. Our problem setting thus does unfortunately
suffer from the curse of dimensionality, thereby motivating
the sampling-based methods studied in this article.

Our desired model differs in yet another way: our signal
is block simplex constrained, implying that each block sums
up to a known value. This means that classical �1-based

compressive sensing theory does not apply directly to our
problem (see Section V-A.2). Similarly, the work in [13]
studies the problem of linearly constrained nonnegative least
squares (NNLS) as a signal recovery problem, which is a more
general form of our problem. Due to the specific structure of
the block simplex constraint, however, their �1-based method
is not suitable for our setting. Additionally, these methods do
not address the issue of scalability. Recent work on sparse
signal recovery in the simplex-constrained setting introduced
a novel regularization scheme based on the �∞ norm for the
single simplex [14]. This article builds upon [14] to introduce
a regularization scheme for the block simplex setting.

In summary, we address the following limitations of pre-
vious work: First, traditional �1-based methods of sparse
recovery through compressed sensing techniques do not apply
to our problem due to the inherent �1 constraint in a (block)
simplex constraint. Second, Due to the curse of dimensionality,
signal recovery methods are typically not demonstrated to
scale to large-scale problems.

III. ROUTE FLOW ESTIMATION AS BLOCK

SIMPLEX SIGNAL RECOVERY

The motivating application in our study is the problem of
state estimation in traffic networks by examining the recovery
of static route flow from a variety of sensor measurements in
road networks. Route flow is the vehicles per time (e.g. hour)
on a particular route, and a route is a sequence of links. The
implications of accurate route flow estimation is vast, since
it provides rich state information about the traffic network
that cannot be recovered by commonly studied link and
origin-destination (OD) flows. Route flow can subsequently
be used for control on the network, for example re-routing
affected vehicles in the event of a road closure. In fact, route
flow may be used to compute the aforementioned types of
flow, thereby providing backwards compatibility to the rich
research built off of the disparate types of flow. These flow
estimates are subsequently used for applications such as ramp
metering, optimizing plans for signalized intersections, as well
as long-term land use planning. Accurate route flow estimates
are increasingly critical for a more effective use of existing
traffic infrastructure as population density and the need for
enhancing mobility in cities grow.

Route flow estimation is a challenging and inherently under-
determined problem because there are an exponential number
of possible routes [15, §1.2], yet typically only a linear number
of measurements. Thus, transportation science has historically
aimed at modeling, computing, and estimating the movement
of traffic in terms of the more computationally tractable
link flows [16], turning flows, and origin-destination (OD)
flows [17]–[20], which capture limited information about road
networks. In this article, we thus focus on opportunities to
improve route flow estimation, and we refer the reader to [21]
for the rich history of state estimation for traffic networks.

A. Related Work in Route Flow Estimation

To overcome sensing limitations, numerous approaches to
route flow have utilized modeling assumptions such as user
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equilibrium (UE) [22], which permits the modeling of unique
link flows and feasible route (or path) flows without requiring
full route enumeration [23, §3.3], [24, §5.2]. The stochastic
user equilibrium (SUE) (probit-based [25], [26] and logit-
based [27], [28]) addresses some of the shortcomings of UE
by modeling imperfect knowledge of the network and variation
in drivers’ preferences, which makes the estimation of route
flows possible [24]. However, frequent perturbations in traf-
fic networks indicate that real-world transportation networks
may not be in equilibrium (or only approximately so) [29].
In this article we study methods which impose less restrictive
assumptions on the route flow distribution, such as sparsity,
probabilistic priors, or simply feasibility.

Due to advances and increasing adoption of sens-
ing infrastructure, including cellular networks [4], [30],
Bluetooth [31], [32], and license plate readers [33], [34],
there is renewed interest in route flow estimation. Relatedly,
the growing number of mobile sensors in urban areas has
enabled the use of probe vehicles for route inference from GPS
traces [35], [36]. For route flow estimation in particular, [34]
incorporates timing and correlated location measurements
from license plate readers into a SUE framework, achieving
improved link and route flow. A study by [30] on route
choice estimation proposes a Euclidean projection of cellular
network base station traces to its nearest route in a traffic
network. Another study uses aggregated cellular base station
measurements in a convex optimization framework, without
any UE assumptions, further demonstrating improved link and
route flow accuracy [4]. Instead of the simple k-shortest paths
considered in [4], a recent work [37] studies richer set of
routes to consider and their impact on the resulting link flow
estimates. This article builds upon [4] by proposing several
new estimation methods based on powerful mathematical
frameworks, for route flow, which also permit structured priors
on the route distribution.

In traffic networks, applications of compressed sensing
have been found in optimal sensor placement [38], and
applications of Bayesian inference have been found in
OD estimation [39], [40] and day-level dynamic link flow
estimation [41]. This article studies compressed sensing and
Bayesian inference in the context of block simplex signal
recovery and its application to route flow estimation in traffic
networks.

B. Problem Definition

As our working example, we now present the problem
of route flow estimation as a block simplex signal recovery
problem. In Sections IV and V, we will present the general
problem and three formulations for the problem, from the
perspectives of compressed sensing, Bayesian inference, and
convex optimization. In Section VI, we will present the
corresponding solution methods.

In addition to traditional traffic sensors which measure flow
on individual links in the network, we consider aggregated
measurements from cellular traces, sequences of cell towers
that cell phones connect to over time, which provide a rich
data source. We call these measurements cellpath flow, that is,
the vehicles per time which connect to a particular cellpath; a

Fig. 1. In the routing application, scattered sensor nodes (e.g. cell towers,
OD “sensors”) measure the signal strength of the transitory agents in the
system and relay that information to a central datastore. The aim is to
recover the number of agents traversing any path in the region. Each unique
combination of sensor regions (e.g. cells, origins) begets a single simplex
structure, as each path passes through exactly one sensor sequence (e.g.
cellpath, OD) and yet multiple paths can pass through the same one. Thus,
the overall signal recovery problem yields a block simplex structure (denoted
by the ones in the C matrix, along with a nonnegativity constraint, i.e.
xi ≥ 0, ∀i), one simplex for each combination of sensor regions. Depending
on the setting, the practitioner may wish to extract a sparse solution, a solution
that can encode complex prior information, or just a feasible solution. This
article studies methods which permit each type of desired solution.

cellpath is a sequence of cell towers. After we form a partition
of the network based on cellular tower coverage, we observe
that we may formulate the relationship between route flow and
cellpath flow as a block simplex, one block for each cellpath.
This captures the constraint on the multiple routes that may
pass through the same sequence of cell regions. For each
cellpath measurement, we have a (scaled) simplex constraint
on the route flow measurements for those routes, hence moti-
vating the study of the block simplex signal recovery problem.
Similarly, we may consider a simplex constraint for each set
of routes corresponding to each OD, sequence of license plate
readers, sequence of Bluetooth readers, aggregated GPS traces,
or measurements from other similar technologies. We refer to
this class of traffic flow measurements with block simplex
structure as block simplex flow measurements.

We wish to recover the route flow x , which has a block
simplex structure due to the availability of the aforementioned
block simplex flow measurements, which are encoded by
(C, d). The matrix C is an incidence matrix with exactly one
1 per column to form simplex blocks, and d is a vector denot-
ing the scaling of each simplex measurement. An equality con-
straint Cx = d , jointly with a nonnegativity constraint x ≥0,
forms a block simplex constraint. We use (A, b) to encode
additional linear sensor measurements, such as link flows,
where similarly A encodes an incidence matrix (without any
particular simplex structure) and b encodes the measurement
value. An illustrative example is provided in Figure 1. Thus,
this gives us the following optimization problem

min
x

1

2
�Ax − b2

2 + λ�x2
2

s.t. Cx = d, x � 0 (1)
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In Section VII, we will evaluate and compare the methods in
Section VI on this route flow estimation problem.

IV. BLOCK SIMPLEX SIGNAL RECOVERY

In this section, we pose the general block simplex signal
recovery problem, which is a constrained signal recovery prob-
lem. We first introduce the general signal recovery problem.

A. General Signal Recovery

Let x ∈ R
n be a signal with at most k non-zero components.

This type of signal is called k-sparse. Let {a1, . . . , am} be a
sequence of measurement vectors in R

n that are independent
of the signal. We denote the measurement matrix to be A =[
a1 · · · am

]T . The inner products aT
1 x, . . . , aT

m x produce m
linear measurements of the signal x , denoted by a vector b =
Ax ∈ R

m , also called the data vector. In the problem of signal
recovery, two distinct questions are asked [42]:

1) How many measurements m are needed for
reconstruction?

2) Given these measurements (A, b), what algorithms can
perform the reconstruction task?

B. Block Simplex Signal Recovery

Following the previous section, with x ∈ R
n a k-sparse

signal, A ∈ R
m×n the measurement matrix independent of the

signal x , and b = Ax ∈ R
m the data vector, we now suppose

that the signal x is also constrained to be in a block simplex,
a commonly occurring linear equality constraint [13], often
corresponding to block probability distributions that arise in
game theory, machine learning, and flow networks.

A (single-block) p-simplex constraint on a R
p-valued signal

s is commonly written as

s ∈ �
p
+

�= {s ∈ R
p : si ≥ 0 ∀i, 1T s = 1}

More generally, a q-block p-simplex constraint on x of dimen-
sions p = {p1, · · · , pq} (where n =∑q

i=1 pi ) is written

x ∈ �
p
+

�= �
p1+ × · · · ×�

pq
+

In this problem, A, b, p are known and given, and x is
unknown. Similarly to before, in the block simplex signal
recovery problem, we wish to reconstruct the signal x in this
constrained setting.

Note that if the sparsity is not known (or if the problem is
not sparse), we indicate that k = n.

In this article, we focus on the following questions

• Given these measurements (A, , p), what algorithms can
perform the reconstruction task?

• What algorithms can perform the reconstruction task on
large problems?

The question of the number of measurements m necessary
for reconstruction is also of fundamental importance and is
deferred to future work.

V. FORMULATIONS OF THE PROBLEMS OF INTEREST

In this section, we present three problem formulations
along with a computational method for each. We examine
approaches from convex optimization, Bayesian inference, and
compressed sensing, each of which is a principled approach
to the block simplex signal recovery problem. Each of the
respective methods have trade-offs in terms of computational
efficiency, and assumptions on the signal.

A. Compressed Sensing

In this section, we present the compressed sensing formula-
tion for the block simplex signal recovery problem. To simplify
the notation, we present the noiseless case, i.e. Ax = b in
this section. A least squares loss may be added back into the
objective without changing any of our subsequent results.

The classic k-sparse formulation of the block simplex signal
recovery problem is

min
x∈S

�x�0 (2)

where S = �
p
+ ∩ {x : Ax = b}. This finds the minimum

cardinality signal satisfying the measurements and the block
simplex constraint.

We first motivate sparsity in the context of the route
flow estimation application. We then describe two relaxation
approaches in the context of a single simplex, first to pro-
vide an explanation of why classical compressed sensing
approaches do not apply in the block simplex setting, and sec-
ond to describe the approach we will extend to the block
simplex setting.

1) Sparsity in Route Flow Estimation: Although a road
network permits a combinatorial number of possible routes,
it is likely that only a tiny fraction of them are used by people.
For instance, routes through highways and major streets are
much more likely to be frequented than a random sequence
of small streets. Hence, we may wish to recover a route flow
signal is sparse.

2) Single Simplex Convex Relaxation via �1: Equation (2)
is well-known to be NP-hard due to its combinatorial nature.
Therefore, in the past decade there has been a line of work
in compressed sensing which discusses the �1 norm convex
relaxation (see Equation (3)) [5].

In our problem the relaxation would read

min
x∈S

�x�1 (3)

We note that in our case of a simplex constraint, the �1 norm
value is already known. Unless the k-sparse signal x∗ is the
unique solution of Equation (3), we thus need a different
regularization scheme to achieve strong recovery results. In the
literature, this problem is referred to as recovering sparse
probability distributions [14].

Without loss of generality, consider for a moment the
single-block standard simplex case, that is C = 1T , d = 1
with C ∈ R

1×n and let x be k-sparse. For a single standard
simplex, we observe that 1 = �x�1 ≤ �x�0 ·�x�∞, thus �x�−1∞
is a lower bound on the size of the support of x . This suggests
trying to use the inverse �∞ norm as a proxy for sparsity.
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Let o∗ denote the objective value at the solution to
Equation (2), the minimum value of �x�0 subject to the
constraints, we then consider the relaxation

o∗ ≥ o∗∞ = min
x∈S
�x�−1∞ and

1/o∗∞ = max
i=1,...,n

max
x∈S

xi . (4)

which is solvable with n linear programs (LP), giving an
overall complexity of at most On4 with a primal-dual LP
solver.

Instead of taking the maximum over 1 ≤ i ≤ n in the linear
program formulation of Equation (4), we can equivalently take
the solution with the lowest cardinality, thus solving

x̂i = arg max
x∈S

xi for i ∈ {1, · · · , n} (5)

x̂min = arg min
x
�x�0 : x ∈ {x̂1, · · · , x̂n}

which has also been proposed in [14] to recover the k-sparse
signal. This alternative minimization scheme has the same
complexity of On4. We call this inverse-�∞ regularization.

3) Block Inverse-�∞ Regularization: Instead of a single
standard simplex x ∈ R

n , we consider p standard simplices,
following the standard simplex form given in (13). Recall that
p ∈ R

p is the vector of individual simplex dimensions and let
k ∈ R

p be the vector of nonzero entries for each respective
block of x .

As before, we need a convex relaxation for this problem
to make reconstruction tractable. We could ignore the block
structure and directly apply Equation (3) by replacing the
objective with p�x�−1∞ . However the observation

�x�0 =
∑

i

�xi�0 ≥
q∑

i=1

�xi�−1∞ ≥ q�x�−1∞

suggests that a tighter approximation can be achieved by
solving

o∗ ≥ o∗∞ = min
x∈S

∑q

i=1
�xi�−1∞

o∗∞ = min
ji=1,...,pi∀i=1,...,q

min
x∈S

∑q

i=1
(xi

ji
)−1 (6)

Two new computational challenges arise from this approx-
imation. First, a direct extension of the method presented
in [14] requires computing combinatorially many (

∏q
i=1 pi )

subproblems in order to compute the minimum, which is com-
putationally intractable (see Section V-A.4 for more details).
Second, the subproblems are no longer linear programs, but
rather constrained non-linear convex programs. We address
the first and more troublesome problem by supposing that
with some additional knowledge about x , we can make the
following definition and observation, from which we may
derive efficient solution methods.

Definition 1 (Maximal Support): The maximal support i of
a vector x ∈ R

n is given as

i = arg max x
i∈{1,··· ,n}

We denote the block-wise maximal support

maxsupp(x) = (arg max
i

x1, · · · , arg max
i

xq) ∈ Q (7)

Definition 2 (Maximal Support Optimality): Let x∗ ∈ X∗
be an optimal solution to Equation (6), where X∗ denotes the
set of optimal solutions, and let j∗ = ( j1, · · · , jq) denote some
subproblem. Then, j∗ ∈ {maxsupp(x) : x ∈ X∗} (i.e. in the
set of optimal block-wise maximal support) if and only if j∗
achieves

o∗∞ = min
x∈S

q∑

i=1

(xi
j∗i

)−1 (8)

Proof: (→): Let x∗ denote an optimal solution to Equa-
tion (6) and let j∗ = maxsupp(x∗). Then

o∗∞ = min
j∈Q

q∑

i=1

1

(x∗)i
ji

≤
q∑

i=1

1

(x∗)i
j∗i

Now consider some j �= j∗. Without loss of generality consider
the case where a single index is moved from the maximal
support, then there is some ji where x∗ji ≤ x∗j∗i . This leads to
an increase in the objective. Then for arbitrary j, we have an
upper bound (which will turn out to be tight)

o∗∞ ≤
q∑

i=1

1

(x∗)i
j∗i

≤
q∑

i=1

1

(x∗)i
ji

∀ j ∈ Q

≤ min
j∈Q

q∑

i=1

1

(x∗)i
ji

= o∗∞

from which we conclude that j∗ attains the minimum o∗∞.
(←): Now consider j �∈ {maxsupp(x) : x ∈ X∗}. Then for

any x∗ ∈ X∗, clearly

o∗∞ <

q∑

i=1

1

(x∗)i
ji

so the minimum o∗∞ is not attained. By definition of optimal
solution, x �∈ X∗ trivially does not attain o∗∞.

Corollary 1 (Optimality From Maximal Support): If the
maximal support of x∗ is known (or can be guessed), we may
compute the optimal solution to Equation (6) by solving a
single convex program instead of combinatorially many.
This can thereby drastically reduce the complexity of the
solution method for the problem in Equation (6). For more
details on these methods, see Section VI-A.

We refer the reader to [14, §3.1] for sufficient conditions on
A for sparse recovery in the single block inverse-�∞ case. As
in compressed sensing with �1 regularization, these conditions
are difficult to check.

4) Block Inverse-�∞ via Direct Extension: An alternative
approach is a direct extension of the method presented in [14]
and is analogous to Equation (5). The approach is to solve the
following program, which selects an index from each simplex
block q = (p0, · · · , pq). We denote the possible block-wise
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indices P = {p� ∈ Z
q : 0 � p� � p}.

x̂q = arg min
x∈S

p∑

i=1

(xi
qi

)−1 for q ∈ Q (9)

x̂min = arg min
x
�x�0 : x ∈ {x̂q : q ∈ Q}

This approach requires, in the worst case, computing combi-
natorially many (

∏q
i=1 pi ) subproblems in order to achieve the

minimum, which is computationally intractable.

B. Bayesian Inference

We derive a probabilistic graphical model based on linear
measurements and the block simplex constraint. We first note
that the Dirichlet distribution encodes a standard simplex with
a prior on the spread.

1) Spread in Route Flow Estimation: It may be desirable
to tune the spread of the recovered signal, between sparse and
uniform. In terms of route flow, that means that we may have
some prior on how much people spread themselves over all
possible routes; people may all choose a few specific routes
between an origin-destination pair, or people may spread
themselves evenly over more routes. We may encode such
information into a probabilistic model as a prior.

2) Probabilistic Model: We propose to compute the pos-
terior distribution for the following probabilistic model
(Figure 2), which has a single (scalar) fixed concentration
hyperparameter α:

xi |α = (xi
1, · · · , xi

pi
)

ind∼ Dir(α1i ) ∀ i ∈ [1, 2, . . . , q] (10)

y|x ind∼ N (b, σ 2 I ) (11)

where b = Ãx and x = (x1, · · · , xq)

The 1i denotes an all-ones vector of size pi , which is the i th
entry of the simplex dimensionality vector p ∈ N

q . The signal
x is comprised of q blocks with sizes p, and subsets of the
signal x are drawn from a Dirichlet prior in Equation (10),
where xi denotes the i th simplex block. Dir(�α) denotes the
Dirichlet distribution with �α ∈ R

|�α| concentration parameter.
The data vector b in Equation (11) is encoded as the

mean for m normally distributed random variables, which have
a dependence on the x vector. The measurement matrix A
encodes precisely the linear dependence of b on x and it
represents the edges in the graphical model (see Figure 2).
That is, in this problem, the dependence function is a weighted
sum of random variables given by linear equations.

For simplicity we assume Gaussian noise in the data vector
b given by variance σ 2, and we assume no noise in the OD
flow measurements. That is, y is stochastic, but A is fixed.

3) Posterior Distribution: The posterior probability is pro-
portional to the product of the likelihood and prior probability
(Bayes theorem) and may be written as:

P(x |y, α) ∝ P(y, x |α) = P(y|x)P(x |α)

=
m∏

j=1

P(y j |x)

p∏

i=1

P(xi |α) (12)

Fig. 2. Graphical model for the block simplex recovery problem given
by Equations 10-11. The left shows the general case, and the right shows
an example, given by the setting in the center. The model consists of fixed
hyper-parameter α, observed measurements y (of the data vector b), and latent
variables x (the signal). The precise relationship between x and y is given
by a measurement matrix A, as demonstrated by the equation in the center,
Ax = b.

by a certain abuse of notation in using α to denote a vector
of varying sizes, repeating the single hyperparameter as in
Equation (10).

C. Block Simplex Constrained Least Squares (BSLS)

Finally, we present the block simplex signal recovery
problem (Section IV-B) directly as a convex optimization
problem. We call this the block simplex constrained least
squares (BSLS) problem. In this framework, we do not con-
sider external information such as our beliefs about the sparsity
or the spread of the signal. The problem may be written as
the minimization of a quadratic program:

min
x

1

2
�Ax − b�22 + λ�x�22

s.t. Cx = 1, x � 0 (13)

which minimizes the sum-squared measurement residual sub-
ject to the constraints and some regularization parameter λ.
Recall that x ∈ R

n , A ∈ R
m×n , and b ∈ R

m . We re-write the
block simplex constraint in matrix form

x ∈ �
p
+

�= �
p1+ × · · · ×�

pq
+ ⇐⇒ Cx = 1, x � 0 (14)

where 1 ∈ R
q and the simplex constraint matrix C ∈ R

q×n

takes the following block diagonal form with all-ones vectors
as the component blocks

C =

⎡

⎢⎢
⎢
⎣

1T
p1

(0)

1T
p2

. . .

(0) 1pq

⎤

⎥⎥
⎥
⎦

and 1pi =
⎡

⎢
⎣

1
...
1

⎤

⎥
⎦ ∈ R

pi .

Note that the ordering of the signal x must respect the ordering
of the blocks.

In general, m � n (underdetermined) and p ≤ n (non-
degenerate simplex blocks), thus typically the Hessian AT A
of our convex quadratic objective is singular (AT A ∈ R

n×n

but rank (AT A) ≤ m � n). Thus without regularization,
i.e. λ = 0, the problem might have multiple optimal solu-
tions (underdetermined) or might have more observations than
unknowns (overdetermined). Moreover, when there are uncor-
related measurement errors on the data vector b, the ordinary
least squares is the best unbiased estimator of x .
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1) Route Flow Estimation as BSLS: We have already posed
the route flow estimation problem as a BSLS problem in
Section III-B. This formulation is appropriate in settings where
we do not have strong prior information on the structure of
the signal, i.e. if some routes are preferred over others.

2) Scaled Simplex Form: Though we pose the prob-
lem in terms of the standard simplex, which is impor-
tant for the analysis of Equation (13) and interpretation
(see Equation (10)), the problem generalizes directly to the
case of scaled simplicies. This can be shown through a
straight-forward change of variables to yield the desired scaled
block simplex constraint Cx̃ = d , where x̃ is a block-wise re-
scaled version of x and d ∈ R

q
+.

Proposition 1 (Equivalence to Scaled Simplex):
Equation (13) can be reduced from a least-squares problem
with (separable) scaled simplex constraints:

min
x

1

2
� Ãx̃ − b�22 + λ�E−1 x̃�22

s.t. Cx̃ = d, x̃ � 0 (15)

where d ∈ R
q
+, E = diag(CT d), Ã = A−1 E , and x = E−1 x̃ .

The vector d denotes the scaling for each simplex.
Proof: Take the formulation in Equation (15). Let D =

diag(d) and E = diag(CT d). First observe

1 = D−1d = D−1Cx̃ = D−1C E E−1 x̃

where 1 ∈ R
p denotes the ones vector. We define x = E−1 x̃

and A = ÃE , and notice that Ax = Ãx̃ .
We may assume without loss of generality that d � 0, since

di = 0 for some block i ∈ {1, · · · , p} implies the trivial
case where x̃ i = 0 (non-negativity). The block x̃ i does not
contribute to the objective, and so we may write an equivalent
problem to Equation (15) where d � 0 by removing all
such trivial blocks x̃ i . Then since d � 0, the non-negativity
constraints x̃ � 0 and x � 0 are equivalent. We may also then
assume without loss of generality that D, E are non-singular.

Finally, we observe that D−1C E = C due to the block
structure of C , yielding Cx = 1. This can be seen by noticing
that E is a right operator that scales the rows of C by the
entries in d , and D is a left operator that scales the rows of
C by the entries in d , i.e. C E = DC , thus performing both
operations results in the original matrix C .

Then we have the original standard simplex formulation
of the BSLS problem given by Equation (13). Provided
that the problem is well-posed (E is non-singular), all
steps are reversible, and thus Problems (13) and (15) are
equivalent.

Thus, without loss of generality, we refer to A, rather than
Ã, as the measurement matrix. We refer to Ã as the scaled
measurement matrix.

VI. METHODS

We present briefly the state of the art or present our own
methods for each problem formulation of the block simplex
signal recovery problem. The first two presented methods are
relaxations, the third is algorithmic, and the last two methods
are sampling-based.

A. Compressed Sensing (CS)

The objective in Equation (6) can be written as optimizing
over S = �

p
+ ∩ {x : Ax = b} for

o∗∞ = min
j∈Q

min
x∈S

q∑

i=1

(xi
ji )
−1

where Q = {q ∈ Z
p : 0 � q � p}. The minimum is now

taken over combinatorially many (convex) subproblems, which
is computationally intractable. By Property 1, we have that if
we know j = maxsupp(x∗) for some x∗ ∈ X∗, then we can
compute x∗ by solving the single subprogram in Equation (8)

x∗ = arg min
x

q∑

i=1

1

xi
j∗i

such that Ax = b, Cx = 1, x � 0

(16)

Thus we propose the following oracle method, which incor-
porates maxsupp(x∗) directly.

Algorithm 1 Oracle(·) Oracle Method for Block Sparse
Recovery
Require: j = maxsupp(x∗) ∈ Q for some x∗ ∈ X∗
1: Compute x̂ = arg minx∈S

∑q
i=1(xi

ji
)−1

2: return x̂

Since maxsupp(x∗) is not known in general, x∗, we propose
the following random sampling method to find maxsupp(x∗):
First, compute a rough pilot estimate x̂ for x∗ (or the maximal
support of x∗), e.g. by minimizing the �1 norm or the elastic
net over all x satisfying Ax = b (that is, ignoring the block
simplex constraints). Basic results in compressed sensing
guarantee that the true support can be recovered with high
probability [43] in the single block case. Then, we treat the
estimate as the prior for selecting the maximal support for
each block, and we update our prior as we find better estimates
of x∗. The random sampling method is detailed in Algorithm 2.

Algorithm 2 Random-Sampling(·) Random Sampling
Method for Block Sparse Recovery

Require: initial point (prior) x̂ ∈ R
n , need not be feasible

1: while max iterations not reached do
2: Pick some index for each simplex block,

ji ∼ Categorical(pi , x̂ i ) for i ∈ {1, · · · , q}
3: For the selected j = ( j1, j2, · · · , jq),

compute p∞ = minx∈S
∑q

i=1(xi
ji
)−1

4: If p∞ is the best so far,
then update x̂ = arg minx∈S

∑q
i=1(xi

ji
)−1

5: end while

We additionally propose the following random sampling
based heuristic (Algorithm 3), directly extending the method
proposed in [14], which similarly has the benefit of solving
linear subprograms instead of nonlinear subprograms.
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Algorithm 3 Random-Sampling-LP(·) Random Sam-
pling LP Method for Block Sparse Recovery

Require: initial point x̂ ∈ R
n , need not be feasible

1: while max iterations not reached do
2: Pick some index for each simplex block, qi ∼

Categorical(pi , x̂ i ) for i ∈ {1, · · · , p}
3: For the selected q = (q1, q2, · · · , qp), compute p∞ =

maxx∈S
∑p

i=1 xi
qi

4: If p∞ is the best so far, then update x̂ =
arg maxx∈S

∑p
i=1 xi

qi
5: end while
6: return x̂

B. Bayesian Inference (BI)

1) Markov Chain Monte Carlo (MCMC) Method: The
normal-Dirichlet posterior probability in Equation (12) does
not have a known analytical form, unfortunately, as in the
case of conjugate priors. As it requires the integration of
complex high-dimensional functions, it is difficult to derive
an efficient Expectation-Maximization (EM) method or Gibbs
sampler. Instead, we take an MCMC approach [44], which
attempts to simulate direct draws from complex distributions.
We apply a modified Metropolis-Hastings sampling method
with normal proposal distributions.

2) Metropolis-Hastings: Metropolis-Hastings is an MCMC
sampling method that is well suited for drawing samples from
some distribution p(θ) = f (θ)/Z , where normalizing constant
Z may not be known and may be very difficult to compute.

Our problem is well suited for a Metropolis-Hastings
approach [45], as we wish to sample from the posterior
distribution

P(x̃ |y, α) = P(y|x̃)P(x̃ |α)

Z

where the numerator is known (analytically) but the denomi-
nator is not.

We use an implementation of the Metropolis-Hastings sam-
pling method, with two common augmentations:

1) An additional periodic tuning of a scaling parameter for
the proposal distribution, and

2) A sequential block-updates of the latent variable.
The second augmentation to the standard
Metropolis-Hastings method is updating each x̃ i

in sequence. That is, each simplex block x̃ i is drawn in
sequence, conditioned on the rest of the blocks, denoted
x̃−i , and accepted (or rejected) in sequence.

The full procedure is detailed in Algorithm 4.
Thus, we have the following p proposal distributions to the

Metropolis-Hastings method for each latent variable x̃ i , i ∈
[1, 2, · · · , p]. For simplicity, we take our proposal distribution
to be the normal distribution.

qk(x̃ i |x̃−i ) = x̃−i + �i

Algorithm 4 MH(f,q,N) Metropolis-Hastings Sampling
With Block Updates and Periodic Tuning

Require: Any initial point θ(0) satisfying f (θ(0)) > 0
Require: Scaling parameter β = 1, tuning interval T
Require: Proposal distributions qi (θ |θ(t−1)), i ∈ {1, . . . , K }

for t = 1, . . . , N do
for k = 1, . . . , K do

Sample θk ∼ βq(θk|θ(t−1)
k )

Acceptance probability α = min(
f (θk)q(θk |θ(t−1)

k )

f (θ
(t−1)
k )q(θ

(t−1)
k |θk)

)

Accept with probability α: θ
(t)
k = θk

Else: θ
(t)
k = θ

(t−1)
k

end for
Every T iterations, tune scaling parameter β according to
the acceptance rate over last interval

end for
return {θ(1), . . . , θ (N)}

where �i = (�i
1, �

i
2, · · · , �i

pi
)

iid∼ N (0, σ ), and the complete
likelihood is given by f : Rn → R,

f (x̃ |y, α) =
m∏

j=1

P(y j |x̃)

p∏

i=1

P(x̃ i |α)

C. Convex Optimization (CO)

1) BSLS Problem: To solve the BSLS problem, we apply
an efficient projected first-order descent method (see
Algorithm 5), with a block isotonic regression projection
step (which adapts the well-studied Pool Adjacent Violators
Algorithm (PAVA) [46], [47] to the box-constrained set-
ting, see Algorithm 6). For a full treatment of PAVA,
see [4, §3] and [48].

Algorithm 5 Proj-Descent(·) General Projected Descent
Method
Require: initial point z = (z p)p∈P in the feasible set X .
1: while stopping criteria not met do
2: Determine a descent direction �z = (�z p)p∈P
3: Projection: (z p)+ := argmin

u p
{�z p + �z p − u p�2 : 0 ≤

u p
1 ≤ u p

2 ≤, · · · ≤ u p
n p−1 ≤ 1}, ∀ p ∈ P

4: Line search on the projected arc:
γ :≈ argmin { f (z + t (z+ − z)) : t ∈ [0, 1]}

5: z := z + γ (z+ − z)
6: end while
7: return z

A key component of our approach is the analysis of the
constraints of the convex optimization program. We apply a
standard equality constraint elimination technique [5, §4.2.4]
with a particular change of variable which converts the
non-negativity constraints on the variables to ordering con-
straints. In the new space induced by the change of variables,
we show that the projection on the feasible set (characterized
by the ordering constraints) can be performed in linear time
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Fig. 3. Benchmark network example. Figure 3a depicts a directed network representation, with 3 origins (nodes, denoted by letters), 5 links (edges, denoted
by numbers), and 7 routes (denoted by their sequence of links). Indicated in are 2 links that share a sensor measurement b = 200. Figure 3b shows the OD
flow measurements between all OD pairs, along with the set of routes (sequence of links) we consider for the toy problem. We denote again in the routes
that share sensor measurement b. Figure 3c shows the graphical model corresponding to the network, available measurements, and latent variables. Note that
b does not depend on x B A or the flow between B A. (a) Benchmark network. (b) OD flows and routes. (c) OD flows and routes.

Algorithm 6 PAVA-proj(y p) Projection Onto Ordering
Constraints in Line 3 of Algorithm 5

Require: vector y p ∈ R
n p−1

1: compute with the PAV algorithm [46]:
y p,iso := argmin

u p
{�u p − y p�22 : u p

1 ≤ u p
2 ≤ · · · ≤ u p

n p−1}
2: project y p,iso onto [0, 1]n p−1:

ỹ p
k =

⎧
⎪⎨

⎪⎩

y p,iso
k if y p,iso

k ∈ [0, 1]
0 if y p,iso

k ≤ 0

1 if y p,iso
k ≥ 1

.

3: return return ỹ p

via bounded isotonic regression (see [49] for a short survey
on isotonic regression). Then we solve our convex optimiza-
tion program with an accelerated first order or second order
projected descent algorithm. The change of variables presents
two main advantages: the dimensionality is reduced (for each
block), which is critical for large-scale problems, and we can
perform the projection in On, an improvement over On log n
required by the projection onto the simplex [50], [51], where
n is the size of a block. In addition, it is worth noting that a
wide variety of problems can benefit from this methodology.
First, the use of algorithms that feature a projection step, e.g.
projected descent methods and alternating direction methods,
is very popular since they often provide a simple and efficient
way to solve constrained convex optimization problem as
opposed to more specialized active set methods. There is also
a great deal of applications that feature simplex constraints,
such as the aforementioned traffic assignment problem and
games in general for the computation of strategy distributions,
and �1-based approach in machine learning [50].

In the block simplex setting, this method achieves Omp
time, and improvement from Omp log p, where m is the
number of blocks and p is the size of the blocks. An analogous
complexity can be shown for blocks {pi} of different sizes.

VII. EXPERIMENTAL RESULTS: METHOD EVALUATION

Finally, we discuss the results of the numerical experi-
ments in the traffic network setting. We denote γ = �x�0

n
the fraction of nonzero entries in the true signal, and our

experiments range with γ ∈ [0.067, 1]. Ultimately, our
measure of accuracy is relative route flow error, denoted
�(x) = �x true − x�1/�x true�1.

We first present the test networks used in our experiments.
Then, we present our findings with respect to accurate signal
recovery and efficient signal recovery. In many situations,
CS and BI recover signals more accurately than other methods,
and BI has the advantage of having tune-able parameters.
Among these methods, CO scales best; however, the block size
significantly affects the performance of the CO and BI meth-
ods. Overall, we find that the CO method is recovers signals
accurately and efficiently in large-scale routing applications.

A. Networks

We perform experiments on a variety of network scales,
topologies, and solution distributions (i.e. route choice mod-
els). We first introduce the types of network models:

1) Benchmark Network (Figure 3): We use a benchmark
network, which consists of 3 nodes, 5 links, and 7 routes.

2) Grid Networks: We construct grid networks of size
1x3 up to 11x11 (6-440 links, 12-217,800 routes). For each
OD pair, up to 15 acyclic shortest paths are selected.

3) Full-Scale Los Angeles Network: Finally, we use a
full-scale network located in Los Angeles, CA, consisting
of 20,513 links, 10,538 nodes, 280,691 routes, 700 origins,
1,033 link flow sensors, 1,000 cellpath sensors (cell tow-
ers), and 1 million simulated agents in the 25-mile wide
I-210 highway.

B. Accurate Recovery

We first note that �(·) is an extremely difficult metric, espe-
cially for under-determined settings, since having a non-empty
nullspace implies an infinite number of feasible solutions.

1) Sparse Recovery (See Figure 4): As typical in highly
under-determined settings, signal recovery is challenging
across the board (note the blue to green circles in 4a and
4b). However, remarkably, in sparse settings ( γ < 0.1),
CS outperforms CO and BI in terms of accuracy of recovery.
Note the error of the yellow and red circles in Figures 4a
vs 4b; BI is not shown, due to scalability limitations. While
the vast majority of high block-density instances (more red)
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Fig. 4. Evaluation of methods (accuracy). Each circle is the outcome of
an experiment (in a sparse setting) in terms of signal recovery accuracy.
There are 447 CS experiments and 6143 CO experiments. The color scale
indicates the ratio of blocks per number of routes, i.e. q/n. The relative error
is �(·), and the percent sparsity γ is the percentage of nonzero entries in x .
Although the recovery is challenging across the board, in high block-density
settings, CS far outperforms CO in terms of accuracy. Best viewed in color.
(a) Recovery accuracy via compressed sensing CS. (b) Recovery accuracy via
convex optimization CO.

are recovered accurately through the CS approach, their CO
counterpart typically recovers the signals with up to 85%
error. The sufficient and necessary conditions on the (traffic)
matrices for guaranteed sparse recovery is beyond the scope
of this work.

2) Spread Recovery (See Figure 5): By tuning the hyper-
parameters of the graphical model, the BI method is able
to capture a range of spread for a benchmark network (See
Figure 3), as measured by the cardinality of the solution
�x�0. The benchmark network has the following probabilistic
model:

x AB ∼ Dir((α, α)), xC A ∼ Dir((α, α)), xC B ∼ Dir((α, α))

y|x̃ ∼ N (400x AB
2 + 600 xC A

1 + 1000xC B
1 , σ 2)

Fig. 5. Bayesian inference on benchmark network. For 500 trials using
each prior α ∈ {(2, 2), (1, 1), (0.5, 0.5), (0.25, 0.25)} and each variance value
(σ 2 ∈ {10−1, 10−2, 5×10−3, 10−3, 5×10−4, 10−4}), we record the number
of zeros (i.e. n − �x�0) in the recovered signal and display the aggregate
counts as a histogram. Each trial is run with burn-in of 3000. The trials
are averaged over the variances, and the (small) standard deviation bars are
displayed accordingly. Best viewed in color.

where y is scalar (we have only one measurement) and

x = [
x AB x B A xC A xC B

]T
,

noting that x B A is given. Following an experiment on this
network consisting of 500 trials with experimentally deter-
mined burn-in of 3,000 samples, the spread recovery is seen
by the number of zeros in the recovered solution; by tuning
the hyperparameter α down, solutions with more zeros (x-axis
of Figure 5) are encouraged for Dirichlet distributions. For
instance, among solutions with two zeros (in a vector of size
seven), α = (2, 2) produces 20 instances (out of 500), whereas
α = (0.25, 0.25) produces 150. Note that in the benchmark
network, at least four of the entries must be nonzero, due
to the four ODs, and thus at most three entries may be
zeros. In contrast, though the CS method encourages sparsity,
the BI method provides a tune-able parameter to encourage or
discourage sparsity, which may be informed by complex priors
on specific contexts, for instance travel time, safety, comfort,
and may also vary ablock simplex to the next. The CO method
neither encourages nor discourages spread.

C. Efficient Recovery

1) Scalability (See Figure 6): With respect to the signal
size n, the CS method runs well for medium-sized problems,
BI works primarily for small problems, and CO method scales
well to large problems. In particular, the proposed methods
solve problems of size n = 1800, 200, 12000 for the CS,
BI, CO methods, respectively, in 10 minutes on commodity
hardware (including 3.3GHz with 4GB memory instances
and 2.5GHz with 15.25GB memory-optimized instances).
Although our methods all scale linearly in each iteration,
the constant factors vary widely, and the number of iterations
can grow super-linearly with the number of routes considered.

2) Block Size vs Computational Efficiency (See Figure 6):
For a fixed signal n, we find additionally that our meth-
ods behave significantly differently for varying block sizes
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TABLE I

SUMMARY OF METHOD EVALUATION. WE HAVE CONSIDERED THREE MAIN COMPUTATIONAL APPROACHES (CS, BI, CO). FOR EACH ONE,
WE SUMMARIZE ITS UNDERLYING MODEL, THE METHOD WE CHOSE OR DEVELOPED, ALONG WITH A COMPARISON OF ITS EFFICIENCY AND

RECOVERY ACCURACY ATTRIBUTES

(a)

(b)

Fig. 6. Evaluation of methods (scalability). BI is displayed separately from
CS and CO due to the difference in scale of problems that the respective
methods are able to compute. Noting the trend lines, each method scales
linearly (empirically); however, the specific scaling ratio depends on the
specific block sparsity pattern and varies by method. The color scale indicates
the ratio of blocks per number of routes, i.e. q/n. Best viewed in color.
(a) CS (squares) and CO (circles), with and trend lines, respectively.. (b)
Scalability for BI, with and trend lines representing the high block-density and
low block-density scenarios. BI scales better for low block-density scenarios.

(i.e. simplex dimensionality). We find that CO converges faster
when the size of the blocks is small (note the red circles
in Figure 6a), i.e. when the ratio of blocks per signal length
q/n is high, that is, when we have few routes per block
simplex flow measurement, e.g. cellpath, OD. This is a result
of the dimensionality reduction scheme, which transforms a
problem of n variables into one with n−q variables, yielding a
smaller optimization problem. In contrast, BI converges slower

for small block sizes than for large block sizes (note the slope
of the red circles vs the slope of the blue circles in Figure 6b).
These experiments used an experimentally determined burn-in
of 6000 samples. This slow convergence is explained by
the difficulty for sampling-based methods such as MCMC
to sample probable (or feasible) solutions in the presence of
relatively many constraints. On the other hand, the sampling-
based CS method is unaffected by block size.

3) Large-Scale Experiment: Only the CO method scaled to
the full-scale Los Angeles network. In a quasi-static traffic
network setting, we achieve an error of �(x) = 0.1, that
is 90% route flow accuracy. This is the first accurate result
on large-scale estimation of route flow in the traffic setting,
using infrastructure available today. For a full treatment of
this experiment and more detailed results, please refer to [4].
This result provides evidence that available cellular sensors
are suitable for traffic estimation and management, and that
CO is a suitable method for solving this problem accuracy
and efficiently in large urban networks.

D. Discussion

The complexity of the route flow signal motivates
approaches for the problem of block simplex signal recovery,
from the perspectives of convex optimization, compressed
sensing, and Bayesian inference. We present a summary of
methods, results, and intuitive takeaways for the block simplex
signal recovery problem in Table I. Our numerical results
highlight salient trade-offs between the approaches. In par-
ticular, CO scales well to full-sized traffic networks, but may
only recover one of infinitely many feasible solutions. On the
other extreme, CS attempts to recover the sparsest among the
feasible solutions. The proposed methods are appropriate for
medium-sized networks, however the suitability of the sparsest
solution is context-dependent. Striving for a middle ground,
the BI approach allows the designer to encode context in the
form of a prior, which may even vary per block simplex
and thus is an appealing approach to recovering the most
likely route flow signal. However, the BI method exhibits poor
scalability beyond very small networks. Additionally, we find
that the size and thus number of blocks q affects the empirical
convergence speed of the methods in vastly different ways,
independent of the overall size of the problem n.

VIII. CONCLUSION

This article has presented the problem of block simplex sig-
nal recovery, three principled approaches, an empirical method
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evaluation, and its application to an important real-world
problem. It is the first extensive methods exposition and
comparative analysis of this problem and aims to provide
insights to its disparate yet natural methodologies. Each
method has its strengths and weaknesses, and our experiments
establish that there exist methods that exhibit some of our
desired properties—efficient recovery and recovery with vary-
ing degrees of sparsity—but there does not yet exist a method
that has all our desired properties. Nonetheless, a compressed
sensing approach is shown to recover sparse solutions, and a
Bayesian inference approach is shown to encourage different
amounts of spread with a tune-able hyperparameter. Finally,
our experiments show that the convex optimization approach
is not only computationally efficient, but accurately recovers
the signal in our routing application.

For future work, we plan to see how we can combine
ideas from these three approaches and more, while keeping
the strengths. For instance, we are interested in exploring
an optimization approach to the Bayesian inference method
through variational inference as an avenue to improve its
scalability. An interesting open question is whether there is
a formal connection between regularizing the BSLS objective
and placing a prior on the spread of the solution. We are
also interested in alternative sparsity relaxation techniques and
simplex projection methods which may lead to better results.
Furthermore, we are interested in the theoretical analysis of
structured sparsity for non-�1-based compressive sensing. We
also plan to study the robustness of these methods in the
presence of measurement noise. Finally, real-world data rarely
conforms to clean assumptions, as made in this work, and the
future study of the conjunction of these proposed approaches
with data filtering techniques will be important for real-world
applicability.

ACKNOWLEDGEMENT

The authors would like to thank Philipp Moritz, Fanny
Yang, Richard Shin, Jerome Thai, and Steve Yadlowsky for
many enlightening discussions and early collaborations on
the proposed techniques. They would like to thank Jason Du
and Chenyang Yuan for help with the large-scale experiments
and visualizations. They are also grateful for insightful con-
versations with Professor Laurent El Ghaoui, Dr. Alexander
Kurzhanskiy, and Professor Suvrit Sra.

REFERENCES

[1] G. van der Laan and A. J. J. Talman, “On the computation of fixed
points in the product space of unit simplices and an application to
noncooperative Nperson games,” Math. Oper. Res., vol. 7, no. 1,
pp. 1–13, Feb. 1982.

[2] T. M. Doup and A. J. J. Talman, “A new simplicial variable dimension
algorithm to find equilibria on the product space of unit simplices,”
Math. Program., vol. 37, no. 3, pp. 319–355, Oct. 1987.

[3] M. Jaggi, S. Lacoste-Julien, M. Schmidt, and P. Pletscher, “Block-
coordinate frank–wolfe for structural SVMS,” in Proc. NIPS Workshop
Optim. Mach. Learn., Lake Tahoe, NV, USA, 2012, pp. 1–5.

[4] C. Wu, J. Thai, S. Yadlowsky, A. Pozdnoukhov, and A. Bayen, “Cellpath:
Fusion of cellular and traffic sensor data for route flow estimation
via convex optimization,” Transp. Res. Procedia, vol. 7, pp. 212–232,
Aug. 2015.

[5] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, Mar. 2004.

[6] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Opti-
mization: Analysis, Algorithms, and Engineering Applications. vol. 2.
Philadelphia, PA, USA: SIAM, 2001.

[7] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289–1306, Apr. 2006.

[8] Y. C. Eldar and G. Kutyniok, Compressed Sensing: Theory and Appli-
cations. Cambridge, U.K.: Cambridge Univ. Press, 2012.

[9] M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of
compressed sensing for rapid MR imaging,” Magn. Reson. Med., vol. 58,
no. 6, pp. 1182–1195, Oct. 2007.

[10] D. Koller and N. Friedman, Probabilistic Graphical Models Principles
and Techniques. Cambridge, MA, USA, MIT Press, 2009.

[11] M. J. Wainwright and M. I. Jordan, “Graphical models, exponential
families, and variational inference,” Found. Trends Mach. Learn., vol. 1,
nos. 1–2, pp. 1–305, Jan. 2008.

[12] R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde, “Model-
based compressive sensing,” IEEE Trans. Inf. Theory, vol. 56, no. 4,
pp. 1982–2001, Apr. 2010.

[13] J. Vila and P. Schniter, “An empirical-Bayes approach to recovering
linearly constrained non-negative sparse signals,” in Proc. 5th IEEE
Int. Workshop Comput. Adv. Multi-Sensor Adapt. Process. (CAMSAP),
Dec. 2013, pp. 5–8.

[14] M. Pilanci, L. E. Ghaoui, and V. Chandrasekaran, “Recovery of sparse
probability measures via convex programming,” in Proc. Adv. Neural
Inf. Process. Syst., 2012, pp. 2420–2428.

[15] L. R. Ford and D. R. Fulkerson, Flow Network. Princeton, NJ, USA:
Princeton Univ. Press, 1962.

[16] H. J. van Zuylen and D. M. Branston, “Consistent link flow esti-
mation from counts,” Transp. Res. B, Methodol., vol. 16, no. 6,
pp. 473–476, Dec. 1982. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/0191261582900066

[17] C. Fisk, “Trip matrix estimation from link traffic counts: The congested
network case,” Transp. Res. B, Methodol., vol. 23, no. 5, pp. 331–336,
Oct. 1989.

[18] H. Yang, T. Sasaki, Y. Iida, and Y. Asakura, “Estimation of origin-
destination matrices from link traffic counts on congested net-
works,” Transp. Res. B, Methodol., vol. 26, no. 6, pp. 417–434,
Dec. 1992.

[19] H. Yang, Y. Iida, and T. Sasaki, “The equilibrium-based origin-
destination matrix estimation problem,” Transp. Res. B, Methodol.,
vol. 28, no. 1, pp. 23–33, Feb. 1994.

[20] H. Yang, “Heuristic algorithms for the bilevel origin-destination matrix
estimation problem,” Transp. Res. B, Methodol., vol. 29, no. 4,
pp. 231–242, Aug. 1995.

[21] T. Seo, A. M. Bayen, T. Kusakabe, and Y. Asakura, “Traffic state
estimation on highway: A comprehensive survey,” Annu. Rev. Control,
vol. 43, pp. 128–151, Jan. 2017.

[22] J. G. Wardrop and J. I. Whitehead, “Correspondence. Some theoretical
aspects of road traffic research,” ICE Proc: Eng. Divisions, vol. 1, no. 5,
pp. 767–768, Oct. 1952.

[23] Y. Sheffi, Urban Transportation Networks: Equilibrium Analysis with
Mathematical. Englewood Cliffs, NJ, USA: Prentice-Hall, 1985.

[24] M. G. H. Bell and Y. Iida, Transportation Network Analysis. West
Sussex, U.K.: Wiley, 1997.

[25] C. F. Daganzo and Y. Sheffi, “On stochastic models of traffic assign-
ment,” Transp. Sci., vol. 11, no. 3, pp. 253–274, Aug. 1977.

[26] M. J. Maher and P. C. Hughes, “A probit-based stochastic user equi-
librium assignment model,” Transp. Res. B, Methodol., vol. 31, no. 4,
pp. 341–355, Aug. 1997.

[27] C. Fisk, “Some developments in equilibrium traffic assignment,” Transp.
Res. B, Methodol., vol. 14, no. 3, pp. 243–255, Sep. 1980.

[28] M. G. H. Bell, C. M. Shield, F. Busch, and G. Kruse, “A stochastic
user equilibrium path flow estimator,” Transp. Res. C, Emerg. Technol.,
vol. 5, nos. 3–4, pp. 197–210, Aug./Oct. 1997.

[29] E. Hato, M. Taniguchi, Y. Sugie, M. Kuwahara, and H. Morita, “Incor-
porating an information acquisition process into a route choice model
with multiple information sources,” Transp. Res. C, Emerg. Technol.,
vol. 7, nos. 2–3, pp. 109–129, Apr./Jun. 1999.

[30] T. Tettamanti, H. Demeter, and I. Varga, “Route choice estimation based
on cellular signaling data,” Acta Polytechnica Hungarica, vol. 9, no. 4,
pp. 207–220, Jan. 2012.

[31] J. Barcelö, L. Montero, L. Marqués, and C. Carmona, “Travel time fore-
casting and dynamic origin-destination estimation for freeways based on
bluetooth traffic monitoring,” Transp. Res. Rec., J. Transp. Res. Board,
vol. 2175, no. 1, pp. 19–27, 2010.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WU et al.: BLOCK SIMPLEX SIGNAL RECOVERY: METHODS, TRADE-OFFS, AND AN APPLICATION TO ROUTING 13

[32] G. Michau, A. Nantes, A. Bhaskar, E. Chung, P. Abry, and P. Borgnat,
“Bluetooth data in an urban context: Retrieving vehicle trajectories,”
IEEE Trans. Intell. Transp. Syst., vol. 18, no. 9, pp. 2377–2386,
Sep. 2017.

[33] E. Castillo, I. Gallego, J. M. Menéndez, and A. Rivas, “Optimal use of
plate-scanning resources for route flow estimation in traffic networks,”
IEEE Trans. Intell. Transp. Syst., vol. 11, no. 2, pp. 380–391, Jun. 2010.

[34] J. Yang and J. Sun, “Vehicle path reconstruction using automatic vehicle
identification data: An integrated particle filter and path flow estimator,”
Transp. Res. C, Emerg. Technol., vol. 58, pp. 107–126, Sep. 2015.

[35] T. Hunter, R. Herring, P. Abbeel, and A. Bayen, “Path and travel time
inference from GPS probe vehicle data,” in Proc. Neural Inf. Process.
Syst. Found. (NIPS), Dec. 2009, pp. 1–8.

[36] M. Rahmani and H. N. Koutsopoulos, “Path inference from sparse
floating car data for urban networks,” Transp. Res. C, Emerg. Technol.,
vol. 30, pp. 41–54, May 2013.

[37] N. Breyer, D. Gundlegård, and C. Rydergren, “Cellpath routing and
route traffic flow estimation based on cellular network data,” J. Urban
Technol., vol. 25, no. 2, pp. 85–104, Apr. 2018.

[38] P. Ye and D. Wen, “Optimal traffic sensor location for origin–destination
estimation using a compressed sensing framework,” IEEE Trans. Intell.
Transp. Syst., vol. 18, no. 7, pp. 1857–1866, Jul. 2017.

[39] M. J. Maher, “Inferences on trip matrices from observations on link
volumes: A Bayesian statistical approach,” Transp. Res. B, Methodol.,
vol. 17, no. 6, pp. 435–447, Dec. 1983.

[40] C. Tebaldi and M. West, “Bayesian inference on network traffic using
link count data,” J. Amer. Stat. Assoc., vol. 93, no. 442, pp. 557–573,
Jun. 1998.

[41] K. Parry and M. L. Hazelton, “Bayesian inference for day-to-
day dynamic traffic models,” Transp. Res. B, Methodol., vol. 50,
pp. 104–115, Apr. 2013.

[42] J. A. Tropp and A. C. Gilbert, “Signal recovery from random mea-
surements via orthogonal matching pursuit,” IEEE Trans. Inf. Theory,
vol. 53, no. 12, pp. 4655–4666, Dec. 2007.

[43] M. J. Wainwright, “Sharp thresholds for high-dimensional and noisy
sparsity recovery using �1-constrained quadratic programming (Lasso),”
IEEE Trans. Inf. Theory, vol. 55, no. 5, pp. 2183–2202, May 2009.

[44] W. R. Gilks, Markov Chain Monte Carlo. Hoboken, NJ, USA: Wiley,
2005.

[45] S. Chib and E. Greenberg, “Understanding the metropolis-hastings
algorithm,” Amer. Stat., vol. 49, no. 4, pp. 327–335, Nov. 1995.

[46] R. E. Barlow and H. D. Brunk, “The isotonic regression problem and its
dual,” J. Amer. Stat. Assoc., vol. 67, no. 337, pp. 140–147, Mar. 1972.

[47] M. J. Best and N. Chakravarti, “Active set algorithms for iso-
tonic regression; A unifying framework,” Math. Program., vol. 47,
nos. 1–3, pp. 425–439, May 1990.

[48] J. Thai, C. Wu, A. Pozdnukhov, and A. Bayen, “Projected sub-gradient
with �1 or simplex constraints via isotonic regression,” in Proc. 54th
IEEE Conf. Decis. Control (CDC), Dec. 2015, pp. 2031–2036.

[49] R. J. Tibshirani, H. Hoefling, and R. Tibshirani, “Nearly-isotonic regres-
sion,” Technometrics, vol. 53, no. 1, pp. 54–61, Feb. 2011.

[50] J. Duchi, S. Gould, and D. Koller, “Projected subgradient methods for
learning sparse gaussians,” in Proc. 24th Conf. Uncertainty Artif. Intell.,
Jul. 2008, pp. 153–160.

[51] W. Wang and M. Á. Carreira-Perpiñán. (2013). “Projection onto the
probability simplex: An efficient algorithm with a simple proof, and an
application.” [Online]. Available: https://arxiv.org/abs/1309.1541

Cathy Wu received the B.S. and M.Eng. degrees
from the Massachusetts Institute of Technology and
the Ph.D. degree from UC Berkeley, all in electri-
cal engineering and computer science. She holds a
post-doctoral position at Microsoft Research AI. She
will join MIT as an Assistant Professor in 2019.
She works at the intersection of machine learn-
ing, optimization, and urban systems. Her work
was acknowledged by several awards, including the
2019 Microsoft Location Summit Hall of Fame,
the 2018 Milton Pikarsky Memorial Dissertation

Award, the 2016 IEEE ITSC Best Paper Award, and fellowships from NSF,
Berkeley Chancellor, NDSEG, and Dwight David Eisenhower.

Alexei Pozdnukhov received the Computer Science
degree in mathematical physics from the Physics
Department, Moscow State University, in 2003, and
the Ph.D. degree in computer science from the École
Polytechnique Fédérale de Lausanne, Switzerland,
in 2006, following his research in machine learning
methods and computer vision that he carried out at
the IDIAP Research Institute, Martigny, Switzerland.
His current research at UC Berkeley is in the area of
complex data analysis in the domain of Smart Cities
and is supported by NSF, NASA, California DOT,
and industry.

Alexandre M. Bayen received the B.S. degree from
Ecole Polytechnique, France, and the M.S. and Ph.D.
degrees from Stanford University. He is a Professor
of electrical engineering and computer science, and
civil and environmental engineering. He is currently
the Liao-Cho Professor of engineering with UC
Berkeley, and is also the Director of the Institute
of Transportation Studies (ITS). Prior to joining UC
Berkeley, he was a Visiting Researcher at NASA
Ames Research Center. He worked at the Depart-
ment of Defense, France, where he holds the rank

of Major. He has published two books and over 200 publications. He has
received numerous awards, including the Ballhaus Award from Stanford,
the NSF CAREER Award, the Okawa Research Grant Award, the Ruberti
Prize from the IEEE, and the Huber Prize from the ASCE. He is the NASA
Top 10 Innovators on Water Sustainability. His projects Mobile Century and
Mobile Millennium received the Best of ITS Award for the Best Innovative
Practice at the ITS World Congress and a TRANNY Award from the
California Transportation Foundation. He is a recipient of the Presidential
Early Career Award for Scientists and Engineers (PECASE) Award from the
White House.


