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Abstract

Standard methods for multi-variate time series
analysis are hampered by sampling at random
timestamps, long range dependencies, and the
scale of the data. In this paper we present a
novel estimator for cross-covariance of randomly
observed time series which identifies the dynam-
ics of an unobserved stochastic process. We an-
alyze the statistical properties of our estimator
without the assumption that observation times-
tamps are independent from the process of in-
terest and show that our solution does not suffer
from the corresponding issues affecting standard
estimators for cross-covariance. We implement
and evaluate our statistically sound and scalable
approach in the distributed setting using Apache
Spark and demonstrate its ability to identify in-
teractions between processes on simulations and
financial data with tens of millions of samples.

1 Introduction

Cross-covariance estimates are of prime importance in ap-
plications ranging from statistical finance [1, 2] to climate
studies [3] as asymmetry in cross-covariance is an indicator
of a causal relationships between time series [4, 5, 6].A pair
of causally related continuous stochastic processes may be
modeled as the solution of a Stochastic Differential Equa-
tion (SDE) of the form:

dX(t) = dWX(t) +ˆ
s>0

φY X(s)dY (t− s) + φXX(s)dX(t− s)

dY (t) = dWY (t) +ˆ
s>0

φXY (s)dX(t− s) + φY Y (s)dY (t− s), (1)
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Figure 1: Underlying, measuring and observed process.

where W is a Wiener process [7]. The mul-
tidimensional causal kernel Φ(·) consisting of
φXY (·), φXX(·), φY X(·), φY Y (·) [4] defines the dy-
namics and the solution to the SDE is given by the stable
bi-variate stochastic process, U(·) = (X(·), Y (·)). In
practice, we observe stochastic processes U(·) at par-
ticular points in time that are determined by a separate
measurement process. In this work we will assume that ob-
servations are made on the interval [0, T ] with timestamps
generated by a bi-variate regular second order stationary
Point Process N(·) = (NX(·), NY (·)) [8, 9] referred to
as the measuring process where NX(t) and NY (t) are the
number of observations that have been observed between
0 and time t. We assume that the measuring process has
a stationary cross-covariance structure, that observations
are not accumulated at a singular point in time, and their
occurrence may be correlated with the underlying process.
For example, in the medical setting, the underlying process
could be the blood pressure of a patient which is defined at
all times but only observed during punctual medical which
the measuring process consists in here. The resulting
observed process

(U dN)(·) = ((X dNX)(·), (Y dNY )(·)) (2)

conflates the statistical properties of both the underlying
process of interest (U) with the measurement process (N).
Our aim in this article is to infer the statistical properties of
the continuous underlying process (U) through the partial
observations (U dN) determined by the discrete measure-
ment process (N). This data generative process is illus-
trated in Figure 1.

We make three contributions in this work. In Section 2,



Random Projection Design for Scalable Implicit Smoothing of Randomly Observed Stochastic Processes

we empirically demonstrate standard cross-covariance esti-
mators designed for regularly observed data almost surely
evaluate to 0 resulting in biased estimates of the true corre-
lation structure. We demonstrate that standard solutions to
mitigate the resulting bias such as ad-hoc interpolation and
Hayashi-Yoshida estimation [10] do not offer unbiased so-
lutions for randomly observed stochastic processes. In Sec-
tion 3 we develop a statistically sound approach based on
the use of kernel smoothing that addresses the bias of clas-
sical estimators and provide a theoretical analysis demon-
strating a bias/variance trade-off depending on the smooth-
ing kernel bandwidth. We show how to compute these es-
timators efficiently in a scalable manner through random
Fourier projections drawn from a specific probability distri-
bution. In Section 4 we evaluate the proposed approach on
both synthetic and real-world data characterizing the accu-
racy of our technique by achieving a relative error of 8% or
less in linear model recovery with 90% probability. More-
over, our method enables estimation of the parameters of
the generative SDE model for the underlying process and
using our new method we are able to accurately scale to
large financial time series and estimate causal structure.

2 Limitations of Standard Methods

In the following we identify a series of challenges in es-
timating the cross-covariance structure of a continuous bi-
variate underlying process observed randomly.

2.1 Stochastic Intensity Point Processes

In order to more precisely state the probabilistic properties
of the underlying and measuring process we introduce use-
ful notation.

The information entailed in the history of the process
(X,Y ) in the generative model Eq. (1) is defined as the
filtration [7, 8]

(
FXYt

)
t∈[0,T ]

where FXYt is the informa-
tion available about (X,Y ) up to but not including time
t. One can also extend the past information to that jointly
produced by both the underlying process and the measur-
ing process which we denote (F).

A stochastic Point Process (NX , NY ) [8] defines a random
measure over the axis of time and is defined by stochastic
local Poisson intensities for NX

µX(t) = limdt→0+

E
[
NX(t+ dt)−NX(t)|Ft

]

dt

and similarly for NY . In other words, µX(t) and µY (t)
are the number of observations per unit of time expected
given the events that occurred until time t. With the sec-
ond order stationarity assumption we make, these random
measures are characterized by their cross-covariation struc-
ture (γµX ,µY (h) = E [µX(t)µ(t+ h)])h∈R. The regular-
ity [9] assumption on the other hand guarantees that mea-

surements cannot accumulate at a single unique timestamp.
The following proposition is helpful to understand the role
of such a measure of continuous stochastic processes and
will be used in proves below:

Proposition 2.1 With a continuous underlying process
(X), almost surely,

E
[
X(t)dNX(t)|Ft

]
= X(t)µX(t)dt. (3)

where dt is the Lebesgue measure.

Proof 2.1 This is an immediate consequence of proper-
ties conditional expectation and the continuity of X as,
almost surely, E

[
X(t)dNX(t)|Ft

]
= X(t+)µX(t)dt =

X(t)µX(t)dt where X(t+) is the right limit of X in t.

2.2 Statistical Issues

Our aim is to estimate the cross-covariation structure (and
the cross-correlation structure, after normalization) of the
underlying process γXY (h) = E [X(t)Y (t− h)], as it is
a sufficient statistic for Granger causality estimation [6], as
well as the estimation of Φ using Yule-Walker equations
[4]. A standard estimator in the literature for regularly ob-
served time series [4, 11, 12] is

γ̂XYregular(h) =
1

T

¨ T

t,s=0

X(t)Y (s)δ0(t− s+ h)dsdt

where δ0(·) is the dirac function centered at 0.

2.2.1 The Epps effect with irregular observation

However, when observations are irregular the naive estima-
tors designed for regular observations take the form

γ̂XYnaive(h) =
1

T

¨ T

t,s=0

X(t)Y (s)δ0(t− s+ h)dNX
t dN

Y
s .

and in the case of an observation process which is a non-
degenerate point process (NX , NY ), this quantity evalu-
ates to 0 almost surely [8] because X and Y are never ob-
served simultaneously.

Theorem 2.1 The estimator γ̂XYnaive(h) evaluates almost
surely to 0 for any value of lag h.

Proof 2.2 As the bi-variate measuring process (NX , NY )
is a regular [9] Poisson process, using Landau notation,
P(
(
NY (s+ τ)−NY (s)

) (
NY (s+ hτ)−NY (s+ h)

)
>

0) = o(τ), therefore ∀t ∈ [0, T ] ,
´
t,s∈[0,T ]

X(t)Y (s)δ0(t −
s + h)dNY

s dN
X
t = 0 as δ0(t − s + h) is non-zero only at

t− s+ h = 0. �

The bias of the naive estimator for cross-covariance to-
wards 0 is referred to as Epps effect in the field of high
frequency statistics for finance [1].
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To mitigate this issue created by the asynchronous observa-
tion process, we develop a novel approach to the estimation
of cross-covariance (and therefore cross-correlation) based
on kernel smoothing implicitly computed by specifically
designed random projection in the Fourier space.

In the time domain, we define our kernel smoothing based
cross-correlation estimator

γ̂XYsmooth(h) =
1

T

¨ T

t,s=0

X(t)Y (s)κ(t− s+ h)dNX
t dN

Y
s

(4)
where κ(·) is a continuous function expressing a smooth-
ing kernel. In Section 3.2 we will show how to efficiently
evaluate this expression through the use of specific random
frequency domain projections.

One approach to address the Epps effect is to align observa-
tions on a common time grid by interpolation [5] or using
an estimator dedicated to the precise setting of the problem
under study such as Hayashi-Yoshida [10] for correlated
Brownian motions. In the following we show the statistical
shortcomings of both pre-existing approaches. The analy-
sis of these shortcomings presented below motivated our
proposed approach whose statistical properties we study
both theoretically and experimentally.

2.2.2 Bias created by interpolation

In this section, we first review existing techniques for time-
domain estimation of second-order statistics for continuous
stochastic processes in the context of discrete random sam-
pling in time. Interpolating data is a usual solution in or-
der to be able to use classic time series analysis techniques
[13, 14, 15]. Unfortunately, interpolation is not always
suitable, as it can create biased estimates which mislead
researchers into concluding that there is significant cross-
covariance where there is none [5].

A classical way to study the interactions of two asyn-
chronously observed time series is to force the synchronic-
ity of the timestamps by aligning them on a common time
grid. While there are many interpolation techniques, a
commonly used method is last observation carried forward
(LOCF) which is not as accurate as linear interpolation or
approximation by the nearest point but can efficiently be
deployed as it only relies on past data at any point in time.
We now consider the causality inference framework intro-
duced in [5] and show how the LOCF interpolation tech-
nique creates cross-correlation estimates that may lead to
false conclusions regarding the way (X) and (Y ) influence
each other.

Bias caused by LOCF interpolation: We demonstrate,
through simulation, that the asymmetric cross-correlation
bias that plagues the LOCF interpolation in [5] does not
appear in our proposed method. We consider two syn-
thetic correlated Brownian motions that do not feature

LOCF cross-correlation Fourier cross-correlation
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Figure 2: Cross-correlograms of LOCF interpolated data versus
estimation via compression in frequency domain. The latter esti-
mate does not present any spurious asymmetry due to the uneven
sampling frequencies.

any lead-lag (variations in one shortly following varia-
tions in the other) and compare the estimation of cross-
correlation provided the LOCF interpolation methods and
our approach. After having sampled these continuous pro-
cesses at random timestamps, in Figure 2 we compare the
cross-correlation estimates obtained by LOCF interpola-
tion and our proposed frequency domain analysis technique
confirming that our method does not introduce estimation
bias that is characterized by significantly positive cross-
correlation for small positive lag values. As the two simu-
lated processes are synchronously correlated, the estimator
should find a cross-correlation of 0 except when h = 0.

2.3 Interpolation-free Causality Assessment

The Hayashi-Yoshida (HY) estimator was introduced in
[10] to address the LOCF estimators tendency to discover
spurious causal structure. The HY estimator of cross-
correlation does not require data interpolation and has been
proven to be consistent in the context of High Frequency
statistics in finance [16].

Correlation of Brownian motions: HY is adapted to
measuring cross-correlations between irregularly sampled
Brownian motions. Considering the successor operator
next for the series of timestamps of a given process, let
[t, next(t)]t∈obs(X) and [t, next(t)]t∈obs(Y ) be the set of in-
tervals delimited by consecutive observations of X and Y
respectively. The Hayashi-Yoshida cross-covariance esti-
mator over the covariation of (X) and (Y ) [17] is

HY(h) =
∑

t∈obs(X), s∈obs(Y )
s.t: ov(t,s+h)

(Xnext(t)−Xt)× (Ynext(s)−Ys)

(5)
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Figure 3: LRD Erasure: Monte Carlo simulation (100 sam-
ples) of two fractional Brownian motions with Hurst exponent 0.8
and simultaneously correlated increments. Spurious slowly van-
ishing cross-correlation hinders the HY estimation but does not
affect our estimation with LRD erasure (see Section 3) as evident
by nearly zero cross-correlation for non-zero lag. This issue arises
when cross-correlating temperatures or water levels[3].

where ov(t, s+h) is true if and only if [t, next(t)] and [s+
h, next(s + h)] overlap. The estimator can be normalized
by HY(0) to estimate the cross-correlation.

No interpolation is required with HY but unfortunately this
estimator is not applicable outside the context of cross-
correlated standard Brownian motions. Figure 3 shows
how the HY estimator has much more variance than our
proposed estimator when estimating cross-correlation of
increments on a fractional Brownian motion. Fractional
Brownian motions belong to the family of Long Range De-
pendent (LRD) processes [18] found in general time se-
ries in climate sciences [3], finance [19], economics [20]
or genomics [21]. When applied to these processes hav-
ing a long memory of previous perturbations, the technique
we present provides a convergent estimator with less vari-
ance as opposed to HY. In section 3.3, we show how our
frequency domain based analysis naturally handles irregu-
lar observations and is able to fractionally differentiate the
underlying continuous time process. In the interest of con-
cision, we refer the reader to [22] for the definition of a
fractional Brownian motion and fractional differentiation.

3 Smoothing kernels in the Fourier domain

In this section, we develop a theoretical analysis of the
properties of estimators dedicated to the estimation of
the cross-covariance structure of the underlying process
(E[X(t)Y (t+ h)])h∈H where H is a discrete grid of lags
at which we want to evaluate the cross-correlation function.
Estimating this second order statistics is of paramount im-
portance as it highlights lead-lag [5] and helps infer linear
causation kernels by solving the Yule-Walker equations [4].

3.1 Smoothing kernel based estimator

Classically with sparsely observed continuous stochastic
processes [13] the measuring process is independent from
the underlying process. We just assume that the compound
model of the measuring point process and underlying pro-
cess is second order stationary with co-variation function

γXµX ,Y µY (h) = E [X(t)µX(t)Y (t+ h)µY (t+ h)].

The absence of independence between the underlying pro-
cess and the measuring process is a common feature in
medical data [23] or financial data [1]. The following the-
orem shows how this interaction affects smoothed cross-
covariance estimators.

Theorem 3.1 The kernel smoothing estimator does not al-
most surely evaluate to 0 as

E
[
γ̂XYsmooth(h)

]
= κ ∗

(
γXdN

X ,Y dNY
)

(h) (6)

where ∗ denotes the convolution operator.

Proof 3.1 By definition of kernel smoothing estimator

E
[
γ̂XYsmooth(h)

]
=

˜ T

t,s=0
E
[
X(t)Y (s)κ(t− s+ h)dNY

s dN
X
t

]
T

As X(·) and Y (·) are almost surely continuous and κ(·) is also
assumed continuous, we can write the following:
¨ T

t,s=0

E
[
X(t)Y (s)κ(t− s+ h)dNY

s dN
X
t

]
=

¨
t>s∈[0,T ]

E[

E
[
Y (s)E

[
X(t)κ(t− s+ h)dNX

t |Ft
]
dNY

s |Fs
]
]dsdt

+

¨
t<s∈[0,T ]

E[

E
[
X(t)E

[
Y (s)κ(t− s+ h)dNY

s |Fs
]
dNX

t |Ft
]
]dsdt

=

¨ T

t,s=0

E [X(t)µX(t)Y (s)µY (s)κ(t− s+ h)] dsdt

if we use Proposition 2.1 and recombine the two partitions of the
double integral. Rewriting the quantity above:
ˆ T

s=0

E

[ˆ T

t=0

X(t)µX(t)Y (t− s+ h)µY (t− s+ h)dt

]
κ(s)ds

=

ˆ
s∈[0,T ]

TγXdX,Y dY (h− s)κ(s)ds

which concludes the proof. �

3.1.1 Bias analysis for smoothing kernel design

We want to compare the estimators above with of the quan-
tity of interest, γXY (·) = E [X(t)Y (t+ h)].

Corollary 3.1 With the smooth kernel estimator we pro-
pose, γ̂XYsmooth(h) the bias term is now γXY (·) − κ ∗(
γXY × γµ

)
(·) where γµ = E [µX(t)µY (t+ h)] .

Let us now analyze this bias term in the simplest setting
where the measuring process is a bivariate uniform Pois-
son process with independent components of intensities νX
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and νY respectively and is independent from the underlying
process.

In such a setting, for any real valued h, γµ(h) =
E [µX(t)µY (t+ h)] = νXνY . Therefore the expected
value of the estimator shrinks by a constant factor in

E
[
γ̂XYsmooth(h)

]
= νXνY (κ ∗ γXY )(h). (7)

Here, as the sampling intensity decreases, the bias shrinks
the estimator for cross-covariance towards 0 as intuition
suggests. Further, we see that the smoothing kernel needs
to be concentrated about 0 as expected. We cannot reduce
this bias to 0, as κ needs to be continuous with a non-empty
interior support.

3.1.2 Variance analysis for smoothing kernel design

We conduct of variance analysis in the simple case of a
Gaussian smoothing kernel which is an extension of stan-
dard results of variance reduction for time series by Gaus-
sian smoothing.

Proposition 3.1 Assuming data is generated by the model
in Eq. (1), if the smoothing kernel is a Gaussian density
centered in 0 with standard deviation σ, the variance of
γ̂XYsmooth(h) is O( 1

σ ).

Proof 3.2 Denoting
(
FX,dN

X

t

)
t∈[0,T ]

the history of the com-

pound process (X, dNX), we consider

E

[(
γ̂XYsmooth(h)

)2
|FX,dN

X

T

]
=

ˆ T

t,u=0

X(t)X(u)

ˆ T

s,v=0

κ(t− s+ h)κ(u− v + h)A(s, v)dNX
t dN

X
u

Where A(s, v) = E
[
Y (s)Y (v)dNY

s dN
Y
v |FX,dN

X

T

]
= E

[
Y (s)Y (v)µY (s)µY (v)|FX,dN

X

T

]
again by a continuity argument. Conditionally to FX,dN

X

T , the
stochastic process Y µY is second-order stationary. With our
assumptions on the generative model Eq. (1), the spectral den-
sity (F (f)f∈R) of Y µY with respect to conditional probability

to FX,dN
X

T is such that for any frequency f the derivative of
the spectral density

´
R

log(F ′(f))
1+f2

df is bounded. Therefore the
Karhunen representation theorem [7, 24] guarantees that there
exist a second-order stationary process (ε) with orthogonal incre-

ments under the conditional probability associated with FX,dN
X

T

and a functional ψ such that Y (t)µY (t) = c(t)+
´ t
0
ψ(t−s)dεs

where c(t) is a deterministic process which will be ignored as it
is irrelevant when studying the variance of (Y (·)µY (·)). Then,
ˆ
s,v∈[0,T ]

E[κ(t− s+ h)κ(u− v + h)Y (s)Y (v)µY (s)µY (v)

|FX,dN
X

T ]dsdv = E
[
(k ∗ (Y µY )(t))2

∣∣FX,dNXT ]

where κ is a Gaussian smoothing kernel with standard de-
viation σ with the stochastic process (Y µY ). Convolu-
tions being linear, k ∗ (Y µY )(t) =

´ t
0
ψ(t − s)(k ∗ dε)s

and as the increments of ε are de-correlated conditionally
to FX,dN

X

T , E
[
(k ∗ (Y µ(Y )))2 (t)|FX,dN

X

T

]
=
´ t
0
ψ(t −

s)E
[
(k ∗ dε)2t |FX,dN

X

T

]
. The smoothing kernel κ is here

a Gaussian density with standard deviation σ, therefore

E
[
(k ∗ dε)2t |F

X,dNX

T

]
=

E

[
dε2t |F

X,dNX

T

]
σ2 therefore

E
[
(k ∗ (Y µ(Y )))2 (t)|FX,dN

X

T

]
=
E
[
(Y µ(Y ))2 (t)|FX,dN

X

T

]
σ

and the theorem follows. �

3.1.3 Bias variance tradeoff

The remarks above clearly delineate some of the design
choices that we will take into account when designing the
smoothing kernel κ. The theorems we proved already re-
quired that the kernel is continuous with a non-empty in-
terior support. To decrease bias we want the kernel to be
as concentrated about 0 as possible. However, at least in
the Gaussian kernel family, we want to have wide enough
a support so as to decrease the variance by pooling asyn-
chronous observations together.

3.2 Operating in the frequency domain

A problem we have is that even for standard smoothing
kernels the method above is expensive to compute as it re-
quires smoothing an entire irregularly observed time series
by a kernel with a theoretically infinite resolution. We solve
this by employing randomized Fourier transforms.

3.2.1 Fourier random projection basis

First, consider the Fourier transform of an irregularly ob-
served process (Xt)t∈obs(X) is defined as

FT [X](f) =

ˆ
t∈[0,T ]

e−2πiftX(t)dNX
t . (8)

The computation of this quantity can be accelerated using
the techniques described in [25].

We assume that we generate frequencies f with a proba-
bility distribution F prior to computing the corresponding
set of Fourier transforms. Let us consider the element-wise
product of the Fourier transform of Y with the complex
conjugate of the Fourier transform of X:

SP [Y,X](f) = FT [Y ](f)× FT [X](f). (9)

Theorem 3.2 Consider the random inverse Fourier trans-
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form of this element-wise product.

Ef∼F
(
e2πifhSP [Y,X](f)

)
=¨

t,s∈[0,T ]

X(t)Y (s)FT [F ](t− s+ h)dNX
t dN

Y
s . (10)

where FT [F ](·) is the Fourier transform of the distribution
of frequencies F .

Proof 3.3 By definition of the Fourier transform

Ef∼F
[
e2πifhSP [Y,X](f)

]
=

Ef∼F

[¨
t,s∈[0,T ]

e2πif(t−s+h)X(t)Y (s)dNX
t dN

Y
s .

]

and therefore, as sampling of frequencies is independent from
both the underlying process generation and the irregular sam-
pling, the expectation of interest equals
¨
t,s∈[0,T ]

Ef∼F
[
e2πif(t−s+h)

]
X(t)Y (s)dNX

t dN
Y
s .

�

Corollary 3.2 If F is a Gaussian centered distribution of
variance σ, FTf∼F (·) = g 1

σ
(·) where g 1

σ
is the density of

a normal distribution of standard deviation 1
σ . Therefore:

Ef∼F
(
e2πifhSP [Y,X](f)

)
=¨

t,s[0,T ]

X(t)Y (s)gσ(t− s+ h)dNX
t dN

Y
s . (11)

This enables us to retrieve the estimator in Eq. (4), implic-
itly, via the frequency domain. Therefore we have found
a frequency distribution to smoothly combine the observa-
tions of irregularly observed processes.

3.3 Erasure of memory in the frequency domain

With our method the application of a linear filter such as
differentiation or fractional differentiation can also be cal-
culated implicitly in the frequency domain.

Corollary 3.3 Let A(·) a linear filter we aim to apply to
the unobserved underlying process X and B(·) to Y . Fil-
tering can be conducted in the frequency domain as

Ef∼F

[
e−2πifhFT [B]FT [Y ](FT [A]FT [X])(f)

]

=

¨
t,s[0,T ]

A ∗X(t)×B ∗ Y (s)κ(t− s+ h)dNX
t dN

Y
s

(12)

Pre-processing can therefore be translated in the frequency
domain so as to study LRD processes. For a fractional
differentiation of level α dedicated to erasing LRD as in

Figure 3, we use A(f) = (2πif)α [18]. This is the pre-
processing step we use to study cross-correlation between
Brownian motion increments as in Figure 2. It also enables
us to show our estimator obtains results comparable to HY
in the case of Brownian motions in Figure 5 although it can
used much more generally.

3.3.1 Choosing the number of basis frequencies

It is practically impossible to project a process on a contin-
uous distribution of elements of the Fourier basis which is
what writing Ef∼F

[
e2πifhSP [Y,X](f)

]
implies, we will

sample a finite number Nf of frequencies from F and then
compute the associated predictions before computing

γ̂XYf (h) =
1

Nf

Nf∑

f=1

[
e2πifhSP [Y,X](f)

]

=

¨
t,s[0,T ]

X(t)Y (s)

Nf∑

f=1

e2πif(t−s+h)dNX
t dN

Y
s (13)

whose variance will be inversely proportional to M and
convergences in probability to γ̂XYsmooth(h) as M → ∞. As
the sampling process is independent from the data genera-
tion process, with simple Landau notations, in the case of a
Gaussian smoothing kernel of standard deviation σ,

V ar
(
γ̂XYf (h)

)
= O(

1

σM
) (14)

where the constant depends on the properties of both the
underlying process and the measuring process which we
have no control over. It appears therefore that there is
a cost to the compression of the information entailed in
the Fourier transform sets (FT [X] (fi))i=1...M in terms of
variance. The less data we use for this sufficient statistic,
the higher the variance of the cross-covariance estimator.

3.4 Communication Avoding Random Projections

In practice, the data can be distributed across multiple com-
puting devices or sensing platforms linked together by a
lower bandwidth communication medium, sorting and col-
locating data involves too much communication and suf-
ficient statistics cannot be delivered with a reactivity that
enables interactive exploratory data analysis [26]. Fre-
quency domain estimation does not require observations
to be sorted chronologically and shuffled across multiple
nodes of computation. Therefore, the techniques we offer,
based on specific frequency domain random projections,
enable substantial reduction of communication at the cost
of more computations. We empirically demonstrate in Sec-
tion 4.4 that this enables linear scaling on unsorted data sets
scattered across nodes in a data center as we can summa-
rize data sets of several hundreds of millions of timestamps
with a few thousand Fourier transforms.
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Figure 4: A Monte-Carlo experiment to confirm the validity
of our method. An auto-regressive model is generated and then
randomly sampled with only 60% of timestamps. The smoothed
cross-correlogram estimator we present enabled us to retrieve the
parameters of the underlying model without bias and with little
variance. Without smoothing, the cross-correlation estimator fails
to capture the singularity in 2 and evaluates to 0 everywhere on
average. With a probability of 90% the relative error is 8%.

4 Experiments

In the following we will use the notation γ̂XYf (·) for our
frequency domain kernel smoothing estimator and demon-
strate its properties experimentally.

4.1 Linear model estimation

A Monte Carlo experiment in which we have prescribed
a certain impulse function Φ in equation Eq. (1) demon-
strates how the cross-correlation estimates that we provide
enable us to reliably retrieve Φ even though the underlying
process we simulate is only observed at random times. In
this subsection, and only for the sake of this experiment,
we simulate a discrete time auto-regressive process with
a millisecond time resolution. Once the cross-correlation
function between (X) and (Y ) and their auto-correlation
functions have been estimated as

(
γ̂XYf (h)

)
h∈H

where H

is a set finite set of millisecond resolution lags, solving the
Yule-Walker equations below [4] gives an estimate of Φ̂f
for Φ which we compare to the values we chose for Φ.
Solving the Yule-Walker equations is equivalent to a Least
Squares Regression approach [4] as it comes down to esti-
mating the precision matrix of a group of random variables
based on their covariance matrix [27]. We empirically eval-
uate our ability to reduce variance by simulating 1000 sam-
ples from a single bi-variate linear auto-regressive process
as defined in Eq. (1). For each sample, we introduced a ho-
mogeneous independent random observation process with
µX = µY = 0.6. In Figure 4, we plot the estimated cross-
correlation and estimated model parameters as a function
of the lag parameter h along with a 95% confidence inter-
vals. We observe that the cross-correlation estimates have
low variance relative to the peak cross-correlation magni-
tude and that the linear model parameters are accurately
recovered with low variance.

Figure 5: Left: HY estimation on synthetic Brownian mo-
tions. Right: Estimation with frequency domain differentiation.
Although it has more variance, our estimator has similar bias to
HY without being specifically designed to Brownian motions.

4.2 Estimating cross-correlations on actual data

In order to highlight significant cross-correlation between
pairs of stocks, one needs to consider high frequency dy-
namics. As we will show in the following, cross-correlation
vanishes after a few milliseconds on most stocks and fu-
tures. In these settings it is then necessary to use full reso-
lution data which in this instance comes in the form of ta-
bles recording record bids, asks and exchanges on the stock
market as they happen. The timestamps are therefore irreg-
ular and not common to different pairs of stocks. Also,
stock prices are Brownian motions and therefore feature
long memory. This context is therefore in the very scope
of data intensive tasks we consider. We show our novel
Fourier compression based cross-correlation estimator pro-
vides consistent estimates in this setting.

4.3 Checking the consistency of the estimator

Consider ask and bid quotes during one month worth
of data. We create a surrogate noisy lagged version of
AAPL with a 13ms delay and 91% correlation which
is named AAPL-LAG. We study four pairs of time
series: APPL/APPL-LAG, AAPL/IBM, AAPL/MSFT,
MSFT/IBM. We study the changes in quoted prices (more
exactly, volume averaged bid and ask prices). The cross-
correlograms obtained below are computed between 10
AM and 2PM for 61 days in January, February and March
2012. For each process, 3000 frequencies were used in
the Fourier basis. This is several orders-of-magnitude less
than the number of observations that we get per day. These
range from 5 × 104 to 1 × 105. We observe an 89% aver-
age peak cross-correlation with an 8ms delay for the sur-
rogate pair of AAPL stocks which confirms our estimator
is reliable with empirical data. In Figure 6 we highlight a
taxonomy of causal relationships.

4.4 Random projections enable scalability

A primary goal of this work is to enable practical scalable
causal inference for time series analysis. To evaluate scala-
bility in a real-world setting we assess the relation between
AAPL and MSFT over the course of 3 months. In con-
trast to our earlier experiments (shown in Figure 6), we no
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Peak delay = 0ms
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Figure 6: Average of daily cross-correlograms pairs of stock
trade and quote data. Compression ratio is < 5%. We retrieve
lag and correlation accurately on surrogate data. The daily av-
eraged cross-correlogram of AAPL and IBM is strongly asym-
metric, therefore AAPL can predict IBM. The symmetry between
AAPL and MSFT shows there is no such relationship between
them. Symmetric and offset in correlation peak show that varia-
tions in IBM can be predicted 3ms ahead by observing MSFT.

longer average daily cross-correlograms in and therefore
only leverage concentration in the inverse Fourier trans-
form step of the procedure. With only 3000 projections
for 5× 106 observations per time series, the results we ob-
tain on Figure 7 reveals the causal relation between AAPL,
AAPL-LAG, IBM and MSFT consistently with Figure 6.

Scalability: In order to assess the scalability of the algo-
rithm in a situation where communication is a major bottle-
neck, we run the experiment with Apache Spark on Ama-
zon Web Services EC2 machines of type r3.2xlarge. In
Figure 8 we show that even with a large number of pro-
jections (10000) which is enough to considerably reduce
the variance of the estimator the communication burden is
low enough to achieve nearly linear speedup.

Conclusion

In this paper we address the issues hampering cross-
covariance estimation for randomly observed continuous
stochastic processes. Pre-existing methods suffer from bias
issues that can mislead researchers into identifying linear
causality where there is none, lack strong statistical guar-
antees with general assumptions on the process of interest
and rely on high communication requirements to be com-
puted in the distributed setting. After having defined a new
estimator for cross-covariance that does not systematically
evaluate to 0, we analyze the bias/variance trade-off re-
lated to the kernel smoothing our method relies on. To en-
able scalability we leverage the careful design of random
Fourier transforms to implicitly compute kernel smoothing
between asynchronously observed time series in the fre-

Figure 7: Compression ratio is < 1%. On the entire data set
we retrieve results similar to 6 therefore validating the use of our
estimation of cross-correlograms in a scalable manner thanks to
Fourier domain compression. Confidence bounds are computed
using the asymptotic independence of spectral components [11].

Figure 8: On the left we plot the empirical standard deviation of
daily cross-correlograms (Figure 7) with respect to the number of
projections showing that the variability decreases rapidly. On the
right we plot the run time performance of our algorithm versus
the number of Apache Spark EC2 cores showing approximately
linear speedup. The small number of projections (104) relative to
the size of the data set (107 records) avoids communication.

quency domain. We show with simulated data that the esti-
mator we propose reliably retrieves model parameters. We
then demonstrate that it enables a scalable study of stock
market pair cross-correlation with tens of millions of high
frequency recordings.
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