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The current trend toward urbanization and adoption of flexible and innovative mobility technologies will

have complex and difficult-to-predict effects on urban transportation systems. Comprehensive methodolog-

ical frameworks that account for the increasingly uncertain future state of the urban mobility landscape do

not yet exist. Furthermore, few approaches have enabled the massive ingestion of urban data in planning

tools capable of offering the flexibility of scenario-based design.

This article introduces Berkeley Integrated System for Transportation Optimization (BISTRO), a new open

source transportation planning decision support system that uses an agent-based simulation and optimization

approach to anticipate and develop adaptive plans for possible technological disruptions and growth scenar-

ios. The new framework was evaluated in the context of a machine learning competition hosted within Uber

Technologies, Inc., in which over 400 engineers and data scientists participated. For the purposes of this com-

petition, a benchmark model, based on the city of Sioux Falls, South Dakota, was adapted to the BISTRO

framework. An important finding of this study was that in spite of rigorous analysis and testing done prior to

the competition, the two top-scoring teams discovered an unbounded region of the search space, rendering

the solutions largely uninterpretable for the purposes of decision-support. On the other hand, a follow-on

study aimed to fix the objective function. It served to demonstrate BISTRO’s utility as a human-in-the-loop

cyberphysical system: one that uses scenario-based optimization algorithms as a feedback mechanism to

assist urban planners with iteratively refining objective function and constraints specification on interven-

tion strategies. The portfolio of transportation intervention strategy alternatives eventually chosen achieves

high-level regional planning goals developed through participatory stakeholder engagement practices.
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1 INTRODUCTION

As modern transportation systems undergo a period of intense technological change, researchers,
practitioners, and policymakers are seeking to understand how long-term trends toward vehicle
digitalization, automation, electrification, as well as the emerging sharing economy will shape the
future day-to-day dynamics of human mobility in cities worldwide.
Likewise, rapid advances in computing as well as the advent of metropolitan scale data mining

and pattern recognition (i.e., machine learning) have, for the first time, made it possible to char-
acterize urban traffic flows based on movement traces from millions of individual travelers. These
methods fuse passively collected spatiotemporal trajectories derived from smartphone data with
static census data in order to map travel patterns to sociodemographic characteristics. Specialized
traffic models can thereby be trained using feature-rich representations of human mobility.
While such predictive models have proven effective in nearcasting congestion events [1], purely

data-driven methods often fail to generalize when applied to the task of forecasting the effect of
transportation policy strategies on future demand—particularlywhen anticipated changes in urban
sociodemographics, regulatory policy, and mobility technologies as well as interactions between
these layers cannot themselves be predicted with a high degree of certainty [2]. In other words, the
covariates of statistical models may not capture the numerous interacting physical and behavioral
components (i.e., network effects) influencing transportation supply and demand.
Agent-based modeling and simulation (ABMS) techniques and software, on the other hand, are

beginning to be used as flexible decision-support tools by planning groups, technologists, and
regulatory agencies to facilitate forecasting the short- and long-term implications of transportation
system interventions. That is, by simulating models of traveler decision-making in the context of a
landscape of future plausible “states of the world,” stakeholders can better resolve uncertainty over
how transportation system interventions may fare. For example, ABMS enables the investigation
of the extent to which citizens may adopt on-demand autonomous vehicles, as well as how to
sustain fleet operation [3, 4].
Evenwith these advances, selecting interventions that balance competing transportation system

policy objectives remains a difficult and contentious process. Current methods to identify the best
alternative under a given scenario often involves the use of Monte Carlo methods to evaluate
different policy options. Such approaches can be extremely computationally expensive for large
ABMS implementations and are unlikely to yield an optimal solution. Moreover, transportation
researchers and practitioners often develop scenario-specific and/or geography-specific simulation
models with limited integration of the efficient and highly generalizable methods developed in the
artificial intelligence (AI) and machine learning (ML) communities.
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The Berkeley Integrated System for TRansportation Optimization (BISTRO) is an open source
framework and software toolkit designed to address the increasingly complex problems arising
in transportation systems worldwide. BISTRO does this through an innovative human-machine
collaboration approach, using state-of-the-art optimization algorithms to efficiently automate the
search for policy interventions that achieve good performance over diverse transportation system
scenarios and stakeholder objectives. BISTRO includes an ABMS system and scenario development
pipeline to build empirically-calibrated simulations of travel demand in metropolitan transporta-
tion systems. After a calibrated scenario has been developed, BISTRO enables use of state-of-the-
art optimization algorithms to identify system interventions that best align with policy and plan-
ning objectives. Users can deploy BISTRO to enable distributed development of algorithms that
rapidly optimize a feasible set of policy and investment decisions. Once one or more desirable so-
lutions are found, BISTRO provides a suite of analysis and visualization tools to empower citizens,
transportation system planners and engineers, private entities, and governments to better under-
stand and collaborate on developing strategies that achieve equitable access to and sustainable use
of current and emerging mobility services.
The rest of this article is organized as follows: Section 2 provides a brief overview of the current

state of transportation planning, ABMS tools, and transportation optimization tools, respectively;
Section 3 presents BISTRO, covering the system architecture, scoring function design, inputs, out-
puts, analysis capabilities, and performance characteristics; Section 4 details an initial pilot study,
updates to BISTRO based upon the pilot, and a few algorithmic solution approaches; and Section 5
offers a short conclusion.

2 BACKGROUND

2.1 Transportation Planning and Policy Decision Support Systems

In the United States, the primary outcome of efforts to design, model, and communicate the im-
pacts of proposed policy interventions and infrastructure investments on transportation systems
are Metropolitan Regional Transportation Plans (RTPs) and State Long-Range Transportation Plans

(LRTPs). These plans are forward-looking, long-term (20+ year time horizons) and have been a
federally mandated task since the Federal-Aid Highway Act of 1962. Recently, state departments
of transportation and Metropolitan Planning Organizations (MPOs)—the entities tasked with pro-
ducing RTPs every four-to-five years—have been shifting toward performance-based planning and
programming (PBPP) frameworks [5].
As part of RTP development using PBPP guidelines, an MPO or related agency will typically

conduct a community engagement process to identify one or more visions or goals shared by stake-
holders and the public describing a desired future state of the regional transportation system (e.g.,
safe roadways, accessible transit, environmental stewardship) [5–7]. Measurable objectives are de-
fined together with quantitative performance indicators in order to evaluate the extent to which
alternative strategies consisting of policy interventions or infrastructure investments could make
progress toward achievement of a goal [5, 6]. Typically, the impact of these projects on key perfor-

mance indicators (KPIs) of transportation system performance will be forecast using an analytic,
data-driven model of travel demand.1

1Traditionally, the travel demand modeling process consists of four main steps: (1) trip generation to and from all analysis

zones; (2) trip distribution (or matching origins and destinations, often using a gravity model); (3) assigning traveler mode

choice based upon individual preferences and alternative characteristics; and (4) route assignment of trips onto physical

network links; this is referred to as the four-step model. Many MPOs and other agencies are moving toward disaggregate,

activity-based, or person-centric models of daily activity, rather than aggregate approaches operating on the zonal level

[6].
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The domain expertise necessary to understand the functionality of models of transportation de-
mand may result in recommendations that are frustratingly opaque to public interpretation [7].
Explanations of the inner workings of the modeling process are not presented during public col-
laboration meetings, and questions regarding the validity of models have led to lawsuits over the
lack of publicly available information on model specifics [8]. Often, contractual obligations or pro-
prietary data formats used by the consulting firms tasked with developing planning software fur-
ther restrict public access. The inability or unwillingness on the part of MPOs to promote flexible
open source software licensing strategies discourages independent investigations (by, for exam-
ple, academic or public interest groups) to verify that the theory, equations, algorithms, and data
comprising a model match its software implementation. This lack of operational transparency not
only subverts accountability, but also impedes the rapid transfer of innovative modeling methods
and technologies across and even within agencies [9, 10].

To address criticism concerning model transparency and explainability, recent transportation
and land-use planning organizations have begun to pilot software that visualizes the impacts of
alternatives and provide for a for public input via collaborative simulation platforms [6, 11–14]. An
interesting example is the UrbanAPI project, which includes aweb-based three-dimensional virtual
reality visualization of the impacts of urban growth scenarios at the scale of individual neighbor-
hoods [13]. While initial efforts have focused on the usability requirements of these tools, their
broader impact has been limited due to narrowly defined geographic contexts or specialization for
regional system objectives [15].

One project that does have broad support across several MPOs is ActivitySim, which is currently
being developed by the Association of Metropolitan Planning Organizations as an open source
activity-based travel modeling platform [16]. ActivitySim may be used in concert with synthetic
households, synthetic persons, employment data, land use data, and network performance data
(e.g., travel times by mode and time of day, costs, and transfers) to generate a full-scale model for
a city’s travel demand. ActivitySim may be seen as a complementary project to our own in that
ActivitySim model outputs can be used as input data for a BISTRO scenario.

2.2 ABMS of Transportation Systems

Developing models that replicate how urban systems operate and evolve has been a major focus of
transportation engineers, urban planners, and geographers. Trip-based methods, such as the tra-
ditional four-step model used by MPOs, are specified at aggregate geographic or categorical levels
rather than at the level of individual decision-makers. This level of aggregation can limit the ability
of such models to explain complex individual decisions. Some MPOs have begun to adopt a more
behaviorally-descriptive activity-based approach [17]. In contrast to trip-based models, activity-
based methods represent more comprehensive links between activity scheduling, mode choice,
social interaction, and spatiotemporal constraints [17]. ABMS of transportation demand are ca-
pable of replicating observed macroscopic traffic patterns by simulating the microscopic decision-
making behavior of a synthetic population of software agents as they execute their daily travel
plans on a virtual model of the transportation system. When calibrated to ground-truth data by
modifying only global parameters characterizing the embedded choice model, agent-based frame-
works represent parsimonious descriptions of regional travel demand. Consequently, ABMS are
capable of accurately capturing shifts in macro patterns when forecast changes in transportation
infrastructure, policies, demographics, and vehicle ownership are introduced to the virtual travel
environment [2].
In the past three decades, several multi-agent frameworks such as TRansportation ANalysis

SIMulation System (TRANSIMS) [18], MultiAgent Transportation Simulation (MATSim) [3], Sim-
ulation of Urban Mobility (SUMO) [19], and Planning and Operations Language for Agent-based

ACM Transactions on Intelligent Systems and Technology, Vol. 11, No. 4, Article 38. Publication date: June 2020.



BISTRO: Berkeley Integrated System for Transportation Optimization 38:5

Fig. 1. Conceptual process of MATSim. It iteratively evaluates and mutates a proportion of agent plans until
the utility of plans no longer improves. At this point, the system is said to have reached a stochastic user

equilibrium. For further details, see Reference [3].

Regional Integrated Simulation (POLARIS) [11] have been developed and widely adapted for nu-
merous applications in transportation and land use planning and research [2, 15, 20, 21]. MPOs of-
ten couple urban development simulation models2 with microscopic agent-based transport models
to better understand how predicted changes in population growth, land-use, real-estate develop-
ment, and resource markets will co-evolve with changes in the transportation system [24, 25].
ABMS of transportation systems can take different population configuration files as inputs, giving
planners andmodelers the ability to simulate how long-term urbanization processes can be shaped
by the daily transportation decisions of individuals (possibly in the presence of alternative policy
interventions and new mobility technologies) [25, 26]. Increasingly, these open source platforms
are enabling use of publicly available data to create transparent and replicable input preparation
pipelines, reducing the cost and effort of a variety of urban planning tasks [27]. Since BISTRO
primarily relies on BEAM and BEAM itself incorporates many aspects of MATSim, the remainder
of this section takes a closer look at these two software frameworks’ purpose, functionality, and
computational characteristics.

MATSim. MATSim is an ABMS framework developed by teams at Eidgenössische Technische
Hochschule (ETH) Zürich and Technische Universität (TU) Berlin [3]. MATSim enables simulat-
ing the travel behavior of millions of individual agents, representing a synthetic population of
urban travelers. At the heart of MATSim is a co-evolutionary algorithm that iteratively executes,
evaluates, and mutates (i.e., replans) the daily activity schedules of agents (see Figure 1). The end
result of this process is an equilibrium between network supply and travel demand, resulting in
realistic congestion patterns as agents compete for limited space on a virtual road network.
Besides road network and transit data, the key input to MATSim is the agent population. This

file encodes a set of unrealized plans (one for each agent) consisting of the start times, types (e.g.,
“Home,” “Work,” “Shopping,” “School”), and locations of various significant activities.3 A mobil-
ity simulation (MobSim) executes these plans on a virtual road network. While, at first, agents
only drive and/or walk to activities, additional modes may be introduced during plan mutation
(explained below). Each agent’s plan is then scored.4 Copies of evaluated plans are stored in a
limited-size array, representing the agent’s memory. At the start of the subsequent iteration, a
portion of agents in the population are chosen to have a randomly selected mutation strategy ap-
plied to a plan drawn from each of their memories. Examples of plan mutations include changing
activity start time, mode of travel for a tour (or subtour), and selecting a different route based
on previously experienced link travel times. Optional extensions to the MATSim model further
behavioral dimensions such as parking choice, group travel, and vehicle sharing.

2Examples of these include the Integrated Transportation, Land Use, and Environment model (ILUTE, [22]) and UrbanSim

[23].
3The population file is often generated from the output of an activity-based travel demand model.
4This score can be interpreted as econometric utility. It is measured by a linear model that assigns negative value to time

spent traveling and positive value to time spent at activities.
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The algorithm converges once agents are no longer able to improve the score of plans in their
memory, at which point MATSim produces a series of statistics and outputs describing the ag-
gregate performance of system components as well as a snapshot of all events that occurred over
the course of the simulation. Events can be processed to derive the actual paths and travel times
realized by each agent and each vehicle, as well as other data reflecting simulation performance.

BEAM. The Behavior Energy Autonomy and Mobility (BEAM) framework is a multi-agent
travel demand simulation framework developed at Lawrence Berkeley National Laboratory (LBNL)
[28]. While the overall learning and traffic assignment mechanism is similar to MATSim’s co-
evolutionary algorithm, added functionality in BEAM is specifically focused on helping users un-
derstand the impacts of new and emerging travel modes on limited capacity resource markets.
This section describes essential features of BEAM that led to its selection as the core simulation
engine of BISTRO.
BEAM is closely integrated with the transit service capabilities of the R5 routing engine, which

include General Transit Feed Specification (GTFS) file processing and routing based on multiob-
jective variations of the (Round-bAsed Public Transit Optimized Router) RAPTOR algorithm [29].
Transit may be combined with other modes modeled in BEAM such as autonomous vehicles, on-
demand rides, e-bikes, and scooters, enabling agents to make realistic, multimodal mobility deci-
sions. In order to provide agents with information about the time and monetary costs of different
travel options, R5 computes the lowest generalized cost path (based on travel time estimates from
the mobility simulation) for the corresponding mode(s) available to the agent for the trip.5

Unlike the replanning mechanism in MATSim, which only mutates plans between consecutive
iterations, agents in BEAM are designed to adapt to changing conditions during an iteration ac-
cording to what is known as a within-day or online model.6 Thus, agents can make unplanned
and time-sensitive choices about how to maximize the score of their travel plans while compet-
ing for limited resources that vary in availability over time. For example, an agent that chooses
a transit mode may be denied access to an overfull bus, requiring the agent to make a mid-trip
change to their itinerary. The agent could then choose to wait for the next bus or hail a ride from
the point of departure (if a driver is available nearby). The BEAM software architecture addresses
the performance and complexity challenges of integrating new models of within-day dynamics by
implementing agents as actors, as defined within the actor-based model of concurrency.7

Like MATSim, BEAM enables users to model realistic variations in travel preferences predicated
on agent characteristics (which are themselves derived from sociodemographic statistics computed
on census data and travel surveys). However, the mechanism for selection of travel alternatives
differs significantly from MATSim’s in order to model within-day decision-making. Specifically,
the probability of selecting an alternative (route, mode, parking choice, and refueling decision)
is represented in BEAM according to a multinomial logit model [32, 33]. That is, among several
distinct travel schedules, agents are exponentially more likely to select the option that maximizes
their enjoyment of important activities while reducing time and money spent traveling between

5For detailed information about the R5 router, see Ref. [30].
6While MATSim has a within-day mode, much of the functionality enabled by extension modules representing emerging

mobility technologies assumes that replanning happens between iterations.
7Like objects in the object-oriented programming paradigm, actors encapsulate state and behavior. However, unlike the

object model, actors do not share computer memory. Instead, each actor encapsulates its own thread of execution and

interacts with one other actor using messages. An actor may send messages to other actors without blocking. Each actor

processes messages synchronously in the order received; however, computation is scheduled asynchronously over multiple

actors. Thus, the actor-based model of computation obviates the need for locking mechanisms commonly used to synchro-

nize state among interdependent objects. Consequently, reasoning about agent behavior using actors can allow researcher

developers to focus on implementing novel models and applications rather than debugging threads and locks [31]
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activity locations. The choices made by BEAM agents and their corresponding scores comprise a
BEAMplan, which is stored in memory following its execution. Thus, in the transit choice scenario
described above, an agent’s response to a full bus could incorporate multiple downstream choices
within one iteration rather than wait for a score penalty to propagate an optimal response through
the selected plan (i.e., using plan mutations that take place over the course of multiple iterations).8

2.3 Simulation-based Optimization of Transportation Systems

2.3.1 Optimization-based Formulation of the Planning Problem. The problem class solved by the
BISTRO framework can be characterized as simulation-based optimization of large urban trans-
portation systems. It can be symbolically formulated as an optimization problem:

minimize
�d ∈D

f (�d, �x ;�z) ≡ E[F (�d, �x ;�z)] (1)

constrained by simulation outcomes and design constraints, i.e.,

⎧⎪⎨
⎪
⎩

�x = B (�d ;�z),

д(�d ;�z) = 0,
(2)

respectively, where the objective, f , is defined as the expected value of a stochastic performance

measurement function, F . The deterministic decision vector, �d , is chosen from a search space D,
which may be continuous, categorical, combinatorial, or conditional. In the BISTRO context, the

decision variables, �d , are the user-defined inputs that control policy levers within the transporta-

tion system. For example, �d may specify the fare or vehicle types for specific public transit routes.
The exogenous variables, �z, are the configuration inputs that determine the parameters of the pop-
ulation synthesis, the parameters of the transportation network, and the parameters governing
supply of transportation services. The endogenous variables, �x , are the outcomes of the simula-

tion run using �d and �z as input. The vector �x contains the details of agent and vehicle movements
throughout the simulation run, such as mode choices, travel times, travel costs, and vehicle path

traversals, which were realized during the simulation run, i.e., �x = B (�d ;�z), where B represents the
BEAM simulator. It is assumed that the iterative simulation process described in Section 2.2 has
achieved stationarity.9

An important goal of BISTRO is to define objective functions that guide algorithms toward a
range of solutions that represent interpretable and implementable policy decisions. A critical safe-
guard against unrealistic outcomes is implemented in BISTRO by translating business rules about

inputs into mathematical constraint functions, д, parameterized by the decision vector, d̂ . Finally,
F is computed as a convex combination of the score components that guide solutions toward the
system objective (as defined in Section 2.1).10 The score components are evaluated from KPIs of
the system performance, which are calculated using the simulation outputs, and relevant inputs.

8As in MATSim, the highest scoring BEAM plans are more likely to be re-evaluated and possibly selected for mutation.

However, in contrast to MATSim, plans selected for mutation are cleared of all choices and re-evaluated within the context

of the current iteration’s transient state. Empirically, we find that this approach reduces the number of iterations needed

to reach equilibrium.
9Individual optimization algorithms may relax this constraint in order to reduce compute time while potentially trading

off reduced accuracy or increased stochasticity of simulation output statistics.
10Due to variable amounts of nondeterminism and stochasticity inherent in ABMS, given fixed �d and �z , the distribution

of f can be approximated using n realizations of F as f̂
(
�d, �x ;�z

)
= 1

n

∑
n

i=1 Fi
(
�di , �xi ;�z

)
. In practice, optimization usually

proceeds with n = 1 in order to identify promising (i.e., close to optimal) subsets of D; however, when reporting final

scores, one must carefully select n such that variability in output values is adequately captured.

ACM Transactions on Intelligent Systems and Technology, Vol. 11, No. 4, Article 38. Publication date: June 2020.



38:8 S. A. Feygin et al.

Following Reference [34], we approximate the objective as the sample average of r independent
realizations of F :

f̂ (�d, �x ; ẑ) =
1

r

r∑
i=1

Fi (�d, �x ; ẑ) (3)

The state space dynamics that govern the simulation-based optimization of an urban transporta-
tion system are highly complex and nonlinear, potentially containing several local minima. The
lack of closed-form solutions to this class of optimization problem together with the computational
expense associated with evaluating a single decision point make this class of problems particu-
larly difficult to solve. In the next section, we describe several possible approaches to address this
complexity.

2.3.2 Optimizing Complex Simulated Systems: Challenges and Approaches. As described in Sec-
tion 2.2, agent-based micro- or meso-scale simulations of transportation systems model the in-
terdependent choices of rational individuals as they navigate virtual representations of physical
and human geographies. Calibrating such models to high-resolution GPS traces and other sen-
sor data embedded in infrastructure makes them highly suitable for evaluating the outcomes of
location-specific policy alternatives. The tradeoffs in accounting for the heterogeneous preferences
of millions of agents are that (1) the simulation model is expensive to evaluate for different set-

tings of �d , and (2) the complex relationship between network dynamics and agent behavior lead
to stochastic, non-convex specifications of performance measure, F . Consequently, the efficient
gradient-based methods used to optimize closed-form relaxations of mobility dynamics as well as
data-driven models derived from historical movement patterns do not apply [34]. Instead, gener-
alized stochastic optimization (SO) algorithms treat the simulator as a black box. Commonly used
derivative-free SO approaches include grid search, random search, ranking and selection, meta-
heuristic, and metamodeling techniques [35, 36].

Metamodeling algorithms encompass a broad class of simulation-based optimization ap-
proaches. These approximate F using a surrogate model Q that is less costly to evaluate. Flexible
and computationally tractable representations such as polynomial splines are able to approximate
any objective function; however, many simulation runs are still required to accurately fit the re-
sponse surface of the underlying system [35, 36].

Sequential model-based optimization (SMBO) is a general metamodeling formalism that, given a

history of previous evaluations,H = {(�d1,y1), . . . , (�di ,yi )}, of observationsyi = F (�di , �xi ;�z) at sam-

ple points in D, selects the optimal next point �di+1 based on an approximation of F . To initialize

SMBO, a small set of samples, {�d1, . . . , �di } from D are selected using various experimental design

techniques (e.g., random or Latin hypercube sampling). For each �di , evaluations of the expensive

objective function F form an observation, which, together with �di are appended to a historical
datasetH . OnceH is initialized, SMBO then proceeds iteratively: First, a regression model, Q, is
fitted to the current dataset, H , yielding a surrogate model for F at the current iteration, which

may be denoted Qi . Based on Qi , the next input �di+1 to F is selected by optimizing an acquisition

function, α : D �→ R overD, which measures the utility gained from evaluating F at �di+1. Follow-

ing evaluation of F (�di+1, �xi ;�z), H is updated as H = H ∪ (�di ,yi ). The SMBO process continues
until a predetermined time or computation budget is exhausted.
SMBO techniques are typically distinguished by the forms of the surrogate model, Q , and

the acquisition function, α . In Bayesian optimization (BayesOpt), a Gaussian Process (GP, [37])
is typically used to model a prior over Q , which, at each iteration, is updated using previously

observed data H to give a posterior predictive distribution p (y | �d,H ) [38, 39]. Several methods
using GPs as surrogate models may be distinguished according to the form of the covariance
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kernel parameterizing the GP [38, 40]. In lieu of GPs, BayesOpt algorithms have also used random
forests [41] and tree-based Parzen estimators (TPE) [42, 43] as priors overQ . Acquisition functions
are chosen to balance exploration and exploitation in the sample domain. The most common
acquisition function used by these methods is based on an expected improvement criterion [44];
however, newer methods use variations on knowledge gradients [45, 46].

Many SMBO algorithms can run trials in parallel, which may yield reduced wall clock time
(although the total number of trials required may be identical to that used by sequential imple-
mentations) [47]. One method to further reduce the running time of SMBO trials when model
evaluations require an inner iterative loop to achieve stationarity (as in BISTRO) is to incorpo-
rate an early stopping rule for simulation evaluations that are likely to eventually be extremely
suboptimal. An example of such an approach is “freeze-thaw Bayesian Optimization” [48].

Recent efforts in transportation science and operations research have also sought to develop
tractable simplifications of scenario-based optimization of simulated urban transportation sys-
tems. One vein of research concentrates on deriving deterministic analytic equations describ-
ing system dynamics at equilibrium from static information, �z (e.g., network topology and bus
schedules) to inform purely functional metamodels [49–51]. For example, Reference [34] com-
bines a computationally tractable model of congested traffic based on queuing theory with a de-
tailed local approximation using a linear combination of basis functions from a parametric family.
Alternatively—and analogously to the “freeze-thaw” Bayesian optimization setting highlighted
above—some approaches use information about the process by which the stochastic simulation
achieves stationarity to develop techniques that rapidly evaluate different settings of the decision

variable vector, �d , while avoiding the need to reach convergence [52, 53].
The present work refrains from prescribing a single best approach to solve optimization pro-

gram Equations (1) and (2). Instead, the intent of BISTRO is to enable replicable future research in
this area by providing a platform and problem setting that is generalizable across different plan-
ning contexts as well as approachable and of research interest to the ML/AI community. Problem
characteristics such as the propensity for competing metrics to be present in system objectives,
preemptive stopping of inner optimization loops, the high dimensionality of the search space,
and the potential for hybridization of functional and physical metamodels are expected to pro-
vide challenging, scalable, and, critically, explainable solution approaches. Algorithms combining
data-driven dimensionality reduction techniques as well as efficient experiment design can result
in repeatable protocols to effectively constrain more general local and global search techniques.
Following a presentation of the framework architecture, in Section 4, we empirically explore the
effectiveness of some of these solution strategies as well as the interpretability of their outputs.

3 BERKELEY INTEGRATED SYSTEM FOR TRANSPORTATION

OPTIMIZATION (BISTRO)

BISTRO is a new analysis and evaluation platform that works in concert with an ABMS (BEAM)
to enable the open sourced development and evaluation of transportation optimization methods
in response to given policy priorities. This section gives an in-depth description of the BISTRO
framework and all of its major components, providing an overview of their purpose, use, and
functionality as well as calling attention to the most novel aspects of its design.

3.1 System Architecture

As indicated in Section 2.3, BISTRO implements elements of the travel demand planning process
coupled with components of an automated simulation-based optimization system. This section
describes the high-level overall architecture of BISTRO (depicted in Figure 2), focusing on the
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Fig. 2. BISTRO software architecture, illustrating how the optimization process modulates the flow of in-
formation between the BEAM simulation as well the two primary user types. The distinction between the
planner and the analyst is critical in that we do not expect the analyst (an expert in applied ML/AI-based op-
timization methods) to have transportation or planning background, yet still they should be able to develop
generalizable algorithms that can be used to optimize transportation system objectives set by the planning
organization.

Fig. 3. Generation of fixed inputs. Italicized entities represent the necessary data to generate fixed inputs
(in bold).

conceptual distinction between features relevant to scenario developers and those more appropri-
ate to algorithm designers.
A BISTRO run environment is configured using a set of fixed input data defining the required

transportation system supply elements (e.g., road network, transit schedule, on-demand ride fleet)
and demand elements (e.g., synthetic population, activity plans, and mode choice function param-
eters). Precisely which aspects of the virtual transportation system should be represented in the
simulation model depends on the strategic goals and system objectives defined as part of the plan-
ning and analysis process motivating a particular BISTRO use case. An example of the set of raw
inputs and pre-processing steps is illustrated in Figure 3.
A boundary separates external, exogenously defined inputs from the BISTRO simulation opti-

mization pipeline. Outside of the boundary, the user-defined inputs (UDIs) represent the invest-
ment, incentive, and policy levers applicable to and available for the study at hand. Concretely,
algorithm developers encode solutions as numeric values that represent vector-valued variables
controlling aspects of the initialization and evolution of the simulation. For example, a UDI that
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alters frequency of buses on a route must specify a target transit agency, a route, a start time, an
end time, and the desired headway.
While BISTRO maintains a library of available interventions compatible with BEAM, scenario

designers, policy makers, and other stakeholders will often want assurance that infeasible, regres-
sive, or otherwise undesirable input combinations are prevented from being selected as “optimal.”
Together with syntactic and schematic validation of inputs, flexibly-defined business rules can ef-
fectively act as constraints on the search space—enhancing the interpretability and, thereby, the
rhetorical and communicative value of BISTRO-derived solutions.
Just as UDIs from previously conducted BISTRO-based studies are activelymaintained andmade

available to scenario designers, the BISTRO community contributes to a growing library of recom-
mended optimization algorithms that, when evaluated across multiple BISTRO benchmark scenar-
ios, demonstrate desirable performance characteristics. Thus, users lacking resources or expertise
to develop optimization routines in-house can still benefit fromwhat we anticipate will be cutting-
edge research on algorithms and strategies to optimize the simulation of demand-responsive cy-
berphysical infrastructure.
Project owners of BISTRO deployments may work with stakeholders to develop representative

models that will be used to benchmark optimization algorithms. Enabling a well-defined bench-
mark mechanism permits data on the performance of user-supplied algorithms to be compared.
These comparisons can be used to assist in identification of design patterns and computational
strategies that advance the state-of-the-art in simulation-based optimization of urban transporta-
tion systems.

3.2 Scoring Function Design

Transportation system intervention alternatives are scored in BISTRO based on a function of score
components evaluated using KPIs of the simulation. KPIs for a given simulation should be selected
in accordance with the operational, environmental, and social goals, or system objectives developed
as part of the participatory planning process described in Section 2.1. BISTRO project planners
may select KPIs to include in the scoring function from an existing library of options, or may
choose to develop additional KPIs, as appropriate, for the goals and system objectives of the project.
Additionally, the form of the scoring function may be designed by the analyst in consultation with
the project planner.

3.2.1 Key Performance Indicators.

KPI overview. There are two general types of KPIs developed in BISTRO: (1) KPIs that measure
the operational efficiency of the transportation system (e.g., vehicle miles traveled [VMT], vehicle
delay, operational costs, revenues) and (2) KPIs that evaluate the experience of transportation sys-
tem users (e.g., generalized travel expenditure, bus crowding experienced, accessibility). KPIs can
be aggregated or disaggregated into score components to support particular policy objectives. For
example, the accessibility KPI (detailed below) may be disaggregated by activity type, time period,
mode used, and/or sociodemographics in order to evaluate the distributional equity of access pro-
vided across different opportunities at varying times of day and/or across population segments of
concern.
In practice, any KPI that may be evaluated from the set of output variables (see Section 3.4) pro-

duced by a BISTRO simulation run may be included as a score component in the scoring function.
However, careful consideration of candidate KPIs must include an evaluation of the sensitivity of
the metric to the UDIs of interest as well as the efficiency of the KPI in providing the desired feed-
back regarding the optimality of outcomes of alternative UDI values. For example, person miles

traveled (PMT) is a commonly used metric in transportation system performance measurement
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to gauge the amount of mobility delivered by the system. Yet, PMT is highly invariant within a
scenario in BISTRO due to the fact that agent plans are fixed. Thus, agents will make the same
trips regardless of the UDI values and the miles traveled by each agent will only vary in so much
as the networks available for each mode offer more or less direct paths to travel from the origin to
destination of each trip.11

Implemented KPIs. The following items represent categories of KPIs that have been developed
and implemented in BISTRO at the time of publication of this article:

(1) Accessibility. In an urban transportation planning setting, accessibility has often been de-
fined as a measure of the ease and feasibility with which opportunities or points of interest
can be reached via available modes of travel. It is quantified in BISTRO as the sum of the
average number of points of interest (of a specific type of activity) reachable within a given
duration of time, with functionality also provided to measure mode-specific accessibility.

(2) Trip Expenditure and Generalized Transportation Cost Burden. The socio-demographic and
spatial heterogeneity of travel behavior within BISTRO enables a variety of equity-focused
impact analyses. Two such metrics have been implemented in BISTRO: average trip ex-
penditure and average generalized transportation cost burden. While the former is the
average monetary cost incurred by agents per trip, the latter is computed as the sum of
the travel expenditures of the trip (costs of fuel and fares minus incentives, as applicable)
and the monetary value of the duration of the trip (the product of the total trip duration
and the population average value of time (VOT)), divided by the household income of the
agent completing the trip. The monetary value of the trip duration is calculated by multi-
plying total duration by the population average VOT. Both KPIs may be disaggregated to
emphasize particular equity goals (e.g., by socio-demographic groups, trip purpose, mode).

(3) Bus Crowding. The level of service (LoS) experienced by public transit passengers has a
direct influence on short- and long-term demand for public transit service. In addition
to cost and travel time factors, the available capacity on a transit vehicle affects whether
or not a passenger can board a public transit vehicle at their desired time as well as the
level of comfort they experience during the trip. Though the LoS of public transit may be
measured in BISTRO by any one of the factors mentioned, BISTRO includes a ready-made
example of an LoS KPI related to passenger comfort: average bus crowding experienced.
This metric is computed as the average overall transit legs of the total passenger-hours
weighted by VOTmultipliers corresponding to the load factor (the ratio of total passengers
to the seating capacity) of the bus during the leg.

(4) Vehicle Miles Traveled (VMT) and Delay. The BISTRO KPI library includes three examples
of congestion score components that provide insight into the destination- or opportunity-
independent level of mobility on a network, the overall network performance, and effi-
ciency: total VMT by all motorized vehicles in the transportation system, total vehicle
delay, and average vehicle delay experienced per passenger trip. Total vehicle delay is cal-
culated as the sum over all path traversals of the difference between the realized duration
and the free flow travel time of the traversal. Vehicle delay experienced per passenger trip
is calculated as the total difference between the realized duration and free flow travel time
of all legs of a trip completed by modes subject to congestion.

(5) Financial sustainability. Most system interventions will have some impact on the flow
of funds in or out of the transportation system, including a KPI that helps stakeholders

11For example, a transit mode choice for a particular trip may result in more PMT than a walk mode choice for the same

trip, as the sidewalk network may enable a more direct path.
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understand the general financial impacts of such interventions is necessary. The financial
sustainability metric provided in the BISTRO KPI library is the sum of all public transit
fares collected minus all incentives distributed (if any) and all operational costs of the
public transit system.12 In the event that a BISTRO project does not alter public transit
service, the operational costs may be omitted from the KPI, if desired.

(6) Environmental sustainability. The environmental sustainability of a transportation system
interventionmay bemeasured as the local and/or global impacts to the system. In addition
to VMT- and fuel efficiency-based estimates, BEAM enables estimation of emissions di-
rectly from the simulated fuel consumption, based on the realized speeds traveled by each
vehicle throughout a simulation run.13 The VMT-based fine particulate emissions (PM2.5)
KPI captures local environmental sustainability via a mileage-based measure of air quality
impacts based upon vehicle type. Additional local emissions KPIs may easily be included
using the appropriate emissions factors.14 A greenhouse gas (GHG) emissions KPI allows
the optimization to explicitly account for fuel-consumption-based global environmental
sustainability.15

3.2.2 Scoring Function. The BISTRO scoring function serves as the objective function by which
the UDIs are optimized. The selection and/or definition of the objective function in accordance
with the project directives is considered to be the responsibility of the project planner. Herein, a
general structure is defined to facilitate the creation of custom objective functions. Multiple project
objectives (referred to here as score components) may be included in the scoring function—either
as individual elements within a vector of scalar-valued score components to be minimized, or as
parameters to a function that aggregates the objectives into a one-dimensional scalar score. The
score components are computed as the normalized ratio of the value of the corresponding KPI in
the given simulation run to the value of the same KPI in the business-as-usual (BAU) run.16 The
improvement ratios are normalized using KPI values produced by a randomized sample of the UDI
space, the size of which can be defined by the BISTRO project owner. This normalization (depicted
graphically in Figure 4) accounts for differences in variance across KPIs, thus allowing the score
components to provide meaningful feedback on the improvement achieved for each KPI relative to
the distribution of the ratios of KPI to BAU produced by the random search. The composite score
is thus a function of the normalized relative improvements of the candidate input to the BAU in
each metric, as follows:

F
(
�Cs , �K , �σ , �μ, �α

)
= f (�z, �α ), (4)

12The operational costs include the total costs of fuel consumed, and hourly variable costs of bus operations (see Table 3

for an example of operational costs). Hourly variable costs include estimated labor, maintenance, and operational costs.

The rates for each of these factors is specified in the vehicle fleet configuration variables.
13For more information on the methodology followed to estimate fuel consumption, please refer to the BEAM documen-

tation https://beam.readthedocs.io/en/latest/index.html.
14For more information on the methodology followed to develop this metric, please refer to the California Air

Resources Board documentation, https://www.arb.ca.gov/cc/capandtrade/auctionproceeds/cci_emissionfactordatabase_

documentation.pdf.
15It is important to note that the GHG emissions KPI will be correlated with VMT and fine particulate emissions. Thus,

inclusion of all three KPIs creates a suite of environmental sustainability metrics that may apply disproportionate weight

on environmentally-related objectives, which may or may not be desirable for certain policy agendas. Project planners may

choose to apply scaling factors (as described in Section 3.2.2) to balance the influence of the environmental sustainability

score components.
16In the BAU of a given scenario, the simulation is run without alteration from the initial configuration of that scenario.
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Fig. 4. A visual representation of the normalization procedure for a hypothetical score component, i . The
ratio of the submission score and BAU score (depicted in the upper plot) is normalized by taking its z-score
(depicted in the lower plot) relative to a random input sample.

where �K is the vector of all KPIs evaluated for a given set of inputs; �Cs ; �μ and �σ are the vectors of
normalization parameters; and �z is a vector of each KPI’s z-scores, i.e.,

zi =

Ki (Cs )
Ki (CBAU ) − μi

σi
, (5)

for the i-th KPI. The value of the i-th score component in the BAU case is simply Ki (CBAU ).
The default objective is to minimize the composite score function, since an increase in many

of the score components actually represents a scenario that is worse than the status quo (e.g.,
decreasing VMT over BAU results in a lower unscaled score than increasing VMT). To maintain
consistency in this regard, the scoring function may include an additional parameter �α to allow
for transformation of score components that are positively related to desirable outcomes (e.g.,
improvements in accessibility). For example, if the scoring function takes the form of a sum over
all score components, the parameter �α may be used as a coefficient of each score component that
determines whether the component will be summed or subtracted, as follows:

αi =

{−1 if it is desirable for score component i to increase
1 otherwise

(6)

This approach is distinct from the one typically used for Cost-Benefit Analysis (CBA) tasks in
urban planning practice, in that it seeks to optimize an aggregate function of the relative improve-
ments in each KPI rather than optimizing the net improvement from all KPIs. While CBA often
draws skepticism due to the discretion inherent in the process of converting all KPIs into a com-
mon unit such as time or money so that the net value of costs and benefits can be computed, the
approach taken in the BISTRO scoring function does not require any such assumptions to be made.
Rather, each score component represents the relative improvement over the BAU that is achieved
by a simulation run using a particular set of UDIs. Objective function designers may choose to
apply additional scaling factors to the score components using the �α parameter vector.

3.3 Inputs

Preparation of fixed inputs. For each BISTRO study, a set of fixed inputs must be provided to
BEAM. For a given study area, these typically include the road network, the transit schedule, and
the demand profile. Depending on the system objectives, additional data may be necessary to fully
configure the simulation. Figure 3 illustrates a schematic of the inputs for a typical simulation.

The road network, including the physical properties of its links and nodes, may be generated
using Open Street Maps (OSM) data for the geography of interest. The transit network configura-
tion follows the easily accessible General Transit Feed Specification (GTFS) format. On-demand ride
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services (Transportation Network Companies (TNCs) such as Uber, Lyft, and Via), are modeled as
a fleet of vehicles driven by agents that are exogenous to the population, or may be driven au-
tonomously. The initial locations of the vehicles may be sampled randomly or from a specified
distribution in accordance with appropriate data. The price of on-demand rides is fixed, consisting
of a distance-based and a duration-based component. The size of the on-demand ride service fleet
is a proportion of the total number of agents in the simulation, as determined by a configuration
parameter. Driver repositioning behavior, when not currently driving to or serving a passenger,
can be configured to follow one of several repositioning algorithms defined within BEAM.
At the start of the simulation, a synthetic population of virtual agents and households is gener-

ated such that the sociodemographic attributes of these virtual entities are spatially distributed in
accordance with real-world census and/or location-based data from the city of interest. Each agent
follows a daily plan consisting of several activities throughout the day. As illustrated in Figure 3,
these daily activity schedules are generated based on origin-destination (OD) skims (matrices that
provide the number of trips between zones), travel surveys, and zonal boundary spatial data.

Calibration. Prior to use in optimization runs, BEAM needs to be calibrated to empirical data
by iteratively adjusting model parameters until a simulation outputs representing traffic pat-
terns match their real-world counterparts with minimal error.17 Calibration of BEAM for usage
in BISTRO should be limited to adjustments of behavioral parameters controlling microscopic
decision-making (e.g., mode choice intercepts, prices, regulation-driven incentives/tariffs).18 While
it is possible to adjust many additional BEAM parameters to reduce calibration error, this practice
should be discouraged, as it may result in models that are overfitted to a state of the world rep-
resented by a particular ground-truth dataset, thereby limiting the calibrated simulation model’s
use in predictive contexts. In addition to the representativeness of ground truth data, the quality
and quantity of input data (e.g., network data resolution or population spatial resolution), may
influence the extent to which the model is able to achieve calibration end points.

Configuration of UDIs. BISTRO provides a library of possible inputs for scenario designers to
adapt to specific use cases. The selection of UDIs is intended to be compatible with the system ob-
jective. UDIs may represent, for example, the investment (e.g., transit fleet mix modification, bus
route modifications, parking supply, electric vehicle charge station locations, dynamic redistribu-
tion of e-bikes or on-demand vehicles), incentive (e.g., incentives to specific socio-demographic
groups for selected transportation modes, road pricing/toll roads, fuel tax), or policy/operational
(e.g., transit schedule adjustment, transit faremodification, parking pricing) levers applicable to the
study at hand. The project owner may constrain the range of possible values upon which each UDI
is valid by setting the corresponding input validation parameters and business rules. The example
input file for bus scheduling shown in Table 1 defines alteration of the headway of a particular bus
route during a particular service period (defined by its start and end times).

3.4 Output Analysis and Visualization

The raw outputs of a BEAM simulation include millions of events that reflect the microscopic ac-
tions of each agent as they make their way through the day. While this is a detailed history of what
transpired during the day for each agent, it does not provide planners with explanatory insight

17BEAM calibration is typically targeted at mode split, volumetric traffic counts, and travel distance distributions. The

choice of which target(s) to use may depend on regulatory requirements, literature recommendations, or precedent [2, 54].
18Often, due to computational constraints, a sub-sample of a full population is simulated. The capacity of physical resources

(e.g., road network link carrying capacity, maximum transit occupancy, number of electric vehicle charging plugs per

station) may need to be adjusted based on the size of the population sample. For evaluation purposes, the outputs of a

sub-sampled simulation are often scaled back up to the full population.
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Table 1. Example of Bus Frequency Adjustment Input File

route_id start_time end_time headway_secs exact_times
1,340 21,600 79,200 900 1
1,341 21,600 36,000 300 1
1,341 61,200 72,000 300 1

into how perturbations of input variables influence model behavior leading to changes in output
responses. To simplify exploration of alternatives to purely black box optimization methods, the
BISTRO platform provides a suite of tools that process and organize event data from BEAM sim-
ulation runs into a relational format, permitting relationships between each person’s activities,
trips, path traversals to be queried at different levels of detail.19 A Jupyter notebook then incorpo-
rates the post-processed outputs into a standard suite of multivariate analyses and visualizations,
thereby facilitating interpretation and communication of the effect that policies have on system
objectives.

3.5 Implementation Details and Performance Characteristics

Both BISTRO and BEAM are primarily implemented in Scala. Input files are read from a single
directory and injected into the BEAM initialization routine. The system is containerized using
Docker, which helps to facilitate OS-agnostic local and remote execution.
The runtime of BEAM depends on various inputs including population size, network resolu-

tion, transit network, ridehail fleet size, as well as available compute resources such as number of
processors, memory, and so on. On a machine with 32 (2.5GHz Intel®Xeon®Platinum 8175) CPUs
and 128GB RAM, the runtime for a 315,000 agent simulation of a San Francisco Bay Area scenario
(representing a 25% sample of the approximate 2018 population) takes around 14 hours to complete
15 iterations. On a machine with identical compute resources, a 15,000 agent simulation for the the
Sioux Faux scenario (see Section 4.1) takes approximately 30 minutes to complete 15 iterations.

Currently, the primary performance bottleneck in BEAM is routing. The routing engine gener-
ates millions of routes (reflecting multimodal options for agents to choose between) for a single
simulation run. Some additional overhead considerations such as data availability, level of model
resolution required, as well as the impact of augmented BEAM functionality must be balanced in
light of available computational resources.

4 INITIAL PILOT STUDY AND LAUNCH

4.1 Sioux Faux

An agent-based model of transport supply and demand inspired by the real city of Sioux Falls,
South Dakota20 was adapted for the purpose of developing and testing example scenarios within
BISTRO. To underscore that for these purposes, such scenarios were not developed to be true
replicas of the city of Sioux Falls, this benchmark BISTRO scenario is referred to as Sioux Faux. The
scenario configuration, input specification, and scoring functionwere designed to support strategic
objectives of financial and environmental sustainability, reduced congestion, and improved equity,
accessibility, and transportation system level of service.

19Further details on the output of the parser including an entity relationship diagram are available at http://bistro.its.

berkeley.edu/assets/download/pdfs/General_System_Specification.pdf.
20The “Sioux Falls” scenario is a commonly used benchmark in ABMS research; see https://github.com/bstabler/

TransportationNetworks/tree/master/SiouxFalls.
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Fig. 5. Demographics of Sioux Faux. (a) Overall distribution of the population per census tract. (b) Distri-
bution of the median population income per census tract. (c) Distribution of the median population age per
census tract. (d) Overall population income distribution. (e) Overall population age distribution.

4.1.1 Scenario Configuration.

Population and plan synthesis. The synthetic population of Sioux Faux was generated using
publicly-available census data for the city of Sioux Falls, South Dakota as inputs to the Doppel-
ganger library,21 a state-of-the-art population synthesis framework developed in Python. Specific
inputs to Doppelganger used to generate the Sioux Faux population included household and in-
dividual Public Use Microdata Sample (PUMS) data for South Dakota from the 2012-2016 (5-year)
American Community Survey (ACS), which is conducted annually by the US Census.22 The Public
Use Microdata Area (PUMA) for Sioux Falls constrains the state-wide survey data to our general
area of interest. Population demographics derived from the synthetic population for Sioux Falls
are shown in Figure 5.
An existing set of agent plans for Sioux Falls previously developed for MATSim simulations was

used as the basis for the plans of our expanded Sioux Faux population.23 After initial pilot testing
to determine tradeoffs between population size, behavioral realism, and computational complex-
ity, we took a 15% sub-sample of the full synthetic population (approximately 15,000 agents). We

21Doppelganger uses a novel Bayesian optimization approach combined with the hierarchical list-balancing algorithm

developed as part of the PopSyn library [55]. For more information about the Doppelganger library, see https://github.

com/sidewalklabs/doppelganger.
22The 5-year PUMS comprises a 5% sample of the US population. It is computed as an aggregate of 1-year samples, which

themselves aim to survey 1% of the US population.
23More specifically, we modified the Sioux Falls 2016 scenario developed by Hörl ([4]), which is an update of a scenario

prepared in 2014 by Chakirov and Fourie [56]. For more information on the Sioux Falls scenario, see https://www.ethz.ch/

content/dam/ethz/special-interest/baug/ivt/ivt-dam/vpl/reports/901-1000/ab978.pdf.
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Fig. 6. Sioux Faux bus and road networks.

used a spatially-constrained sampling mechanism in order to allocate plans to agents in accor-
dance with household locations and census tract household and individual attribute distributions.
The subsampling mechanism also enforces realistic constraints on agent plans and behavior using
predicates such as “agents under the age of 18 should not have a work activity” and “agents under
the age of 16 should not be allowed to drive.”

Transportation Network. The Sioux Faux transportation network (Figure 6) includes a road net-
work accessible to walking agents, personal vehicles, on-demand ride services (TNCs such as Uber
and Lyft), and public buses providing fixed-route service.24 The on-demand ride services imple-
mented in this scenario include only single-passenger rides (e.g., UberX, Lyft Classic) from a fleet
of on-demand ride vehicles that was distributed randomly across the road network at the start of
each simulation run. Driving alone is the most frequently used mode, comprising approximately
75% of the miles traveled for the BAU scenario.

4.1.2 User-Defined Input Specification. For this initial pilot study, a set of four UDIs were in-
vestigated:

(1) bus fleet vehicle composition
(2) bus service frequency
(3) bus fare
(4) multimodal incentive program for on-demand rides and public bus trips

In the bus fleet for the BAU scenario, all vehicles were set to a default bus type. Optimization
of the bus fleet vehicle composition and service frequency offers the opportunity to improve the
level of bus service by better matching the bus type with specific demand characteristics of each
route. Four types of buses (including the default) were considered (see Table 3), each with different
technical properties (seating and standing capacity) and cost characteristics (cost per hour, cost per
mile, fuel type, and fuel consumption rate).
A UDI was implemented to vary the bus schedule on each route, including the hours of service

and the headway, or service frequency as shown in Table 1. Multiple service periods with varying
headways on the same route were thus possible. The bus fare UDI allowed for the optimization of

24The initial bus route scheduling is directly generated from the publicly available GTFS for Sioux Falls, which includes

erratic headways across routes.
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Table 2. Values Used for αi in Each of the Subsequent Results Sections

KPI KPI type C
o
n
te
st

P
o
st
-C
o
n
te
st

N
ew

K
P
Is

accessible work locations Accessibility −1 −1 —
accessible secondary locations Accessibility −1 −1 —
accessible work locations by car Accessibility — — −1
accessible secondary locations by car Accessibility — — −1
accessible work locations by transit Accessibility — — −1
accessible secondary locations by transit Accessibility — — −1
average trip expenditure-work LoS 1 1 —
average trip expenditure-secondary LoS 1 1 —
average travel cost burden-work Equity — — 1
average travel cost burden-secondary Equity — — 1
average bus crowding experienced LoS 1 1 1
total vehicle miles traveled Congestion 1 1 1
average vehicle delay per passenger trip Congestion 1 1 1
costs and benefits Financial Sustainability −1 −1∗ −1∗
total grams PM2.5 emitted Environmental Sustainability 1 1 1
total grams GHGe emitted Environmental Sustainability — — 1

For score components that are positively related to desirable outcomes, negative αi is provided to transform it

consistent with a minimization problem.
∗fixed KPI post-contest.

the fare on each route, segmented by passenger age groups. Finally, a multimodal incentive UDI
was implemented to enable reimbursement for on-demand rides, walk to/from transit, or drive
to/from transit trips to qualifying individuals based on age, income, or both.

4.1.3 Business Rules. In order to ensure that optimal solutions would be compliant with com-
mon policy and planning practices, four business rules were implemented: (1) there may be no
more than five distinct bus service periods (this mimics a typical delineation of transit service pro-
vision: a.m. peak, midday, p.m. peak, evening, late night/early morning); (2) bus route headways
may be no more than 120 minutes and no fewer than 3 minutes; (3) bus fares and mode incentives
may not isolate a single age; and (4) ages for both fares and incentives may be specified in seg-
ments no smaller than five years in range and income for incentives may be assigned in segments
no smaller than $5,000 in range.

4.1.4 Scoring Function Design. The set of Sioux Faux UDIs have varying interconnected im-
pacts on the operation of and access to public transit and on-demand ride service by agents. Thus,
the scoring function upon which the inputs were optimized was designed to include a variety of
metrics that relay feedback on the user experience and operational efficiency of the transportation
system as a whole. Table 2 presents all of the KPIs used in Sioux Faux scenarios referenced in this
text.25

Five KPIs were developed to represent three main aspects of user experience: accessibility, travel
expenditure, and transit passenger comfort. The accessibility and travel expenditure were both

25Note that several of the KPIs in this table refer to two post-contest follow-on studies; see Section 4.2.
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Table 3. Transit Vehicle Types Available for Sioux Faux Bus Fleet

Vehicle type, c ∈ C a b c d e
BUS-DEFAULT diesel 20048 89.88 37 20
BUS-SMALL-HD diesel 18043.2 90.18 27 10
BUS-STD-HD diesel 20048 90.18 35 20
BUS-STD-ART diesel 26663.84 97.26 54 25

(a) Fuel Type, (b) Fuel Consumption Rate (J/m), (c) Operational Cost

(USD/hr), (d) Seating Capacity, (e) Standing Capacity.

disaggregated by trip purpose such that score components for accessibility and travel expenditure
to work and secondary activities were each included separately in the scoring function. Transit
passenger comfort was measured as the average bus crowding experienced by bus passengers.26

Four KPIs of operational efficiency were included to account for the congestion, environmental
sustainability, and financial sustainability resulting from optimized inputs. Total VMT was in-
cluded as a KPI for overall congestion while average vehicle delay per passenger trip served as a
KPI of the average impact of congestion. The total amount of PM2.5 emitted served as a KPI of the
environmental impact resulting from each simulation run. Finally, the financial sustainability KPI
was included to incentivize outcomes with minimal impact to the bottom line of the transit agency
by taking into account the operational costs, incentives distributed, and revenues collected from
any combination of transit fleet mix, scheduling, fare structure and incentive program.
All metrics are aggregated according to the following function:

F
(
�Ca , �F , �σ , �μ, �α

)
=
∑
i ∈K

(
Ki (Cs )

Ki (CBAU )

)αi − μi
σi

, (7)

where all variables are defined as described in Section 3.2.2, with the set of KPIs and corresponding

αi values as specified in Table 2. We executed 800 runs using randomly generated values of d̂ to
produce the normalizing statistics (i.e., μi s and σi s in Equation (5)) for each metric.

4.2 Pilot Study Results

Contest participation and results. Over the course of 17 days, 487 people in teams of one to four
(mostly consisting of engineers and data scientists with little to no domain expertise in transporta-
tion planning) effectively created nearly 1,000 different “city transportation plans” for the Sioux
Faux scenario consisting of the UDIs described in section Section 4.1.2.27

To be able to compare their results and scores with other participants, each team could submit
up to five solutions per day and thus be ranked in a web-accessible leaderboard. While contestants
trained algorithms online, final evaluation, leaderboard, and discussion boards were hosted by
AICrowd.com.28 Inputs from top teams were evaluated 5 times for 100 iterations each in order to
achieve a consistent final score.
Figure 7 illustrates the evolution of submissions over time during the competition. Participation

developed in two phases. During the first week, contestants became familiar with the BISTRO
framework and the Sioux Faux transportation optimization problem. During the second phase,
contestants continued to optimize their solutions.

26Average bus crowding in the Sioux Faux scenario was calculated as the average number of agent hours spent per transit

trip in buses occupied above their seating capacity. This KPI has since been updated; see Section 3.2.1.
27Uber does not endorse any of the solutions presented.
28http://www.aicrowd.com.
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Fig. 7. Participation history. (a) Number of solutions submitted over time (per day and cumulative). (b) Evo-
lution of scores over time (see Equation (7)).

Table 4. Proportion of Algorithmic
Approaches Used, According to a Survey

Conducted with Contestant Teams

Approach Proportion
Bayesian optimization 34%
Evolutionary algorithms 28%
Gradient based 14%
Meta-heuristics 7%
Plackett-Burman design 3%
Hill climbing 3%
Other 10%

According to code submissions and a post-contest survey, the solutions that achieved the high-
est value of the objective function (averaged over five replications) followed similar strategies.
Typically, they used domain-specific analysis to prune the large input space. For example, by sam-
pling the age distribution within walking distance from a bus route’s stops, a reasonable bound
on the components of the fare UDI could be assigned. Following these informed factor screening
steps, contestants used a variety of algorithmic approaches to more efficiently search the lower
dimensional design space. As shown in Table 4, the black-box global optimization techniques used
during the Contest primarily incorporated variants of Bayesian optimization, genetic/evolutionary
algorithms, gradient-based techniques, and meta-heuristics methods.
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Most teams managed to improve their scores by three standard deviations better than a random
search benchmark (i.e., with scores of approximately −3). Due to an insidious modeling deficiency,
the financial sustainability score component could be optimized toward negative infinity. As such,
any contributions from other score components would be relatively inconsequential. Two teams
discovered input settings that took advantage of the lack of a lower bound on the financial sus-
tainability score component and were thus able to reach extremely low scores of −30 or −40. This
experience underlines the importance of developing careful theory supplemented by judicious
testing when designing objective functions.

Post-Contest and New KPIs follow-on studies and results. After the contest, two follow-on studies
were conducted to interpret the solutions from the top algorithms in the context of improvements
to the objective function. An initial set of improvements, hereby referred to in this text as the “Post-
Contest” objective function study, simply addressed the unbounded financial sustainability score
component as well as other minor problems discovered during the competition. The “New KPIs”
objective refers to an expanded set of KPIs, summarized in Table 2. Two of the best-performing al-
gorithms from the Contest—namely, Bayesian Optimization using TPE [42] andGenetic Algorithms

(GA) [57]—were adapted and re-implemented to run BISTRO on the Sioux Faux scenario with both
of the updated objective functions. As a baseline algorithmic benchmark, random search (RS) was
performed for 800 trials using both objective functions. The GA assessment on both the “Post-
Contest” and “New KPIs” objectives utilized five parallel evolutionary trajectories, each drawing a
random sample of seeds from a larger gene pool. Both TPE and GA were run over identical design
spaces for 1,400 trials on the “Post-Contest” and “New KPIs” studies.29

Inputs corresponding to the trial yielding the top score for each algorithm were then simulated
for 100 iterations with five replicates per trial. Figure 8 demonstrates that both GA and TPE pro-
duce input configurations that are superior to RS. We found that both GA and TPE achieve optimal
solutions that reflect sensible yet distinct transportation system management strategies. For ex-
ample, Figure 9 illustrates the relationship between activity start times (top subfigure) and bus
utilization (bottom subfigure) as computed using outputs for the highest scoring solution for GA
and TPE algorithms when using the “Post-Contest” objective function. This figure suggests that
differences in optimal TPE and GA solutions for the “Post-Contest” objective arise from distinct
transit usage patterns. Note that “Work” activity start times occur in the early morning (between
7:00 and 10:00 a.m.) and correspond to the highest period of utilization for buses under the optimal
solution found for the TPE algorithm. In contrast, the GA solution ensures that buses are available
during the evening peak commute time; that is, when agents travel back home from work and/or
engage in secondary activities.
In the case of TPE, we found that the algorithm produced solutions that corresponded to sen-

sible real-world policies. Figure 10 presents visualizations of input distributions for the top fifth
percentile of TPE trials (corresponding to the top 70 of 1,400 evaluated solutions by score, as plot-

ted on Figure 8). This figure illustrates that the values of components of d̂ for the best performing
(lowest scoring) solutions using TPE occupy a narrow band in the design space. For example,
in Figure 10(a), the highest scoring TPE input value sets evaluated in BISTRO under the “Post-
Contest” objective suggest charging more expensive bus fares ($8–$10) for adult citizens (16–60)
than for youth (1–15) ($4–$6) and elderly (60–120) ($5–$7). The low variance of the components of

d̂ for these trial points is indicative of both objective function sensitivity to UDI definitions as well
as robust algorithm convergence to a (locally) minimal score value. The corresponding bus types

29Partial convergence criteria of 40 iterations were used during initial search, as this was determined to be sufficient for

establishing a trajectory consistent with a fully relaxed state.
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Fig. 8. Optimization of the Sioux Faux 15k scenario with TPE (left) and GA (right) using “Post-Contest” (top)
and “NewKPIs” (bottom) objective function settings. The dashed line(s) across the bottom of each denotes the
best (lowest) score achieved by an algorithm within the first N trials. Individual trial scores (at 40 iterations)
are shown for TPE plots, whereas one standard deviation ranges of current gene pools are displayed in the GA
plots. For the “Post-Contest” objective, the TPE and GA algorithms surpass the best score from 800 RS trials
of 40 iterations (-1.24) within 200 and 10 trials, respectively. For the “New KPIs” objective, both algorithms
significantly outperform the best result (-2.84) of an 800 trial, 40 iteration RS almost immediately.

Fig. 9. Example of output analysis for the “Post-Contest” case study. The upper plot shows the various
activity start times of agents by activity type. The lower plot shows non-empty bus VMT for two competing
algorithms.
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Fig. 10. Distributions of bus fare by age (top) and vehicle fleet mix by route (bottom) for inputs representing
the best fifth percentile scores among trials run for Sioux Faux 15k scenario using the TPE algorithm, shown
for “Post-Contest” (left) and “New KPIs” (right) objective functions.

on a given route suggested by these solutions are well-resolved and tend toward smaller vehicle
models. In contrast, for near-optimal inputs evaluated using the “New KPIs” objective function,
fares assigned to youth ($4–$10) are, on average, higher than those assigned to adults ($0–$4) and
seniors ($5–$10). The corresponding bus types by route are also more diverse among optimal solu-
tions, indicating that the objective is less sensitive to the VehicleFleetMix input when evaluated
using the “New KPI” objective function. Using the “New KPIs” objective, GA (not shown) also
finds a tight distribution of fares for top-performing solutions but contrarily finds diversity in its
VehicleFleetMix solutions.

5 CONCLUSION

This article has presented the design, software architecture, and preliminary evaluation of BISTRO:
a general-purpose transportation policy decision support tool and scenario-based optimization
framework supported by empirically-driven agent-based models. When combined with sensible
guidance from experienced planning professionals, BISTRO can be used to identify more holistic,
empirically-driven approaches to urban transportation planning and management. In addition to
overall system purpose, design, and software architecture, this work provides a concrete example
of the process that BISTRO supports as implemented in the context of a scenario-based policy op-
timization “contest.” While many participants had little or no prior expertise in the transportation
science and policy analysis methods typically used in urban planning practice, over a dozen teams
developed algorithms that found inputs, which, when evaluated in the simulator, achieved scores
that surpassed both random search as well as human judgment. The mixed results of the competi-
tion led us to conclude that the optimization-based search techniques enabled by BISTRO should
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support an iterative approach that involves applying optimization algorithms to refinements of
KPI specifications in order to better align objective functions with system goals.
Research conducted using BISTRO strives to meet the highest standard of reproducibility in

computational experiments [58–60] as well as fact-based policymaking [61] by making all data,
models, and algorithms freely available and open source.30 One finding of post-contest repro-
ducibility efforts was that different classes of algorithms appeared to converge to solutions that
emphasized distinct policy strategies.
Our experience from this pilot study demonstrates that we have implemented a compelling plat-

form to study human-in-the-loop design of expensive simulation-based optimization algorithms.
This conclusion suggests that, in addition to its utility as a decision support system, BISTRO could
serve as an exemplary testbed for multiple emerging streams of research (e.g., freeze-thaw, multi-
objective, multi-task, and multi-fidelity optimization) in SMBO and associated meta-model-based
optimization methods. Should BISTRO be widely adopted as part of the urban planning toolkit, in-
novative algorithms and new theory developed as part of inquiry in these sub-domains will have
the added benefit of directly serving a humanitarian purpose.
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