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Abstract

The research presented in this dissertation is motivated by the need for efficient analysis,

automation, and optimization tools for the National Airspace System (NAS) and more

generally for large scale networks of dynamical systems.

A new modeling framework based on hybrid system theory is developed, which captures

congestion propagation into the Air Traffic Control (ATC) system. This model is validated

against Enhanced Traffic Management System (ETMS) data and used for analyzing low

level actuation of the human Air Traffic Controller. This model enables us to quantify

the capacity limit of the airspace in terms of geometry and traffic patterns, as well as the

speed of propagation of congestion in the system. Once this setting is in place, maneuver

assignment problems are posed as optimization programs, some of which can be reduced

to Mixed Integer Linear Programs (MILPs). Problem specific algorithms are designed to

show that certain MILPs can be solved exactly in polynomial time. These algorithms are

shown to run faster than CPLEX (the leading commercial software to solve MILPs) when

implemented on the same platforms. For other problems, approximation algorithms are

designed, with guaranteed bounds on running time and performance. An architecture is

proposed for the implementation of this method using a live ETMS data feed.

Flow control problems in the NAS are modeled using an Eulerian framework. A Partial

Differential Equation (PDE) model of high altitude traffic is derived, using a modified

Lighthill-Whitham-Richards (LWR) PDE. High altitude traffic is modeled as a network

of LWR PDEs linked through their boundary conditions. The model is validated against

ETMS data. A new adjoint-based method is developed for controlling ATC network flow

management problems and successfully applied to realistic scenarios for the airspace between

Chicago and the east coast. Accurate numerical analysis schemes are used and run very
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fast on this set of coupled one dimensional problems. The resulting simulations provide

high level ATC control strategy (i.e. NAS-wide) in the form of flow patterns and routing

policies to apply to streams of aircraft going through the system.

Finally, tactical control problems at the level of the dynamics of individual aircraft are

studied in order to meet safety specifications. The problem of proving safety of conflict

avoidance protocols is posed in the Hamilton-Jacobi framework, and linked to existing

mathematical results. A proof of safety is derived for conflict avoidance. It is tested on real

ATC scenarios for en route traffic and shows an excellent match with recorded Air Traffic

Controller’s actions.
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comments and organized collaborations with the right experts. The combination of her

support, enthusiasm and energy have been an inspiration for me which I shall remember in
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the Oakland Air Route Traffic Control Center and with NASA Ames, which have lasted for

three years. My work has greatly benefited from these ties.

At the Oakland Center, which I visited frequently during these three years, I had the
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The model of the National Airspace System, which I subsequently developed and derive in
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within the Automation Concepts branch. Dr. Meyer’s influence on my work has been

significant. In addition, working with him has been a great pleasure. He is the person

who initially suggested building this model, in order to understand the propagation of
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forced to spend one night sleeping on the floor of the Chicago airport, because of a storm in

South Carolina. At NASA, I was able to interact with numerous researchers from various

backgrounds, bringing me up to speed on most of the issues relevant to Air Traffic Control.

After a few months, the second floor of Building 210 at Ames felt like a second academic

home to me. I would like to thank Dr. Gano Chatterji for being supportive and making

numerous suggestions. Besides being my ETMS data feed, Dr. Shon Grabbe spent a lot of

time with me in my initial investigation of this data. Many researchers have impacted my

work, and provided useful material: Dr. Karl Bilimoria, Dr. Heinz Erzberger, Dr. Banavar

Sridhar, Forrest West and others.

Most fields within engineering, control in particular, are multidisciplinary. This is reflected

in my dissertation, which makes contributions to the areas of partial differential equations,

optimal control, and combinatorial optimization, all applied to practical problems. At

Stanford, I have benefited from outstanding teaching in these respective fields; Professors

Juan Alonso, Stephen Boyd, Parviz Moin, Bill Reynolds and Claire Tomlin each helped

in their own way to move me forward. I would like to thank Professors Antony Jameson,

Ilan Kroo, Sanjay Lall, Doron Levy and Tai-Ping Liu for welcoming me into their offices and

giving me the opportunity to have my questions answered. The proximity of UC Berkeley

enabled me to interact with several researchers on the other side of the bay. I am grateful
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Chapter 1

Introduction

The recent growth in embedded control system applications has been triggered by the advent

of numerous factors and technologies: increase of computer power, advances in monitoring

and communications, progress in miniaturization. While many kinds of automated systems

have greatly benefited from these technologies (for example, cars, avionic systems, single

robots, unmanned air vehicles), a similar technology for networks of these systems is still

lacking. Sensor networks, groups of mobile communication devices, swarms of robots, and

the Air Traffic Control (ATC) system are just a few examples of networks of automated

systems for which a clear paradigm does not yet exist.

The difficulty of controlling ATC systems is manifold: it is by nature distributed; it demands

high levels of efficiency, performance, reliability, and safety; a portion of the control needs

to be centralized (planning), the remainder needs to be decentralized (local flow control);

and it is extremely sensitive to disturbances such as congestion and weather.

Some of the systems mentioned above — the ATC system in particular — even suffer from

the lack of an appropriate model. The difficulty of modeling the ATC system arises from

the number of different elements interacting in the system. Humans-in-the-loop are a major

difficulty in generating a mathematical model with predictive capability. ATC is a multiple

agent system with conflicting goals: Air Traffic Controllers are supposed to ensure fairness

among selfish users (airlines), who try to use the system to their advantage. Not all scales

of the system are necessarily relevant for all models (for example flow management does

not require a precise description of aircraft longitudinal dynamics). Also, the amount of

available information to be processed is often greater than treatment allows.

3
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1.1 The need for application specific air traffic flow models

As will be seen in the next chapter, the enormous size of the National Airspace System

(NAS) in the US forces any model or control strategy to ignore some of its components,

which are irrelevant for the application of interest. A few numbers illustrate this fact. More

than 5000 aircraft (military, commercial and general aviation) can be present in the US

airspace at the same time. A single Air Traffic Controller can communicate with more than

15 aircraft at a given time, and there are about 17000 Air Traffic Controllers in the NAS.

The update rate of the monitoring system is 12 seconds for high altitude traffic, sometimes

up to 3 seconds near airports. This data is displayed to Controllers and then collected and

assembled into a single data file by a central ATC facility. The volume of this data file

is thus extremely large. Furthermore, some of the data is not useful for every Air Traffic

Controller of the NAS: for example, Air Traffic Controllers in charge of planning traffic at

a high level do not need 3 second updates. Reciprocally, an Air Traffic Controller in charge

of arrivals into San Francisco needs this update rate, but does not need to know about

airspace congestion in Philadelphia. To give an idea of the size of the data, when this work

was started, this data was processed and redistributed at the rate of one update every 3

minutes, limited by bandwidth (vs. every 3 or 12 seconds). Even with the slow update rate

of 3 minutes, the accumulated data was already on the order of 700 MB a day.

Prevention of airborne collisions, security and robustness of the control with respect to

disturbances, congestion avoidance in busy areas, optimization of airline profit, avoidance

maneuvers for parallel landing, free flight — each of these is a problem of interest to ATC or

airlines. In order to treat these problems, different kinds of models are needed, appropriate

for an efficient mathematical treatment of the issues involved.

When small numbers of aircraft are involved in close range, and the problem to be solved is

collision avoidance, a fairly precise knowledge of each aircraft’s possible motion is needed.

When a larger number of aircraft are considered, such as for flow scheduling near an airport,

it might be sufficient to know the set of speeds and maneuvers achievable by each aircraft

in order to perform the appropriate time adjustments. Finally, for problems involving very

large numbers of aircraft, such as in trying to balance the NAS-wide overload of the system,

a relevant approach might be to discard the individual identity and local behavior of the

aircraft and focus on their density (i.e. number per surface unit). These three levels of

detail will be addressed in this work, with relevant illustrative examples.
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1.2 Computational control of networks of dynamical systems

The three main goals of this work are thus: (i) to come up with efficient and reliable control

paradigms for regulating air traffic flow in the vicinity of large airports; (ii) to create a con-

trol framework for air traffic mass balancing in the NAS; (iii) to provide a mathematical

framework for proving safety of collision avoidance protocols. The specifications on the

control are driven by the necessity of online implementation (therefore high speed of com-

putation is required), and the need for a guaranteed performance (for example, the amount

of separation between aircraft in space or time should be greater than a fixed threshold).

We use the word computational to refer to both speed and performance guarantees, which

we will address in developing our algorithms.

When we need to describe aircraft individually, we use the framework of dynamical systems

to model their behavior, because we are interested in their trajectories, which are well rep-

resented by solutions of ordinary differential equations (ODEs). The dynamical systems are

networked to the ground through a communication link. The network connection between

the respective dynamical systems is mathematically not formalized as precisely as it would

be in a wireless communication or sensor network for example; in fact one of the difficulties

is precisely to model this linkage, especially when the human is part of it.

Most of the descriptions of air traffic flow which model aircraft as dynamical systems are

by essence Lagrangian. This means that the description of the aircraft is made through

its trajectory. This is a natural model for numerous applications of interest: collision

avoidance, scheduling, multiple aircraft path planning. Within the Lagrangian approach,

we will use hybrid systems as a modeling framework. Hybrid systems are a very powerful

modeling tool for describing systems exhibiting distinct continuous and discrete behaviors.

This is useful for ATC: Air Traffic Controllers tend to think about aircraft as being in a

mode (climb, descent, cruise, turn, in a holding pattern, etc). These modes constitute a

set of discrete states, in which the continuous evolution of the system can be described by

a dynamical system. The discrete evolution of the system corresponds to mode switches

(for example from cruise to turn to cruise). The framework of hybrid systems is thus very

suitable for ATC, which is a very procedural environment, in which it is easy to identify

these discrete modes and switches within the structure of the existing control; in fact the
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Air Traffic Controllers’ phraseology includes these modes and switches, as will appear in

the later chapters.

However, modeling a physical system as a hybrid system or a network of hybrid systems

does not provide a mathematical solution to the problem of controlling it. Within the field

of hybrid systems, several classes of problems have been identified, and there are only few of

them for which we know theoretically how to design a controller. There are even fewer for

which computationally efficient algorithms exist. Therefore, unlike in optimization, there

do not exist standard toolboxes or software that one can use, as we commonly do when we

identify a problem as a linear program, a quadratic program or a convex program. This

fact advocates for several possible research approaches to solve hybrid systems controller

synthesis problems. One approach consists of deriving general methods for classes of sys-

tems; the benefit is that the method applies to any system in the class; the drawback is that

the applicability of the method is limited to specific systems. Another approach consists

of deriving problem specific algorithms; the advantage is that these algorithms are usually

much faster than general algorithms, and apply to “harder” scenarios; the drawback is that

they are difficult to generalize to different problems. The work presented here uses both

approaches. We will develop problem specific algorithms based on dynamic programming,

LP relaxation and matching algorithms to solve combinatorial optimization problems spe-

cific to ATC. We will also develop a general methodology to compute reachable sets of low

dimension systems and apply it to the specific problems of interest.

As appears in the title of this dissertation, the main application of this work is ATC. We

have not found prior to this work good mathematical models which enable a systematic

description of the airspace, the aircraft motion and Air Traffic Controller action in terms of

ATC procedures. The first contribution of this work is thus a mathematical model of the

airspace, which was first described in [18, 19, 17, 25]. This model enables the analysis of

airspace congestion propagation, and is validated against air traffic data. The control part of

the problem consists of using this model to derive optimal ATC policies. The word optimal

in the ATC context can have multiple meanings: maximal throughput into an airport,

minimal sum of all flight times, minimum legal separation between the aircraft upon landing,

etc. The second contribution of this work is thus to pose specific ATC scenarios as hybrid

system controller synthesis problems, and reduce them to known optimization programs [27].

For the reasons mentioned above, problem specific combinatorial optimization algorithms



1.2. COMPUTATIONAL CONTROL OF NETWORKS OF DYNAMICAL SYSTEMS 7

were developed to solve these programs, with appropriate guarantees on performance and

speed [29, 28].

As mentioned above, if one is interested in controlling large scale effects of the system (for

example balancing aircraft density in the NAS), the identity of the aircraft is not crucial:

only their concentration in certain regions of airspace is useful. Inspired by highway con-

gestion models, a new Eulerian airspace model was developed [22], specifically tailored to

balance densities in the NAS. Eulerian means that instead of being represented by their

trajectories, aircraft are described by their concentration (density) in given control volumes.

The resulting partial differential equation (PDE) was used to build a network model, for

which a new adjoint-based constrained optimization method was build to control it [21].

The novelty of this method is that it applies to PDE governed networks and incorporates

nonlinear constraints on the state and the control. It is quite general, was successfully ex-

tended to highway congestion control [23], and applies to several other PDE driven network

problems.

Finally, the second part of this dissertation tackles vehicle-vehicle interaction problems.

It is usually assumed that once high level optimal policies are determined, there will be

an appropriate control action to separate the aircraft, i.e. to prevent them from coming

too close to each other. In fact, this task is currently performed manually by Air Traffic

Controllers. Several automation methodologies have been proposed to automate this task.

A key requirement of this automation is proof of safety. A mathematical proof was developed

in [116] to address this. An intermediate result in coming up with the proof [116] was to

construct an analytical solution [26] of the problem, in order to understand difficulties or

errors published in previous literature on the subject. Finally, efficient numerical methods

presented in [116] were used with real data for conflict detection in [24]. This work is to

our best knowledge the first to apply differential game theory to real Air Traffic Control

problems.

The general framework developed in [116, 24] was also used for other applications, which

are not presented in this dissertation. Extensions of this framework to hybrid systems were

presented in [150], applications to flap deflection for landing aircraft was published in [117,

20, 148], applications to takeoff go-around were investigated in [126, 125], applications

to en route flight will appear in [8]. Finally, an alternate numerical technique for fast

computations of safety sets appeared in [16], and is outlined at the end of this dissertation.
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1.3 Organization of this work

The network models and corresponding control methodologies are summarized in Part I.

Part II contains the vehicle-vehicle interaction algorithms and their applications.

After a short presentation of the organization of the NAS in Chapter 2, Chapter 3 derives

a Lagrangian model of the NAS, based on trajectories of the aircraft, analyzes delay prop-

agation in the system, and provides a model of the human sector Air Traffic Controller.

Chapter 4 casts the problem of optimal maneuver assignment in converging traffic into a

hybrid system controller synthesis format, and subsequently reduces it to a mixed integer

linear program. This program is solved in Chapter 5 with combinatorial optimization al-

gorithms which we derived. An Eulerian model of the NAS is derived in Chapter 6, in

order to provide an appropriate mathematical framework for balancing density in the NAS.

A control algorithm is developed in Chapter 7, which relies on adjoint-based constrained

control for PDEs.

The mathematical framework for proving safety of conflict avoidance protocols is developed

in Chapter 8, and applied to real ATC scenarios in Chapter 9.

Additional results are summarized in the different Appendices. Appendix A outlines a fast

algorithm for overapproximating safety zones in ATC, and applies it to converging traffic in

the Oakland Center. Appendix B provides additional proofs required for the combinatorial

optimization algorithms developed in Chapter 5.



Chapter 2

Architecture for Automated Air

Traffic Management

This chapter presents a short overview of the current organization of Air Traffic Management

(ATM) in the US. In particular, it presents the structure of the airspace, which will be used

in subsequent chapters for analysis, modeling and control. This introductory chapter is

based on the book [123] by Nolan, and was published as a part of a case study book chapter

on ATM [25]. Section 2.1 briefly summarizes the history of ATM in the US, and explains

how the current system was created. Section 2.2 explains how the airspace is physically

organized and how the different portions are managed. Section 2.3 summarizes the current

tools and technologies used for monitoring the system. Finally, Section 2.4 gives an overview

of the procedures which will be used to model the system.

2.1 A short history of Air Traffic Control

Air Traffic Control in the United States began in the late 1920s, pioneered by airport em-

ployees using red and green flags, and lights to signal their instructions to pilots. The Air

Commerce Act of May 20, 1926, was the first step of the Federal government towards regu-

lation of civil aviation. This legislation was pushed by the leaders of the aviation industry,

9
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who were convinced that the airplane could not reach its full commercial potential with-

out Federal action to define, improve and maintain safety standards. The Air Commerce

Act defined several tasks, including issuing and enforcing air traffic rules, licensing pilots,

certifying aircraft, establishing airways, and operating and maintaining aids to air navi-

gation. The first city to have a radio-equipped control tower was Cleveland (1930). The

first three centers for Air Traffic Control (ATC) were established by an airline consortium,

encouraged by the Federal government, between 1935 and 1936. Maps, blackboards, and

mental calculations were the first tools used by early Air Traffic Controllers to ensure the

safe separation of aircraft traveling between cities along designated routes.

In 1938, the Civil Aeronautics Act transferred the Federal civil aviation responsibilities

from the Department of Commerce to a new independent agency, the Civil Aeronautics

Authority. The legislation also expanded the government’s role by giving the Authority the

power to regulate airline fares and to determine the routes that airlines would serve. The

Authority was split in 1940, giving birth to the Civil Aeronautics Administration (CAA)

and the Civil Aeronautics Board (CAB) placed under the Department of Commerce. The

CAA was responsible for ATC, airman and aircraft certification, safety enforcement, and

airway development. The CAB’s task was safety rulemaking, accident investigation, and

economic regulation of the airlines.

The increasing airspace congestion triggered by the growing traffic in the 1940s, the intro-

duction of jet airliners and a series of midair collisions motivated passage of the Federal

Aviation Act of 1958, which generated a new agency: Federal Aviation Agency. Even

though a special committee had already recommended the use of radar in 1947, it was not

until the late 1950s that a civilian radar system was installed by the CAA. The Federal Avi-

ation Agency was given sole responsibility to develop and maintain a common civil-military

system of air navigation and ATC. The Act also transferred safety rulemaking from the

CAB to the Federal Aviation Agency. On April 1, 1967, the Federal Aviation Agency

became one of several organizations within the Department of Transportation (DOT) and

became the Federal Aviation Administration (FAA).

In the mid-1970s, the FAA achieved a semi-automated ATC system based on a combina-

tion of radar and computer technology. By automating certain functionalities of ATC, the
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system allowed Air Traffic Controllers to concentrate more efficiently on the vital task of

aircraft separation, which is still not automated today. The Air Traffic Controller graphi-

cal display encompassed technology able to visualize numerous information about aircraft

(identity, altitude, and ground speed of aircraft carrying radar beacons), while controlling

the airspace. Despite its effectiveness, this system was not able to keep up with the growth

of traffic and increasing congestion. The NAS Plan, created in January 1982, by FAA

aimed at finding solutions to the congestion problem, defined more advanced systems for

en route and Terminal ATC, modernized flight service stations, and improved in ground-

to-air surveillance and communication. Several other levels of automation were introduced

until the events of September 11, 2001. Shortly after, Congress created the Transportation

Security Administration (TSA), whose principal responsibility is civil aviation security.

Despite the negative impact of September 11 and the concurrent economic recession, which

made passenger demand fall initially by more than 20%, airspace congestion is a continued

problem. Recent studies [143] have shown that the overall impact of September 11 on air

traffic congestion was just a two year delay in previous estimates. In 40 years, the delays

have increased by 50% in the United States. From 1995 to 1999, the average delay (over

all US flights) grew from 42 minutes to 50 minutes. Flight cancellations increased by 68%

between 1995 and 1999. Annual traffic growth is still 2.3% and airlines have increased their

flight times on 80% of all busy routes, up to 27 minutes. This means that the published

time flight (i.e. available on the passengers’ tickets) was increased by 27 minutes, which

include forecasted delays as well as a “safety buffer” (it is better for an airline to declare

a flight early if this forecast was too pessimistic). Such a list of alarming numbers could

be extended almost endlessly. It vehemently speaks for optimization of the current ATC

system, in order to satisfy the ever-increasing amount of traffic. Automation of certain

ATC tasks, which this work is focused on, is aimed at contributing to the optimization of

performance of the system, while maintaining safety guarantees.

2.2 Overview of the current airspace structure

The National Airspace System (NAS) is divided into different classes, which correspond

to regions under different regulations and use. An exhaustive classification of airspace is
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ATCSCC weather and traffic problems
airport closures
abnormalities

ARTCC 1 ARTCC 2 ARTCC 3 ARTCC 20

1
sector sector sector

2 n

disseminates info from ARTCCs
flow directives

flow directives problems

Figure 2.1: Control hierarchy in the current structure of National Airspace System.

Figure 2.2: Map of the 22 ARTCCs in the U.S. (map courtesy of http://www.seaartcc.org).
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available in [123], and is only briefly summarized here.

Class A airspace exists from 18,000 to 60,000 feet. All operations in this airspace must

be under instrument flight rules (IFR) (pilots must be rated to fly according to the rules

governing the procedures for conducting instrument flight) and are subject to air traffic

control clearances and instructions. Class B airspace surrounds “busy” airports in the US.

Each Class B area is individually tailored and consists of a ground surface area and two or

more surrounding layers (see Figure 2.3) (most Class B airspace would look like an inverted

wedding cake if viewed in profile). Again, pilots must receive an ATC clearance to enter

class B airspace. Class C airspace generally surrounds “smaller” airports with an operating

control tower, a radar approach control facility, and a certain number of IFR operations.

The area encompassed by this airspace is delimited by two circles with the inner circle

extending 5 nautical miles from the airport starting at the surface and extending up to

4000 feet above airport elevation. The outer circle extends to 10 nautical miles from the

airport and consists of a shelf from 1200 feet to 4000 feet above airport elevation. The rest

of civilian airspace is divided in further categories (Classes D, E, G), not relevant for the

description in this chapter. Airspace also includes special use airspace, which encompasses

prohibited areas, restricted areas, warning areas and military operations areas, which will

not be detailed here.

The NAS is a large scale, layered, dynamic system: its control authority is currently orga-

nized hierarchically with a single Air Traffic Control System Command Center (ATCSCC),

in Herndon VA, supervising the overall traffic flow. This is supported by 22 (20 in the con-

tinental US or CONUS) Air Route Traffic Control Centers (ARTCCs, or simply, Centers)

organized by geographical region up to 60,000 feet [123, 94]. Each Center is sub-divided

into about 20 sectors, with at least one Air Traffic Controller responsible for each sector.

Each sector Air Traffic Controller may talk to 25-30 aircraft at a given time (the maxi-

mum allowed number of aircraft per sector depends on the sector itself). The Air Traffic

Controller is in charge of preventing losses of separation (LOS) between aircraft, keeping

them separated by more than 5 nautical miles horizontally, and 2000 feet vertically. In

general, the Air Traffic Controller has access to the aircraft’s flight plan and may revise the

altitude and provide temporary heading assignments, amend the route, speed, or profile, in

order to attempt to optimize the flow and to keep aircraft separated, as well as to provide
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weather reports and winds. An illustration of the current control structure is presented in

Figure 2.1.

There are about 17, 000 Air Traffic Controllers in the NAS infrastructure, each controlling

a zone with rough diameter from 20 to 200 miles [123]. There are about 19, 000 landing

facilities, with about 400 of these major airports with ATC towers. The acceptance rate of

each airport is usually 1 aircraft/minute per runway in normal operations (if the runway

is used for both take off and landing); this capacity is doubled if the runway is used for

landing only.

Within the Center airspace, the regions away from the airports, in which the aircraft usually

fly at high altitude belong to the en route airspace, which is controlled by the ARTCC. Air

traffic is delivered to the en route airspace from the Terminal Radar Approach Control

(TRACON) facilities, in charge of the airspace around the airports (for departure and

arrival). The US contains more than 150 TRACON facilities, which generally control this

airspace up to 15,000 feet. TRACONs may serve more than one airport: for the San

Francisco Bay Area TRACON includes the San Francisco, Oakland, and San Jose airports

along with smaller airports at Moffett Field, San Carlos, and Fremont. The regions of

airspace directly around an airport as well as the runways and ground operations at the

airport are controlled by the Air Traffic Control Towers.

2.3 Navigation and surveillance

ATC surveillance is performed through the use of radar. A primary radar processes the

reflection of the waves sent to the aircraft and reflected by their bodies, which provide the

position of the corresponding aircraft. A secondary radar triggers a transmitter in the air-

craft to automatically emit an identification signal. The range of radars depend on their use.

For the en route airspace, the Air Route Surveillance Radar (ARSR) is used; in the TRA-

CON, the Automated Radar Terminal System (ARTS) is used, which has a shorter range.

The accuracy as well as their update rates depend on their use. The update frequency can

vary from 3 to 12 seconds. Each ATC facility is equipped with their own computer sys-

tem to process the information collected by the radar systems, and incorporate additional
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Figure 2.3: Airspace Classes (courtesy of U.S. Department of Transportation).

information from the other ARTCCs or the ATCSCC. Human Air Traffic Controllers use

a visual interface showing the traffic situation in their sector (or area of control). This

interface includes some forecast functionality (for example anticipated trajectories of air-

craft, filed flight plans), as well as graphical tools to estimate or forecast aircraft separation

(for example speed vector displays or circles centered around the aircraft). The main task

of sector Air Traffic Controllers is to maintain the FAA standards for aircraft separation,

which are 5 nautical miles horizontal separation, 1000 feet (2000 feet above 29,000 feet)

vertical separation in the Center airspace, and 3 nautical miles horizontal separation, 1000

feet vertical separation in the TRACON.

ATC currently directs air traffic along predefined routes called victor airways (low altitude

< 18, 000 feet) and jetways (high altitude), which are “freeways in the sky”. Often, the

aircraft might request to fly directly from waypoint to waypoint, which are a system of

beacons (non-directional beacons (NDBs), very high frequency omni-range receivers (VORs),

and distance measuring equipment (DME)). These beacons help the pilots or autopilots

navigate through the system and are used by the inertial navigation systems (INS) on

board each aircraft.
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Other systems are also available for navigation and surveillance, and are currently in the

process of being certified. They are therefore used in conjunction with other system, in a

redundant manner.

The Global Positioning System (GPS) is a radio navigation system that allows land, sea,

and airborne users to determine their exact location, velocity, and time 24 hours a day, in

all weather conditions, anywhere in the world. Its Wide Area and Local Area Augmentation

Systems (WAAS and LAAS) is a form of differential GPS (DGPS) giving enhanced position

accuracy developed primarily for aeronautical applications but usable by other users. One

advantage of the GPS and derivative technologies is its accuracy: unlike INS systems,

which are known to decrease over time due to sensor drift rates, the accuracy is uniform

from aircraft to aircraft [77].

The communication protocol Automatic Dependent Surveillance (ADS) enable aircraft to

transmit over digital satellite communication their GPS position information, velocity, as

well as information about their intended trajectory, to the ground ATC. ADS-B (for broad-

cast) is a protocol for broadcasting this information to neighboring aircraft. One advantage

of this system is to provide very accurate information to other aircraft, including trajectory

prediction, without the use of the radar system. This could provide very helpful in two

situations: oceanic flight, as well as in the vicinity of large airports. To the current day,

very few airlines have equipped their aircraft with ADS-B, as the system becomes useful

only if all users are equipped with it. A good example of its use is by United Parcel Service

(UPS), which uses ADS-B for night landings in its hub airport. In this case, a large portion

of the fleet has to land in a short period of time at the same location, which makes this

tool useful. A potential use of ADS-B in the same context would be for reducing aircraft

separation.

2.4 Communication and procedures

All IFR pilots must file a flight plan at least 30 minutes before pushing back from the

gate. The pilot reviews the weather along the intended route, maps the route and files the
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plan. The flight plan includes: flight number (which includes the airline identification),

the aircraft type, the intended airspeed and cruising altitude, the route of flight (departure

airport, Centers that will be crossed, and destination airport). It also includes additional

information, called waypoints, navaids, or fixes, which will be used by the aircraft to navi-

gate through sectors of airspace. The flight plan also contains the arrival, which is a set of

closely spaced waypoints, navaids or fixes leading to an airport. An example of arrivals into

the Oakland airport (in California) is shown in Figure 2.4, with corresponding infrastruc-

ture. The pilot transmits the desired flight plan information to ATC, where a Air Traffic

Controller called a flight data person reviews the weather and flight plan information and

enters the flight plan into the FAA main, or “host” computer. The computer generates a

set of flight progress strips that are sent electronically from sector Air Traffic Controller

to sector Air Traffic Controller across the flight plan; these strips, and flight plans, may

be updated by each Air Traffic Controller throughout the flight. The flight progress strip

contains all of the necessary data for tracking the aircraft.

Figure 2.4: Example of arrivals into the Oakland (oak) airport : locke 1 (mod.locke1). Aircraft enter

this airspace through the waypoints: mustang, mina, coaldale, clovis, whose acronyms are fmg, mva,

oal, czq. Note the tracks for holding patterns (shown as loops at various merge points). Source: [93].
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After the pilot has filed the flight plan, ATC may modify the flight plan according to

constraints of the NAS and other aircraft (information which is available to each Air Traffic

Controller from conversations with the ARTCC and ATCSCC Air Traffic Controllers), and

issues a clearance to the pilot. After take-off, the control of the aircraft is passed through

the Tower, TRACON, and possibly several Center facilities until the destination TRACON

is reached.

Each sector Air Traffic Controller may talk to 25-30 aircraft at a given time [123]. When

an aircraft crosses the boundary from one sector to the next, there is a “hand-off” in which

the communication is transferred from one Air Traffic Controller to the next. Potential

conflicts must be resolved before hand-off occurs. The Air Traffic Controller directs the

aircraft according to a set of simple control directives, voiced sequentially. One of the most

important, and time consuming, Air Traffic Controller tasks is to prevent LOS between

aircraft.

Radio communications are a critical link in the ATC system. The most important aspect in

pilot / Air Traffic Controller communications is mutual understanding of the command and

response. Therefore, pilots acknowledge each radio communication with ATC by using the

appropriate aircraft call sign; contacts are kept as brief as possible. For example, a contact

procedure is codified as follows: name of facility being called, full aircraft identification as

filed in the flight plan, and eventually, the request or type of message to follow. Each pro-

cedure is codified in a similar way. Each sector is handled by one key Air Traffic Controller;

each Air Traffic Controller has his own radio frequency over which the communication with

pilots in his sector takes place. As a flight progresses from one sector to another, the pi-

lot is requested to change to the appropriate frequency. The International Civil Aviation

Organization (ICAO) phonetic alphabet is used by FAA personnel when communications

conditions are such that the information cannot be readily received without their use. The

grammar and phraseology used in the current system is available in [123] and has been

the focus of recent studies [83]. In general, the commands given to the aircraft by ATC

are very precise and can be easily categorized in a discrete set of functions, parameterized

by real numbers indicating speed, heading, or other flight variables. This very procedural

command environment facilitates the task of modeling human ATC action, communication

and aircraft behavior, as will be shown in this dissertation. A sample command given by
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a human ATC to an aircraft might be: “achieve flight level 290, turn to a heading of 130,

reduce airspeed to 120 knots . . . ”. In addition, the procedures differ from TRACON to Cen-

ter control: in the TRACON, the Air Traffic Controller is responsible for taking the aircraft

from climb→ en route (the control actions must meet impromptu flow restrictions, hand-off

to en route control, clear to join filed route); in the Center, the Air Traffic Controller may

revise the altitude and provide temporary heading assignments, amend the route, speed,

profile, and provide weather reports and winds.

In this way, the control is distributed, since it is applied locally in each sector. There is

loose coupling within the ATC hierarchy: the ATCSCC Air Traffic Controllers talk to the

ARTCC Air Traffic Controllers several times a day to provide updates and receive feedback

about the flow control in each Center/sector. In the case of bad weather, airport closures,

or other large disturbances, this feedback tightens, and the directives and updates among

the levels of the hierarchy become more frequent.
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Chapter 3

A Lagrangian model of

sector-based air traffic flow

This chapter derives a Lagrangian model of air traffic flow. Lagrangian refers to the frame-

work used: we describe the evolution of traffic in terms of the trajectories of each individual

aircraft. This approach contrasts with the Eulerian approach presented in Chapter 6 which

is control volume-based (i.e. the observer records variations of traffic in a given portion of

airspace). We will describe the trajectories of aircraft, and decompose these trajectories

into successive maneuvers, which we model as modes of a hybrid system. We will explain

how the different modes in the model relate to the commands which the human ATC gives

to the aircraft.

The goal of building this model is threefold. (i) We will use it to model congestion propa-

gation and derive metrics useful for ATC. (ii) We will use it to derive a model of the human

sector Air Traffic Controller. (iii) In the next two chapters, we will use it as a mathematical

framework for designing appropriate control policies to achieve certain ATC tasks.

As will be explained, this model was derived from observations made at the Oakland Center.

Despite the fact that the model presented here matches our observations, a validation

against real data is necessary to assess its accuracy and limitations. Such a validation will

also be presented in this chapter.

21
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Figure 3.1: Left: ATC sectors modeled for this study: 32, 33, 34, 13 and 15 within the Oakland ARTCC

(labeled above as ZOA32, etc.). Most crucial jetways and waypoints for a San Francisco approach are shown

here. The data modeled comes from FACET [39] as well as JEPPESEN high altitude en route charts [93].

Right: Visual display of the simulator used in [17]. Traffic in the Oakland ARTCC (aircraft not in this

Center have been filtered out). This plot has been generated using ETMS data.

This chapter is organized as follows. Section 3.1 gives a short introduction to hybrid systems,

which is a very powerful framework for modeling single maneuvers in this problem (a more

mathematical formalization of hybrid systems will be given in Chapter 4). This section

also describes how the hybrid system model shown here can be used to construct aircraft

trajectories made up of successive maneuvers. Once this setting is in place, an analytical

model of airspace congestion is derived in Section 3.1.2. Because it is impossible to use the

real ATM system as a testbed to assess the accuracy of our model, a simulator is designed,

implemented and validated (Section 3.2) and used as a replication of the real system. It is

then used to validate the accuracy of our analytical model in Section 3.3.

3.1 Sector-based air traffic flow modeling and analysis

The structure of the NAS is complex, for it involves a multitude of interacting agents and

technologies: aircraft monitoring, flow management, communication, and human-in-the-

loop. For the present work, in which we are interested in predicting delay, we extract

and model only the features which are important for this purpose. We model a portion

of the Oakland ARTCC, which contains five sectors. These sectors surround the Oakland
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TRACON, which controls the aircraft on their approaches into San Francisco, San Jose and

Oakland airports. The TRACON is the final destination of the traffic that we consider in

this chapter.

We model a sector by a portion of airspace containing aircraft under the local control of the

responsible Air Traffic Controller (Figure 3.1). The interior of this domain is the controlled

area (in which the local Air Traffic Controller can actuate the flow). Within each sector,

navigation infrastructure, including jetways, navigation aids, and waypoints, is used to help

the flow follow desired patterns; we therefore include it in the model and use it, even if it is

observed that more than 40% of the aircraft may fly off the jetway at any given time. Our

model allows for aircraft to fly at different altitudes, but not to climb or descend. Altitude

changes are not crucial for the effects we want to identify: the type of sector overloads we

are interested in mainly results from aircraft acceptance rates at destination airports.

3.1.1 Aircraft behavior

We use a hybrid model for each aircraft. A hybrid model describes the evolution of a system

by a set of discrete modes, each associated with a continuous dynamical system and discrete

switches which enable the system to jump from one mode to another instantaneously. In

mathematical terms, we will describe the motion of aircraft i by:

~̇xi =
d~xi
dt

= ~vcurrent heading (3.1)

where ~vcurrent heading ∈ R2 is a constant velocity vector held by the aircraft until the next

heading or speed change. ~xi ∈ R2 is the planar position of aircraft i. Integration of equation

(3.1) over time produces a continuous piecewise affine trajectory. We prefer such a model

over a continuous dynamical model for two reasons. First, the time scale of a “change in

aircraft behavior” (for example a turn or slow down) is on the order of 30 seconds, whereas

the time scale of a straight line portion of the flight is usually much longer, sometimes half

an hour or more, thus we ignore the dynamics of such maneuvers and focus on their effects

only (the set of resulting straight lines). Second, the update rate of ATC monitoring is in

general not more than 30 seconds, which makes the details of these maneuvers inaccessible to

the ATC. This approximation is widely accepted in the literature [68, 130, 37, 107, 122, 33].
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We augment this set of concatenated portions of trajectories with a specific maneuver, called

holding pattern, in which each aircraft flies circular trajectories (as shown in Figure 3.3). The

kinematic equations related to this maneuver can be written as a dynamical system similar

to (3.1) very easily. Monitoring ATC shows that a finite set of maneuvers, which depends

on local parameters, is used. Combinations of these maneuvers result in a conflict-free flight

environment in which the constraints of the air traffic flow are met. The maneuvers shown

in Figure 3.2 are modeled (and consist of changing the right hand side of (3.1) according to

certain rules which we now make explicit). The validity of models similar to this has been

confirmed by statistical studies realized in [83].

Holding pattern

detourshortcut

vector for
spacing spacing

vector for

PSfrag replacements

min speed max speednominal speed

Figure 3.2: Hybrid automaton representing the action of one Air Traffic Controller on a single aircraft.
Each of the eight modes represents one possible state of the aircraft. The arrows joining these states are
the mode switches, initiated by the Air Traffic Controller. The dash-dotted transitions are used for the
analytical solution. The complete set of arrows is used for the simulation.

1. Speed change: ATC may decelerate or accelerate the aircraft along its flight plan:

~vmodified speed := λ · ~vcurrent heading (3.2)

where λ ∈ R+ defines the magnitude of the velocity change. Our model will allow a

finite set of speeds (which means λ has a finite number of acceptable values). This

encodes the fact that the ATC generally has a finite set of possibilities in the choice

of speeds, because the aircraft flies at its optimal speed per altitude and ATC will

speed up or slow down the aircraft by not more than 10% of the current value.
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2. Vector-for-spacing (VFS): This maneuver consists of a deviation of the aircraft from

its original flight plan for a short time (part 1 of the maneuver), and a second deviation,

bringing it back to its original flight plan (part 2 of the maneuver). This stretches the

path that the aircraft must follow, and therefore generates a delay. The length of this

maneuver depends on the geometry of the sector. Calling Rψ the rotation matrix by

angle ψ, we have:

~vpart 1 := Rψ · ~vcurrent heading (First half of the maneuver)

~vpart 2 := R−2ψ · ~vpart 1 (Second half of the maneuver)
(3.3)

This maneuver is illustrated in Figure 3.3.

3. Shortcut / Detour: In certain situations, the ATC will have the aircraft “cut” between

two jetways, a maneuver which could either shorten or lengthen the flight plan. The

decision to command such a maneuver is often dictated by conflict resolution, but

could also be used to shorten the overall flight time if sector occupancy allows it

(sometimes called “direct-to” by pilots):

~vshortcut := Rψ · ~vcurrent heading for the duration of the maneuver (3.4)

until the next ATC action is taken. Here again ψ is the angle by which ATC turns

the aircraft to achieve the shortcut.

4. Holding pattern: In some extreme conditions, holding patterns are used to maintain

an aircraft in a given region of space before eventually letting it follow its original

flight plan. This is modeled by assigning the aircraft to a predefined zone and keeping

it there while preventing other aircraft from entering that zone. This maneuver is

illustrated in Figure 3.3.

3.1.2 Lagrangian analysis of delay propagation in the NAS

A large proportion of air traffic jams, i.e. portions of airspace saturated by aircraft, is

generated by restrictions imposed at destination airports, usually themselves driven by

weather or airport congestion. These restrictions are imposed as either miles-in-trail or

minutes-in-trail, representing the distance (or time) required between aircraft in a flow
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Figure 3.3: Two examples of maneuvers corresponding to modes of the automaton in Figure 3.2. Left:

Deviation ψ from flight plan using a Vector For Spacing (VFS) available in a given sector. More precise
models are also available in [67]. Right: Holding Pattern (HP). The prescribed “time to lose” is given to
the aircraft in minutes: one minute in each straight portion and 30 seconds in each half circle. For this
scenario, Thp = 1min .+ 30 sec. + 1min .+ 30 sec. = 3min.

incoming to the TRACON, and are referred to asmetering constraints. Figure 3.4 illustrates

the topology of the flows incoming to San Francisco (SFO) which are often subject to this

type of constraint. These constraints tend to propagate backwards from the airport into the

network, and result in miles-in-trail constraints imposed at the entry points of each sector.

For example, in the case of Figure 3.4, typically, the backpropagation of these metering

conditions is as follows: TRACON → sector 34 → sector 33 → Salt Lake Center · · · and
similarly for the two other flows.

In the current system, these restrictions are imposed empirically. We would like to under-

stand (i) how the traffic jams propagate; and (ii) what the optimal control policy should

be under these restrictions, in order to ensure maximal throughput into the TRACON.

Shock wave propagation

We present a simple Lagrangian model of merging flows [18, 19, 17]. This model of merging

flows predicts the backpropagation of a traffic jam from a destination airport into the

system. It is Lagrangian, because it models the trajectories of all agents in the considered

space, rather than averaged quantities in a control volume, such as the number of aircraft

in a given sector. This model can be applied to the merging flows of the type shown in

Figure 3.4. We will use it here to derive the dynamic capacity of a sector, i.e. the number of

aircraft that can be actuated inside the sector (given inflow and outflow conditions), before

saturation is reached. We solve the following problem:
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Figure 3.4: Overlay of trajectories merging into San Francisco (11 hours of traffic). The data modeled

comes from ETMS and FACET [39]. The Lagrangian approach presented in this chapter models each of the

trajectories included in this plot.

Problem 1. Given a metering constraint of ∆Tout, compute a controller policy

which will force groups of aircraft to exactly satisfy the metering constraint at the

sector exit point (each aircraft is separated by exactly ∆Tout) while maintaining

separation at all times.

For this, we introduce the initial position a0i of aircraft i and the location xex where the

metering condition is imposed, i ∈ [1, N ] where N represents the total number of aircraft.

We consider the following problem: all aircraft are initially at maximal speed vmax, and

in order to enforce metering, ATC slows down aircraft i to its minimum speed vmin (see

Figure 3.5), at a location xswitchi and time tswitchi which we will determine (see Figure 3.6).

This scenario is represented as a dash-dot line in Figure 3.2. We impose the condition that

aircraft i (where i ∈ {1, · · · , N}) crosses the metering point xex at exactly tblock+(i−1)∆Tout
where tblock is the time when the metering condition is invoked. This leads to the following
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Figure 3.5: ATC control action on the merging flow. The traffic jam extends from SFO to the edge of the
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kinematic equations of the aircraft under this actuation:

xi(t) = a0i + vmaxt t ∈ [0, tswitchi ]

xi(t) = bi + vmint t ∈ [tswitchi , tblock + (i− 1)∆Tout]

The assumption of continuity of xi(t) enables us to solve for bi, from which we deduce

the switching time as: tswitchi = (bi − a0i )/(vmax − vmin). Under the following feasibility

conditions:
a0i ≥ xex − vmax(tblock − (i− 1)∆Tout)

and a0i ≤ xex − vmin(tblock − (i− 1)∆Tout)
(3.5)

the propagation speed of the traffic jam may be computed analytically, by solving for the

location of the edge of the traffic jam in space and time:

tswitchi =
xex−vmintblock−(i−1)∆L−a0i

vmax−vmin
xswitchi = a0i +

vmax[xex−vmintblock−(i−1)∆L−a0i ]
vmax−vmin

(3.6)

where ∆L := vmin∆Tout is the metered spacing at the outflow of the sector. It follows

directly from (3.6) that the traffic jam will not grow if the two following conditions are met:

tswitchi < tswitchi+1 ⇔ ∆L < a0i − a0i+1

xswitchi+1 < xswitchi ⇔
(
vmin
∆L

)
<
(

vmax
a0i−a0i+1

) (3.7)

Condition (3.6) above is a sufficient condition for the length of the traffic jam to decay

(which can be observed by inspection of the slope of the shock wave displayed in Figures

3.6 and 3.7) and it is a local property of the problem: it only depends on a0i −a0i+1, not on all
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aircraft considered here. The second equation in (3.6) can be linked to a one-dimensional

discretized steady state Lighthill-Whitham-Richard equation, which appears naturally in

highway congestion problems [121], as will be discussed in the next chapter. This fact links

this Lagrangian approach, based on aircraft trajectory analysis, with Eulerian approaches

such as [110], which are based on conservation equations; it relates local properties of

the flow (local monotonicity of a variable, here the x-location of the wavefront) to global

quantities (here the trajectories of the aircraft). The construction of this result is illustrated

in Figure 3.6 for the methodology. A numerical example is provided in Figure 3.7.

The condition that each aircraft reaches xex exactly at the time prescribed is restrictive,

what is important is the flow rate but not the actual crossing times. Therefore it would be

of greater use to pose the problem as follows:

Problem 2. Given {a0i }i∈{1,N}, compute the switching policy which delivers at

most one aircraft every ∆Tout sec. at the location xex while maintaining separation,

and minimizes the arrival time of aircraft N .

This cannot be solved as easily analytically because the arrival times of all aircraft are now

variables and need to be computed while satisfying constraints. However, this problem may
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Figure 3.7: Example of switching curve (shock) for a vanishing traffic jam, for the specific case tblock = 0.

x denotes the distance to the metering point (SFO). The lines are the trajectories of the aircraft in the (x, t)

space. The positions of aircraft are represented every 1000 sec. as dots. Once they have passed through

the shock, they are metered (at one aircraft every vmin∆Tout). The point (xm, tm) is the furthest reachable

point by this traffic jam.

be posed as a linear program: minimize the arrival time of aircraft N , while separating the

aircraft by more than ∆Tout at xex, with at most one switch between the initial position

a0i ≤ xex and the exit xex of the considered airspace:

Minimize [0, · · · 0,−1]~b
Subject to
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~a ¹ ~b ¹ vmin
vmax

−→a +
(

1− vmin
vmax

)

xex[1, · · · , 1]T

where ~a = [a01, · · · , a0N ]T and ~b = [b1, · · · , bN ]T . In the previous formula, º means compo-

nentwise inequalities. Note that the right hand side of the first matrix inequality can be

changed to [∆T1, · · · ,∆TN ]T in order to account for time-varying boundary conditions. The

advantages of this formulation are that one includes the possibility to optimize an objective
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function, which is in the present case the arrival time of the last aircraft in the platoon, and

that one is able to deal with time varying acceptance rates at the airport. Condition (3.7)

for shock monotonicity derived previously is still valid locally for any solution derived with

the linear program above.

Sector overload predictions

Using the analysis of the previous section, it is fairly easy to predict the dynamic capacity

of a sector. Consider the worst case scenario: an incoming flow of aircraft, each at vmax,

separated in time by ∆Tin chosen to violate the second condition in (3.7). This will create

a traffic jam originating at SFO, which “piles up” and progressively fills sector 34. Calling

l the length of sector 34 along the main jetway, we use equations (3.6) to compute the

maximal number Nlimit of aircraft going through this sector before the edge of the traffic

jam moves to sector 33 (dynamic capacity), and the time Tlimit required for this to happen:

Nlimit =
l(vmax − vmin)

vmaxvmin(∆Tout −∆Tin)
(3.8)

Tlimit =
l

vmaxvmin

vmax∆Tin − vmin∆Tout
∆Tout −∆Tin

(3.9)

Several comments can be made regarding the two previous results: (i) as vmin − vmax → 0,

Nlimit → 0: no aircraft can be handled in the sector additional to the aircraft already there,

because no actuation is possible (it is not possible to “make the aircraft lose time” in this

sector); (ii) as ∆Tout − ∆Tin → 0, Nlimit → ∞ and Tlimit → ∞: if the incoming flow is

such that it is almost metered as imposed at the exit of the sector, the number of aircraft

required to saturate this airspace becomes large and the time it takes to saturate this sector

grows accordingly.

The construction of the switching curve or shock (xswitchi , tswitchi ) described previously, can

be used to compute the maximal extent of a traffic jam, or the portion of jetway affected by

a traffic jam. Using (3.6), one can trace the shock location in the (x, t) plane (Figure 3.7).

The edge of the traffic jam, called xm, obtained at tm gives the worst situation obtained

from the initial configuration a0i of the aircraft: at tm, the portion of space with high

density of aircraft is of maximal size. In the case of Figure 3.7, we see that the traffic jam

does not propagate more than 300 nm upstream from the destination of the aircraft, called
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xex. Therefore no metering conditions should be applied upstream from that point. In the

current system, such information is not available to the ATC, thus leading to extra buffers

taken by the Air Traffic Controllers, which in turn leads to non optimal operating conditions

as well as backpropagation of “virtual overload”, in fact a set of conservative precautions.

3.2 Simulator design and validation

This section and the next attempt to validate the predictive results derived above, which

rely on analysis of ATM procedures. The validation is a two stage process, since it is not

possible to experiment on the real ATM system directly. We therefore create a simulator,

which mimics human Air Traffic Controller behavior. Section 3.2.1 presents the design and

implementation of the simulator. Section 3.2.2 describes the validation of the code against

real data, in order to show good agreement with observations in the real system. Finally,

Section 3.3 shows how analytical predictions (as presented in Section 3.1.2) can be validated

against the simulator.

3.2.1 Simulator design

Since the real system is not available as a testbed, we have designed an abstraction of

it which reproduces its behavior adequately. We have created a simulator which we have

validated against real data (the format of this data is called ETMS data and will be explained

later), which mimics true ATC behavior and against which we validate our predictions. This

simulator is based on empirical studies that we realized at the Oakland ARTCC, its core is

based on observed behavior. Figure 3.2 (all transitions enabled) summarizes the behavior

model observed at the ARTCC. The switching logic behind the transitions is the object of

this section, and is implemented in the form of a cost function, described below.

Overall Program Flow

The overall program flow of the simulator is shown in Figure 3.8. The input to the code is a

set of aircraft filed flight plans (Figure 3.8, middle column), that can either be user generated

or taken from ETMS data (as in FACET). As in the true system, these flight plans are not
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Figure 3.8: Program flow of the simulator.

conflict-free and usually do not satisfy metering conditions imposed on the network. Once

the program is initialized, aircraft motion simulation follows these flight plans (Figure 3.8,

left column). As time is advanced, conflict as well as metering constraints are dealt with on

a sector by sector basis (with sector-wide look ahead, Figure 3.8, right column), according

to the full automaton shown in Figure 3.2. The flight plans are updated accordingly.

Key Data Structures

Aircraft dynamic equations (3.1) produce a set of segments; the knowledge of the points

connecting the segments and of the aircraft velocity is thus enough to define an aircraft

trajectory. This trajectory is thus implemented as a linked list of points [x, y, z], with

a prescribed velocity between the points. The linked list is modified by the simulated

controller in the program. The output for each aircraft is the updated linked list. The

sectors are implemented as sets of accessible linked lists. They also contain additional data

such as metering conditions (number of aircraft through a given boundary per time unit).

Controller Emulation

ATC behavior is modeled by three levels of priority:
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• Priority 1: No loss of separation. The prevalent requirement for ATC is to ensure

that any aircraft pair is always separated by more than 5 nautical miles.

• Priority 2: Metering conditions. The Air Traffic Controller needs to ensure that the

outflow from his sector is an acceptable inflow for the next sector (or TRACON).

Metering conditions can be of various nature: admittance rate or separation at down-

stream junctions.

• Priority 3: Best possible throughput. ATC will try if possible to give direct routes to

aircraft in order to minimize their flight times.

These priorities may be modeled using the cost function J :

J = costLOS+costBC breach+costdelay+costaircraft actuation+costmaneuver+costmin dist (3.10)

Each term of the cost is a weighted function:

J =
N∑

i=1

niLOS · wLOS

∆T iLOS

+
N∑

i=2

(T ibreach)
2 · wbreach

N∑

i=1

(TOAipred − TOAireal) · wdelay +

Nmoved · wsingle move +
N∑

i=1

J imaneuver +

Nmax∑

i=1

f(dimin) · wdist

1. Loss of separation (LOS) cost: niLOS is the number of losses of separation involving

aircraft i in the current sector with its current flight plan. ∆T iLOS is the time until

the first loss of separation for aircraft i.

2. Boundary condition (BC) breach cost: T ibreach is the time by which an aircraft violates

the ∆T time separation constraint from its predecessor (set to zero if the two aircraft

are separated by more than ∆T ).

3. Delay cost: TOAipred − TOAireal accounts for the difference between predicted and

actual time of arrival (TOA) at the last waypoint of the flight. Positive delays are

penalized; earlier arrivals are favored. TOAipred and TOAireal are computed by inte-

gration of the flight plans for each aircraft.
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Figure 3.9: Top: cost values for all possible maneuver combinations in a two-aircraft intersection scenario,

where the eight maneuvers of Figure 3.2 are enabled (thus generating 82 = 64 possible values of J). Four out

of 64 examples are extracted and illustrated (four lower pictures). (a) Both aircraft maintain same speed;

(b) Aircraft A takes a shortcut maintaining aircraft B at max speed; (c) A makes a VFS at low speed; (d)

A does nothing, B is not able to prevent the loss of separation. In this case, the simulated controller would

choose solution (b) since the lowest cost is associated with that maneuver.

4. Aircraft actuation cost: Nmoved accounts for the number of flight plan modifications

chosen in the current solution. Large Nmoved are penalized (the solution chosen by

the ATC is often the simplest).

5. Maneuver cost: J imaneuver accounts for the cost of the maneuver selected for aircraft i.

Not all maneuvers are of equal preference and therefore have different costs. It is easier

for an Air Traffic Controller to prescribe a speed change than a VFS or a shortcut.

A holding pattern is the least preferred option, for it requires constant monitoring of

the aircraft. This reflects in the weight choice:

J ispeed change < J ishortcut ∼ J iVFS ¿ J iholding pattern (3.11)

6. Minimal distance cost: f(dimin) penalizes aircraft distributions in which aircraft are

closely spaced (but do not lose separation) against more sparse distributions. Here,

distmax = 7nm.

f(dimin) =
1

dimin
· wdist if dimin < distmax

f(dimin) = 0 otherwise.
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In order to reflect the three levels of priority of the human ATC stated earlier, the weights

shown in the cost function J are: wLOS ∼ 10300 À wbreach ∼ 104 À other weights ∼ 10.

Minimizing J will thus first deal with losses of separation, then metering conditions, and

finally optimization of the flow. An example of a cost landscape∗ for a given topology of

two aircraft is illustrated in Figure 3.9. Among all maneuvers used for flow optimization,

some hierarchy is also prescribed, reflected in the relative values of J ispeed change, J
i
shortcut,

J iVFS, and J
i
holding pattern. These adjustments are important, but are technical and are not

detailed here.

In order to reduce the computational time, we define as Nchoice the maximum number of

aircraft considered by the simulated controller in each time iteration. We restrict Nchoice

to be generally less than the actual number of aircraft per sector. This term is a trade-off

between run-time and control-quality and in our simulations it was set in the range of 4 to

8, depending on the targeted goals. Aircraft are selected according to the following rule:

aircraft involved in LOS are selected first, then aircraft breaching boundary conditions, and

finally remaining aircraft until the selection list has reached Nchoice aircraft, or until there

are no more aircraft to select. In practice, 4 ≤ Nchoice ≤ 8, where Nchoice = 8 enables

more complicated situations but makes the code run more slowly. The set of all maneuver

combinations for the Nchoice aircraft is called the maneuver set.

At each iteration of the controller emulation loop, an exhaustive recursive search on the

maneuver set is run in order to find a set of Nchoice maneuvers which minimizes J . The com-

putational complexity of finding the optimal J for Nchoice aircraft subject to nmaneuver pos-

sible discrete maneuvers is O((nmaneuver)
Nchoice). We can reduce this cost to O((nmaneuver−

2)Nchoice): (i) the cost of the current maneuver has already been computed at the previous

step and thus does not need to be recomputed; (ii) two maneuvers are mutually exclu-

sive (shortcuts), therefore only one needs to be called. Including the cost of checking for

conflicts, the total cost of a time iteration becomes:

O
(
N2

max · (nmaneuver − 2)Nchoice
)

where Nmax represents the total number of aircraft in the sector. Due to both the discretiza-

tion of time, and the restriction of the search space to a manageable number of aircraft,

∗In Figure 3.9, the cost J has been truncated at 5 · 103 for readability. Thus a LOS cannot be visually
differentiated from a breach in this plot, though it can in our data. Thus, too large breaches as well as LOS
do not appear on this plot.
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our search is not guaranteed to find the global optimum. However, we believe that the

search does provide a reasonable approximation of the Air Traffic Controller’s behavior. By

adjusting the two key control parameters, the number of selected aircraft Nchoice and time

between controller activation ∆Tact, a transparent trade-off between run-time and control

quality can be made.

3.2.2 Code validation against ETMS data

The controller logic presented in the previous section is the result of numerous observations

we made in the Oakland ARTCC, monitoring the work of Air Traffic Controllers. The

fact that one can classify ATC action into a set of preferred directives was experimentally

validated for a different airspace [83]. However, even if the automaton of Figure 3.2 and the

cost function of the previous section implemented in the simulator are consistent with our

observations, there is no a priori guarantee that these would produce the same effects on

the system as a human Air Traffic Controller. For this reason, we would like to assess how

well our cost function describes the decision making of a human Air Traffic Controller. We

therefore need to validate our code against recorded aircraft trajectories. We use ETMS

data provided by NASA Ames.

The ETMS database contains all flight plan information for flights in the NAS. Data are

collected from the entire population of flights in the NAS with filed flight plans. ETMS data

is sent from the Volpe National Transportation System Center to registered participants

via the Aircraft Situation Display to Industry electronic file server. The Federal Aviation

Administration (FAA) uses these data to monitor the effectiveness of its National Route

Program, in which the user community is offered flexible, cost-effective routing options as

an alternative to published ATC preferred routes. A subset of the data used is shown in

Figure 3.10.

We first explain the data extraction process which enables us to convert ETMS data to a

readable format for our simulator. We then present the three types of validations realized.
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Figure 3.10: Format of the ETMS data subset used for the model validation. The data is available
approximately every 3 min. We only use a subset of the data (two lines per airborne aircraft per time tag,
whereas in the full data set, ETMS also contains lists of jetways and centers). The first line gives the flight
information for one airborne aircraft in the NAS: time, flight number, aircraft type, latitude, longitude,
speed, altitude and heading. The second line is the filed flight plan and can be used to determine the intent
of the aircraft. Each of the acronyms in this line corresponds to a navaid, a fix, a jetway or an arrival (for
full details and definitions, we use the same database as in [17, 19]).

Data extraction

We can extract two types of information from the ETMS data: the actual flown aircraft

trajectories, and the filed flight plans for each aircraft (eventually updated if modifications

are made during the flight). The position is given in latitude / longitude and in terms of

navaids, fixes, and jetways which we represent in cartesian coordinates, an approximation

valid for the portion of airspace of interest to us. The filed flight plan is given in terms

of navaids, fixes, jetways, which we also convert into cartesian coordinates using a public

database (http://www.airnav.com). Future versions of our simulator might use recently

developed ETMS analysis tools such as [103] to perform these tasks automatically.

This study is limited to sector control, and we did not implement the Traffic Management

Unit (TMU) action. TMU operates at the Center level and makes strategic flow scheduling

decisions, which go beyond the range of a single sector Air Traffic Controller. We therefore

need to validate our simulator at a scale at which TMU actuation is already incorporated in

the flight plans (typically one or two sectors). Since our interest focuses on sectors 32, 33,

34, 15, and 13, the actual flight plans are truncated, and we keep only points in that sector.

The filed flight plans are truncated similarly. Their estimated time of entrance in the sector

is set to the actual time of entrance of the closest actual recorded point. The entrance point

in the computational domain is taken to be the closest conflict-free point to the intersection
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Figure 3.11: Flight time comparisons for the first 100 aircraft going through sector 33 in the ETMS data

set we used. The dots are the flight times for the ETMS recorded points. The solid curve is the result of

our simulations.

of the flight plan and the boundary of the corresponding sector. The altitude assigned to

the filed flight plans is set to the average altitude of the actual trajectory in that sector.

Validation

Comparison of flight times. We select the first 100 aircraft of the ETMS data set which

are flying above 33000ft for more than 6 minutes. Their recorded trajectories are extracted

as sequence of waypoints which are used as initialized flight plans for our simulations. We

compare the flight time in the simulation to the real one. The experiment is run for the

following set of speeds: M ∈ {0.6, 0.7, 0.8} (M is the Mach Number), which matches our

observations in the data for this altitude. In the run, the controller is activated every

∆Tact = 10sec. The results are shown in Figure 3.11. Two main conclusions can be made:

(i) the simulator is able to recreate the flow without major modification, and eventually

resolves apparent conflicts in the data – these conflicts can be due to inaccuracy of the mea-

surements or transmission (two aircraft separated by less than 5 nm at the same altitude),

or due to problems of interpolation when speed changes in time; (ii) the time comparison

(Figure 3.11) shows relatively good matching. The flight times provided by the simulator

are usually shorter than in reality because by default the simulator will always try to max-

imize the throughput in the sector. The mean deviation is 120 sec. for flight plans with an

average duration of 1300 sec. (9.2% error).
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Verification of conflict resolution. We select aircraft flying through sector 33 in a time frame

of 10 hours (a total set of 314 aircraft) and simulate these flights. The filed flight plans are

not conflict-free. We would like to show that the simulator is able to provide a conflict-free

environment. For this run, the activation time of the controller is ∆Tact = 20sec.† The

set of speeds allowed is M ∈ {0.55, 0.75, 0.89} (since we are considering the full range

of altitude, we need to consider the full range of speed). The simulator is able to provide

a conflict free environment. During the simulation, it has to actuate 50 different aircraft.

The number of resolved conflicts can be assumed to be on the same order, since a single

intervention will usually resolve not more than one conflict.
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Figure 3.12: An example of maneuver caused by conflict resolution, reproduced by the simulator. The

recorded data (dashed) exhibits a shortcut from the filed flight plan (solid). The simulated trajectory

(dashed-dotted) is a shortcut of the same type.

Validation of maneuver assignments. The core of the simulator is the model of the human

†∆Tact = 10sec. or ∆Tact = 20sec. is on the order of the maximal actuation rate of a human Air Traffic
Controller. We choose ∆Tact = 20sec. in this particular case because of the duration of the computation
(10 hours of real time are simulated).
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Figure 3.13: Shocks generated by two successive platoons. The first shock is steady in time (it only

propagates backward in space). It corresponds to a piling up process on a highway where all vehicles slow

down at the same time. The second shock propagates backward in space and time (which is much harder

to handle in practice, because actuation must be performed upstream first).

Air Traffic Controller by a decision procedure based on the cost function described previ-

ously. The validation so far has shown the correlation of flow patterns generated by our

code and these observed in reality. We would also like to assess the validity of our decision

procedure. For this, we identify conflict resolution maneuvers, which are typically obtained

by identifying deviations from the filed flight plan. For these maneuvers, we generate the

following input data: all aircraft are assigned their actual flight plan (recorded trajectories),

and the aircraft for which the maneuver is identified is assigned its filed flight plan (a set

of way points). We thus put the simulator in the same situation as the human Air Traffic

Controller, in which it has to make the decision that was actually taken. For sector 33, we

were able to identify 20 distinct maneuvers out of 300 examined flight plans. The simulator

reproduced 16 of them.‡ An example is shown in Figure 3.12.

‡Small-scale maneuvers are less likely to be executed correctly by the simulator because the probability
of selecting the respective aircraft at exactly the ‘right’ time is small, which explains the small discrepancy
between the results. Also, even if the maneuver is executed correctly by the simulator, the resulting flight
plan will look different from the ETMS data, since the simulator is restricted to a single angle of deviation
(θ = 22.5◦).
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3.3 Validation of the analytical predictions

In this section, we assess how accurate our analytical predictions are with respect to the

real system, by comparing them with simulations. We present an example of two back-

propagating shocks, solved with an extension of the method explained in Section 3.1. Two

platoons, each at 10 miles-in-trail, are respectively subjected to 15 miles-in-trail and 20

miles-in-trail outflow boundary conditions (the boundary conditions for platoon 2 start af-

ter all aircraft of platoon 1 have reached the TRACON at time t = 4300). The speeds are

M ∈ {0.59, 0.75, 0.89}. The aircraft flows for this run are shown in Figure 3.15. The

results and interpretations are shown in Figures 3.13 and 3.14. Two shocks appear succes-

sively. From Figure 3.13, we can see that within the second platoon, the first twelve aircraft

need to be actuated within the Oakland Center, whereas the last eight need to be actuated

upstream (Salt Lake Center). Since in general, no knowledge of the required boundary

conditions is propagated upstream, we can predict that in the real system, the last eight

aircraft would not be actuated until they enter the Oakland Center and that no solution to

this metering problem would be found without putting the aircraft on hold.

We verify this by simulating this flow. In Figure 3.14, we see that for the last eight aircraft,

the first activation time in the simulator is higher than the predicted (upper plot): the

simulated controller is not able to actuate the aircraft on time, because they are not in its

airspace. We can verify on the middle plot that these aircraft are breaching the boundary

conditions (by about one minute each), which can also be seen in the lower plot: their

delays (the inverse of the cumulated breaches) become negative. This is an illustration

of distributed and decentralized control: the actuation occurs in different sectors, and the

only communication between the sectors is through the metering conditions. Obviously, the

lack of centralized actuation (here communication and strategic TMU planning) disables

efficient flow scheduling.
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metering conditions (middle plot), simulated; delays (lower plot), simulated, for the case of the two platoons

of Figure 3.13.
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Figure 3.15: Sector 33: traffic flow for the merging traffic simulation of Figures 3.13 and 3.14. The radius

around the aircraft is 2.5 nm. The solid lines represent the aircrafts’ flight plan. The dotted lines correspond

to maneuvers assigned by the simulator. The simulator makes extensive use of the vector-for-spacing to meter

the aircraft.



Chapter 4

Mixed Integer Linear Program

formulation of task planning

The architecture of ATM, as well as a Lagrangian model of the NAS, were presented in the

two previous chapters. The model enables a better understanding of congestion propaga-

tion into the system, and was used for modeling human Air Traffic Controllers in charge of

sector-based traffic flow. As we have explained, the actions that the Air Traffic Controllers

take are mainly based on experience, and therefore often not optimal (for example, in the

sense of trying to maximize the throughput into an airport given constraints). Furthermore,

when traffic becomes too heavy, Air Traffic Controllers use playbooks, which are procedures

that have been established over time, based on Air Traffic Controller experience. These

procedures are guaranteed to be safe (i.e. in agreement with FAA regulations), but are

known not to be optimal, because they add buffers between aircraft, in order to ensure that

these regulations are met. In order to achieve the goal of optimizing the flow, one approach

would be to enhance the Air Traffic Controller’s performance by helping his decision making.

Ideally, we would like a methodology which outputs a set of directives directly understand-

able by a human in the form of a tool which would sit next to the ATC monitoring screen

and would provide him with optimal strategies to apply. The emphasis of this chapter is

thus on task planning: how does one generate maneuver assignments for a set of vehicles,

such that scheduling constraints are met (for example, a proper aircraft delivery rate at an

airport), and furthermore how should these maneuvers assignments be provided? Finally,

45
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how to output them to the Air Traffic Controller in a language which he understands? This

chapter uses the framework of hybrid systems to provide a method which synthesizes ATC

understandable commands to achieve optimal solutions of air traffic problems. The method

relies on an optimization problem, which will be analyzed and solved in the next chapter.

Section 4.1 presents the general problem of task planning for incoming traffic in arrival

airspace. It highlights the mathematical challenges of this problem, inherent to non-

convexity, which can be cast in optimization programs in which integer variables coexist

with real variables. Section 4.2 uses the Lagrangian setting developed in Chapter 3, and

casts the scheduling problem into a multiple hybrid system controller synthesis problem.

Hybrid system theory is an excellent modeling framework for this type of problem; we use it

in Section 4.3 to reduce the controller synthesis problem to a mixed integer linear program

(MILP). In Section 4.4, we present a possible implementation architecture for the algorithm

and identify the computational bottleneck due to the explosion of the combinatorial state

space in the MILP. This difficulty will be solved in the next chapter.

4.1 Sequencing-routing on arrival routes

In centers which have relatively high traffic density close to terminal areas, there exist

prescribed routes corresponding to different approaches into airport runways, called arrivals.

These arrivals are the final portion of the aircraft flight plans. A flight plan is a set of

waypoints (reference points defined precisely in the airspace), which the aircraft are expected

to follow. Even though in low traffic density regions, aircraft might fly off these flight plans

to benefit from faster routes (because of winds, for example), when this airspace becomes

congested, aircraft will follow arrivals for up to 200 nautical miles (nm) from the destination

airport. Arrivals aid the Air Traffic Controller in the problem of flow metering, or delivering

a prescribed number of aircraft per unit time to the airport runway, as the routes can be

viewed as tracks which the aircraft follow closely with minor deviations until they reach the

arrival airport. In the current system, the Air Traffic Controllers build a mental model of

this airspace: they know how much time an aircraft takes to fly from one point to another,

and how much time an aircraft can lose using minor deviations of their flight plans in order

to delay the arrival. An Air Traffic Controller can thus regulate the flow by adjusting the

flight plans of individual aircraft, according to procedures (called playbooks) which have
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been established over time to meet the acceptance rates at airports. In this chapter, we

study the feasibility of automatically generating these flight plan adjustments, in order to

meter flow in real time, even when the system is operating at maximal capacity. Figure 4.1

illustrates the potential use of our algorithm in the current Air Traffic System.
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Figure 4.1: Block diagram representation of the embedding of the algorithm of this chapter within the
algorithm presented in [27]. The input of the algorithm of [27] is the set of flight parameters of the aircraft
(from ETMS data [39]), as well as the known structure of the arrivals. The resulting hybrid systems
controller synthesis problem is posed as a MILP, which is solved by the algorithm presented in this chapter.
The output, which is an execution of the hybrid system [27], is translated in ETMS data for simulation or
set of ATC commands for advisory purposes.

We present and demonstrate the implementation of an algorithm which takes as input

current positions of aircraft in the airspace (available from radar data through a monitoring

system), produces a schedule which attempts to optimize a user-defined cost, and generates

a set of commands which are contained within the command set of Air Traffic Controllers,

and are thus directly understandable by pilots. These commands are represented as discrete

transitions of hybrid automata (which we will define later in this document).

The main challenge in the design of this algorithm is the non-convexity of the problem, as it

precludes the use of efficient convex optimization techniques with guarantees of global opti-

mality. We employ a technique which has been used by Richards, How, Feron, Schouwenaars

and coauthors [136, 135, 137, 134] to address the inherent non-convexity in conflict avoid-

ance problems. The problem can be transformed by recognizing that non-convex constraints

such as u ∈ U where U is not convex, can sometimes be rewritten as (u ∈ V ) ∨ (u ∈ W )

where V and W are convex. More generally, non-convex constraints may be written as

the disjunction of several convex constraints. If in addition V and W can be expressed as

V = {u ∈ Rn|Au ≤ b} and W = {u ∈ Rn|Cu ≤ d}, with A ∈ Rp×n, C ∈ Rq×n, b ∈ Rp and
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d ∈ Rq (p and q are integers), and the objective function is linear in u, the problem can be

posed as a (MILP), where the logical or (∨) is encoded as an integer variable.

Transposed in the framework of hybrid systems, this idea reveals itself to be very useful. A

hybrid system Hi is a system with Ki ∈ N different modes {qki }k∈{1,··· ,Ki}. Each of these

modes has a given dynamic ẋi = fqki
(xi). We want the system to accomplish certain tasks,

characterized by an initial state xi = xinitiali and a final state xi = xfinali (and any trajectory

between these two points, defined as a sequence of discrete modes whose trajectories obey

the corresponding ẋi = fqki
(xi)). There may be many possible trajectories between xinitiali

and xfinali ; for each trajectory, the elapsed time may be different, as it depends on the mode

occupancy time, or the time spent in each mode. The completion time is thus a function of

the trajectory; we call Si the set of all possible completion times to go from xi = xinitiali to

xi = xfinali using the set of modes qki :

Si =

{

t
∃L ∈ N,∃{θl}l∈{1,··· ,L} ∈ RL, θL = t

∃µ(·) : {1, · · · , L− 1} → {1, · · · ,Ki}
s.t. xfinali = xinitiali +

L−1∑

l=1

∫ θl+1

θl

f
q
µ(l)
i

(ξ)dξ

}

(4.1)

In the previous formula, the function µ gives the mode q
µ(l)
i of the system between θl and

θl+1. Si is in general not a single interval of R: we will assume that it can be represented

as a finite closed union of intervals, possibly unbounded in R.∗

We combine multiple automata Hi, where i ∈ {1, · · · , N}, with prescribed initial and final

conditions for each. Assume we can compute the set Si for each Hi.
† Call Θ ∈ RN a

generic element of the set of possible completion times for this family of automata. Θ :=

{ti}i∈{1,··· ,N} ∈
∏N
i=1 Si. We are interested in computing a discrete control law which

achieves a user-fixed linear cost in Θ, and where linear combinations of components of Θ

belong to non-convex sets:

Minimize: cT ·Θ
Subject to: Θ ∈ ⋃P

p=1 {u|Apu ≤ bp}
wTr ·Θ ∈

⋃S
s=1 {v|Cs,rv ≤ ds,r} r ∈ {1, · · · , R}

(4.2)

∗We therefore exclude the pathological cases such as Si =
⋃∞
i=1

(
1

2n+1 ,
1
2n

)
, Si =

⋃∞
i=1

[
1
2n ,

1
2n + 1

2n+2

]
,

Si =
⋃∞
i=1

{
e−n

}
, Si = Q , etc. which might be of mathematical interest, but are not really useful for the

physical problems we are interested in studying.
†Note that the computation of Si does not necessary require the knowledge of occupancy time in each

of the modes, i.e. the ability to integrate. It only requires the ability to produce tight bounds on the set of
occupancy times for each modes, which is much easier. This is what we do here.
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where c ∈ RN , P ∈ N, u ∈ RN , Ap ∈ Rnp×N (np ∈ N, given by the constraints of the

physical problem), bp ∈ Rnp , wr ∈ RN , S ∈ N, R ∈ N, v ∈ R, Cs,r ∈ Rns,r×1, ds,r ∈ Rns,r

(ns,r ∈ N, given by the constraints of the physical problem). This problem in turn can

be formulated as a MILP. We can retrieve from its solution the switching history (mode

sequences and switching times of the corresponding hybrid automaton) which achieves it.

This chapter presents an instantiation of (4.2) useful for ATC.

Our formulation bears some similarities with the formulation of Bertsimas and Stock [33, 34],

however the physical problem is different. They deal with the global NAS, and optimize a

cost including delays on the ground as well as airborne delays. We deal with local airborne

flights which we have to adjust in their last flight portion, do not have the notion of sectors

but of flight plan alteration. Panayiotou and Cassandras [131] also posed the single airport

problem as we do, and treat it as a queue problem but solve it using ground hold policies.

Mishra and Pappas [113] use an optical network to solve spatial conflicts; we use similar

concepts, except that our conflicts are in time (and not in space).

Mixed integer linear programming [34] is a powerful mathematical formulation to extend

linear programming to problems with both continuous and integer variables. It appears

naturally in various fields where these two types of variables coexist, for example processing

or chemical engineering [86, 72]. It enables inclusion of computational logic [155] into

optimization problems, such as the program of equation (4.2), which provides an excellent

tool for multi vehicle or conflict avoidance problems [136, 135, 137, 134] and discrete time

hybrid systems [31, 30]. The present work enables solving continuous time hybrid systems

problems under the assumptions on the continuous dynamics stated above. Of course, when

the dynamics is too general, or the formulation above is not available to solve the problems of

interest, more general frameworks have to be invoked, for example mixed integer nonlinear

programming [124].

The rest of this chapter is organized as follows. Section 4.2 defines the mathematical model

used for the aircraft, which is based on the hybrid automata models derived in Chapter 3.

It explains the commands used by the ATC, and gives a model of airspace capacity (in

terms of aircraft storage capability), which leads to a mathematical model for the physical

constraints of the system. Section 4.3 shows how to pose the problem as a MILP and how

to use the solution of the MILP to synthesize a set of executions of these hybrid automata

which are ATC commands. The method is summarized in the form of an algorithm, whose
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implementation is demonstrated in Section 4.4. Several examples of simulations are given

and analyzed, for up to 60 aircraft. Experiments have suggested that the running time

grows exponentially with the number of aircraft. This difficulty will be addressed in the

next chapter.

4.2 Physical model

This section presents the mathematical model we use to describe the airspace as well as

aircraft motion. It is essentially used to derive a mathematical expression of the physical

constraints of the problem. It represents a specific instantiation of the general model derived

in Section 3.1 of the previous chapter.

4.2.1 Airspace model

Arrival routes pass through different sectors before reaching the final descent in the TRA-

CON. The geometry of these sectors, as well as the flows of aircraft going through them,

determine the maximum possible deviations available to the aircraft. In other words, it

is possible to look at the geometry of these sectors and find the maximal additional flight

plan length available to ATC in order to delay the flight. This is used when speed changes

are not available or not sufficient to delay a flight by a certain amount of time. The most

common way to lengthen the flight plan of an aircraft is Vector For Spacing (VFS), or Path

Stretching, as defined in Chapter 3, Section 3.1.1 (see also [18, 19]). Dugail et al. [67] give a

method relating this additional length to the geometry of the sector. In the present study,

we use the following approximation for this additional length: ladditional =
∑

i li

(
1

cosψ − 1
)

,

where li = d(wpi,wpi+1) represents the great circle distance of flight plan between waypoint

wpi and waypoint wpi+1 (see Figure 3.3), and ψ is the maximal available rotation (heading

change) angle. The VFS translates into a delay of tadditional =
∑

i
li
v

(
1

cosψ − 1
)

, where v is

the speed of the aircraft.

The second way for ATC to delay flights with respect to their current schedule is to prescribe

Holding Patterns (HP), as defined in Chapter 3, Section 3.1.1. The locke 1 arrival shown in

Figure 2.4 has three possible holding patterns in the airspace, respectively at inyoe, modesto

and groan. These holding patterns generate a prescribed delay for an aircraft (generally 3
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minutes): one minute for each straight portion of the loop, and two times 30 seconds for the

two half circles. When such an option is available to a given flight plan, our model will take

it into account by adding tadditional = pThp = p · 3 minutes to any feasible arrival time

at the destination airport, where p ∈ N is the number of loops done by the aircraft before

recovering its original course. Thp is in general given by the ATC to the pilot in minutes

(see Figure 3.3). Note that we model the HP for the sake of completeness. However, it

should be clear that one of the goals of this study is to alleviate the use of them, since they

are in general the least preferred option chosen by the ATC.

4.2.2 Aircraft dynamics

In Chapter 3, we have defined and performed a validation of the model of the NAS we

developed. Our model is based on hybrid automata [3, 42, 149], in which we assume that an

aircraft is well modeled using a finite set of modes Qi with a dynamical system ẋi = fqki
(xi)

associated to each mode. Figure 3.2 represents the model of the behavior of a single aircraft.

This model is very general, once the aircraft in on an arrival (for example the arrival shown

in Figure 2.4), the set of possible transitions for the automaton is constrained. For example:

aircraft flying on an arrival are usually only decelerating; the locations of HPs and VFSs are

predefined. This enables us to rewrite the automaton of Figure 3.2, as shown in Figure 4.2.

The automaton of Figure 4.2 is an instantiation of the automaton of Figure 3.2, in which

some of the transition have been disabled, and some of the modes have been duplicated

(corresponding to fast and slow speed for example). The set of transitions is thus easier to

compute: for example in the case of fast and slow, the only enabled transition is from fast

to slow. The number of modes is thus higher, but the discrete part of controller synthesis

(mode switches) is easier to compute. We now make the automaton explicit. It is defined

as a hybrid automaton Hi = (Qi,Xi,Σi, Initi, fqi ,Domi, Ri).

• Qi ∪ Xi = { OALslow, MVAslow, CZQslow, FMGslow, OALfast, MVAfast, FMGfast,

CZQfast, HPfast, VFSfast, HPslow, VFSslow } ∪ R2. The first eight modes correspond

to the dynamics of the aircraft incoming into the arrival from any entry waypoint

(acronym), at a speed (fast or slow). The rest of the modes are holding patterns and
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PSfrag replacements
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OALslow MVAslowCZQslowFMGslow OALfastMVAfast FMGfastCZQfast

HPslow HPfast

slow traj.
fast traj. VFSslow VFSfast

Figure 4.2: Hybrid automaton for each aircraft for the arrival shown in Figure 2.4. The transition
between modes is given either by airspace use (σap switches, p ∈ N, see for example Figure 2.4) and Air
Traffic Controller commands (σcp switches p ∈ N, which we are interested in synthesizing). The duplication
of modes fast / slow is done to ensure that the aircraft can only decelerate through the execution of the
hybrid automaton, as for a normal arrival. This model is a subset of our former model [18, 19], adapted to
the specific scenario of arrivals.

vector for spacing, respectively, at fast and slow speed. Xi = R2 where xi ∈ Xi repre-

sents the lateral position of the aircraft. Here, we solve a routing scheduling problem

at fixed altitude, as in [18, 19, 67, 131, 33] (assuming that it is possible to separate

aircraft vertically if they conflict horizontally).

• Σi, the set of discrete inputs, which indexes the switches from one mode to another.

Figure 3.2 shows the two different types of elements in Σi. The first set (σcp , where

p is an integer) is generated by ATC: for example “slow down on mod.locke1 from

mva” (σc15), “hold at slow speed on mod.locke1 from oal” (σc22). The second set (σap ,

where p is an integer) is generated by the airspace: for example at the end of a slow

HP on mod.locke1 from czq, retrieve original course (σa9).

• Initi ⊆ Qi × Xi: each aircraft is initially in a given mode qi ∈ Qi at a given location

xi ∈ Xi, for example, at maximum speed 50 nm east from oal.
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• fqi : Qi ×Xi → TXi is a vector field f·(·), where qi ∈ Qi represents the current mode.

Note that qi is denoted as a subscript for brevity (for a given qi ∈ Qi and xi ∈ Xi,

we write ẋi = fqi(xi)). For qi ∈ { HPfast, VFSfast, HPslow, VFSslow }, the dynamics

fqi(xi) can be derived very easily from Figure 3.3. For the other modes, they are a

set of successive speed vectors. For example, for FMGfast, fqi(xi) is defined as (see

Figure 2.4):

fqi(xi) =







v1 if A1xi ≤ b1 aircraft above the line oal-groan

v2 if A2xi ≤ b2 aircraft east of the line groan-upend

v3 if A3xi ≤ b3 aircraft east of the line upend-sfo(D29)

v4 if A4xi ≤ b4 final approach to oak (not shown in Figure 2.4)

(4.3)

The matrices A1, A2, A3, and A4 and the corresponding vectors b1, b2, b3, b4 encode

the geometrical constraints of the problem: vi ∈ R2 have all the same magnitude

(corresponding to the fast mode), but point towards different destination waypoints.

• Domi ⊆ Qi ×Xi ×Σi defines for each discrete mode qi ∈ Qi the subset of Xi ×Σi for

which continuous evolution is allowed. Dom can be expressed as VFSfast × PVFSfast ∪
HPfast × PHPfast , etc. , where PVFSfast and PHPfast , etc. are subsets of R2 where these

maneuvers are allowed (see for example the allowed VFS zone in Figure 3.3 for the

VFS, and the three HP available in locke 1 in Figure 2.4 for the HP).

• Ri : Qi × Xi × Σi → 2Qi×Xi is a reset relation which maps a state to the sets of its

possible successors. For example, if the aircraft has to be put on hold by ATC from

its current flight plan at location xi at low speed arriving from oal, (HPslow, xi) ∈
Ri(OALslow, xi, σc), where σc is the discrete controller action which triggers this mode

switch.

If one ignores for a moment the continuous part of the problem and views Hi as a finite

state machine, the grammar (see, for example, [101]) accepted by Hi is easy to compute.

Experimental and statistical studies of a similar grammar have been realized for another

airspace at MIT ICAT by Histon and Hansman [83]. Their study and analysis of this

grammar rely on a careful classification of its instances. In the present work, we are inter-

ested in synthesizing a set of “timed sentences” accepted by this grammar, which represent
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the ATC commands delivered to the aircraft (i.e. which we can use to generate a hybrid

automaton execution). For this, we can use the definition of hybrid time trajectory τ(i)

of aircraft i (see for example [149]) τ(i) = {[τl, τ ′l ]}Lil=0 (where Li ∈ N) which times the

execution of Hi. The intervals [τl, τ
′
l ] represent occupancy time of a mode. The mode

switches are given by (qi(τl+1), xi(τl+1)) ∈ Ri(qi(τ
′
l ), xi(τ

′
l ), σ(τ

′
l )). The timed grammar

that we are interested in synthesizing is therefore of the following form for each aircraft:

([τ0, τ
′
0], σ0, [τ1, τ

′
1], σ1, [τ2, τ

′
2], σ2, · · · ), where in addition to the σp (and modes) of a usual

grammar, we have the corresponding time intervals [τp, τ
′
p]. Note that equation (4.1) directly

follows from this grammar.

4.3 Hybrid controller synthesis

We can now restate in mathematical terms the problem described in the introduction.

Problem 3. Generate a procedure which takes N airborne aircraft (with the follow-

ing information: current position xi, requested entrance waypoint into the arrival

airspace, range of achievable speeds), and provides:

• An optimal arrival schedule with route (i.e. arrival) assignment for each

aircraft; where optimal means either the result of minimizing the sum
∑N

i=1 ti

of arrival times {ti}i∈{1,··· ,N} of all aircraft, or the result of maximizing the

minimal separation of two successive aircraft mini<j,(i,j)∈{1,··· ,N}2 |ti − tj | at
the destination airport without putting any aircraft on hold.

• The set of mode switches {σk}k∈{1,··· ,Ki} to achieve this sched-

ule with corresponding hybrid time trajectory for each aircraft i:

([τ0, τ
′
0], σ0, [τ1, τ

′
1], σ1, [τ2, τ

′
2], σ2, · · · ).

We now present a resolution algorithm for the problem above, for a set of aircraft (indexed

by i), given a set of possible arrivals (indexed by j).

We now go over all steps of the algorithm and explain what they achieve.
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Scheduling / routing resolution algorithm

Input: Position, flight plan of the aircraft.
Output: Route and maneuver assignment for each aircraft.

for all aircraft i=1:N
1 wpi := entrance wp into airspace

for all arrivals j starting from wpi
2 Compute shortest distance s̃ij to destination

3 Compute buffered distance b̃ij to destination
4 pij := number of holding patterns available for aircraft i in arrival j

5 Feasible j-arrival times Feasij :=
⋃pij
k=1[

s̃ij
max speed i

+ kThp,
b̃ij

min speed i
+ kThp]

end
6 Compute the set Si of possible arrival times of aircraft i: Si =

⋃

j Feasij
7 Represent Si as a disjoint union: Si :=

⋃ni
k=1[ai,k, bi,k], where bi,k < ai,k+1

8 if MILP(∆T ,{Si}) is not feasible
Return not feasible

else
9 For every ti, identify arrival route and number of holding patterns

10 Compute switching time sequence {τ i1, · · · , τ iN , ti}
end

end

1. At time t, get the requested entrance waypoint wpi of aircraft i into the arrival area,

as well as predicted arrival time tpredictedi at this way point.

2. For the current arrival j, compute the shortest distance s̃ij from wpi to the destination

airport: s̃ij =
∑
d(wpk,wpk+1) for all waypoints wpk between the entrance waypoint

wpi and the destination airport in arrival j. The computation of d(wpk,wpk+1),

defined in section 4.2.1 and also shown in Figure 3.3, is performed by calculating

the great circle distance between wpk and wpk+1. Note that the positions xi are

therefore given as (latitude, longitude).

3. For the current arrival j, compute the buffered distance s̃ij from wpi to the destination

airport: b̃ij =
∑

buffered d(wpk,wpk+1)
(

1
cosψ − 1

)

. The sum only ranges over the set

of segments for which it is possible to do VFS.

4. pij is the number of allowed HP for aircraft i in arrival j (it accounts for example

for the remaining fuel or congestion of the airspaces). This number could thus range
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from zero (if the HP locations are totally saturated) to a large number, limited by the

fuel autonomy of the aircraft (for a duration of sometimes one hour or more, in the

current system). Again, one of the applications of this study is precisely to compute

the best available spacing of the aircraft without HP, in order to alleviate their use.

5. Feasij =
⋃pij
k=1[

s̃ij
max speedi

+ kThp,
b̃ij

min speedi
+ kThp] is the union of all possible arrival

times at the destination when using arrival j. Feasij represents the set of possible

arrival times for aircraft i using arrival j with the allowed number of HP in that

arrival. It is in general not convex.

6. Si =
⋃

j Feasij represents the set of all possible arrival times for aircraft i using any

of the available arrival routes. It is generally not convex either.

7. The set Si ⊂ R is a union of intervals, possibly overlapping. This set can be rewritten

in polynomial time as Si :=
⋃ni
k=1[ai,k, bi,k], where bi,k < ai,k+1, eliminating any re-

dundancy in the expression of the constraints. This last expression is fundamental for

the next step, which consists of writing the constraints in terms of decision variables.

8. We want to minimize the sum of arrival of all aircraft, such that the aircraft arrive in

their achievable time intervals and are separated by at least ∆T :

Minimize:
∑N

i=1 ti

Subject to: ti ∈ Si =
⋃ni
k=1[ai,k, bi,k] ∀i ∈ {1, · · · , N}

|ti − tj | ≥ ∆T ∀(i, j) ∈ {1, · · · , N}2 s.t. i < j

(4.4)

We now transform this problem into a MILP. Let us pick two constants C and D such

that D ≥ maxNi=1max{ai,ni − ai,1, bi,ni − bi,1}, and C ≥ 2(maxNj=1 bj,nj −minNi=1 ai,1),

and introduce decision variables cij and dij . We rewrite the non-convex optimization
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problem (4.4) as a MILP, which we denote MILP(∆T, {Si}):

Minimize:
∑N

i=1 ti

Subject to: ti ≥ ai,1 ∀i ∈ {1, · · · , N}
ti ≤ bi,ni ∀i ∈ {1, · · · , N}
ti ≥ ai,k+1 −Ddik ∀i ∈ {1, · · · , N}, ∀k ∈ {1, · · · , ni − 1}
ti ≤ bi,k +D(1− dik) ∀i ∈ {1, · · · , N}, ∀k ∈ {1, · · · , ni − 1}
dik ∈ {0, 1} ∀i ∈ {1, · · · , N}, ∀k ∈ {1, · · · , ni − 1}
ti − tj ≥ ∆T − Ccij ∀(i, j) ∈ {1, · · · , N}2, s.t. i > j

ti − tj ≤ −∆T + C(1− cij) ∀(i, j) ∈ {1, · · · , N}2, s.t. i > j

cij ∈ {0, 1} ∀(i, j) ∈ {1, · · · , N}2, s.t. i > j

(4.5)

The handiness of MILP formulations for non-convex optimization problems such as

(4.4) has been extensively explored and used successfully by Richards, How, Feron,

Schouwenaars, and coauthors in [136, 135, 137, 134]. They use it mainly to perform

collision and obstacle avoidance under discretized linear dynamics. In this work, we

take advantage of the same formulation to express non-convex constraints of two types.

The first type is “time collision avoidance”: |ti − tj | ≥ ∆T , which enables metering

of the flow. The second type is non-convex feasibility constraints ti ∈
⋃ni
k=1[ai,k, bi,k],

which encapsulate the airspace structure and the aircraft capacities.

9. For every ti, i ∈ {1, · · · , N}, ∃!ν ∈ {1, · · · , ni}, such that ti ∈ [ai,ν , bi,ν ]. For this

[ai,ν , bi,ν ], we can reconstruct at least one route (i.e. choice of arrival and waypoint

sequence (wp1, · · · ,wpn(ν,ai,ν ,bi,ν))) and retrieve the number pij of HP which achieves

this ti. The arrival route j, and the number pij of holding patterns can be retrieved

from steps 2-3-4, by labeling the feasible arrival time intervals (i.e. by storing for each

arrival interval portion, the arrival routes which achieve it, as well as the number of

corresponding HP and VFS). Sometimes, more than one solution is available (if for

example the achievable arrival time intervals using two different arrivals overlap).

10. Construction of the timed grammar ([τ0, τ
′
0], σ0, [τ1, τ

′
1], σ1, [τ2, τ

′
2], σ2, · · · ). We re-

strict, k ∈ N, τ ′k − τk > 0 (the system has to stay in each mode for a nonzero amount

of time).‡ We thus have τ ′k = τk+1 for all relevant indices k. Therefore, we only need

‡Instantaneous switches with zero occupancy times are relevant for other physical systems modeled as
hybrid automata, but are not included in the current problem.
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to compute the τk. Two possibilities exist:

• If ti−tpredictedi −pijThp ∈
[
s̃ij
vi
,
s̃ij
vi

]

, there is no need for use of VFS. The inclusion

above means that a simple solution where aircraft i switches from upper speed

vi to lower speed vi between wp1 and wpn(ν,aiν ,biν) works.
§ The aircraft trajectory

should include a portion at upper speed of duration

Tfast =
1

vi − vi

[

s̃ij − vi(ti − tpredictedi − pijThp)
]

eventually interrupted by k of the pij holding patterns (for a cumulated duration

of kThp), and a portion at lower speed of duration

Tslow =
1

vi − vi

[

−s̃ij + vi(ti − tpredictedi − pijThp)
]

eventually interrupted by the rest of the holding patterns (for a cumulated du-

ration of (pij − k)Thp). Note again that the current speed does not matter for

the holding patterns, since they are prescribed in “time to lose” (lose 3 min-

utes at vi is the same as lose 3 minutes at vi). The hybrid trajectory of air-

craft i is then computed according to the diagram in Figure 4.3: the interval

[tpredictedi , ti] is divided in two: [tpredictedi , tslow down
i ] and [tslow down

i , ti], such that

tslow down
i − tpredictedi = Tfast+kThp and ti− tslow down

i = Tslow+(pij−k)Thp. Here,

k ≤ pij is the number of HP realized at high speed and pij − k is the number of

HP realized at low speed.

• If ti − tpredictedi − pijThp ∈
[
s̃ij
vi
,
b̃ij
vi

]

, flying at minimal speed vi for the complete

arrival is not sufficient. The aircraft has to switch from upper speed vi to lower

speed vi upon entrance in the arrival area, and will then have to use VFS for a

portion of the path, given by:

TVFS slow =
ti − tpredictedi

b̃ij − s̃ij

[

−s̃ij + vi(ti − tpredictedi − pijThp)
]

§Of course, for other reasons such as weather or traffic, the ATC might decide to achieve the same arrival
time ti by a VFS instead of a speed change.
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PSfrag replacements

tpredictedi tiτ1 τ2 τ3 τ4 τ5 τ6 = tslow down
i τ7 τ8 τ9 τ10

θ1i θ2i θ3i θ4i θ5iThpThpThpThpThpThp

Figure 4.3: Example of hybrid trajectory {tpredictedi , τ1, τ2, · · · τ9, τ10, ti} of the hybrid automaton for air-
craft i. τ1, τ3, τ4, τ7, τ8, τ9 are determined by geometry (i.e. the switch from F to HP occurs upon entry
on the holding pattern zone: see Figure 2.4). θ1i , θ

2
i , θ

3
i are determined by the τi and the equation of

Tfast = θ1i + θ2i + θ3i (see definition of Tfast in step 10 of the algorithm). Here pij = 3 since there are three
holding patterns. This enables the computation of τ6, the switching time from upper speed vi to lower speed
vi. For τi, i ≥ 7, the same construction applies. For the case of VFS, the construction is identical, except
that the vi portions and the VFS portions might alternate depending on spatial availability of VFS along
certain routes.

and be at low speed for the remaining portion

Tslow =
ti − tpredictedi

b̃ij − s̃ij

[

b̃ij − vi(ti − tpredictedi − pijThp)
]

As in the previous case, both portions can be interrupted by HPs, if pij > 0.

The hybrid trajectory can then again be computed using the diagram shown in

Figure 4.3.

4.4 Implementation and simulations

We now describe a possible implementation of the algorithm derived in the previous section.

This implementation will be used in the next chapter for numerical tests and experiments

on running time.

4.4.1 Implementation using ETMS data

For this implementation, the user interface of the code is written in MATLAB, which reads

ETMS data and translates it into AMPL code (steps 1-7 of the algorithm). The MILP is

coded and solved in CPLEX (step 8), interfaced by the modeling language AMPL (see for

example [73] for a complete description of the AMPL / CPLEX language). The results

of the optimization are read in MATLAB and transformed into ATC command lists and

ETMS format data (steps 9-10), readable directly by FACET, a software developed by
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NASA Ames [39]. MATLAB is run under UNIX on a SOLARIS 8 workstation (1GB of

RAM). The CPU runtimes presented in this section and the next chapter are obtained with

this platform.

PSfrag replacements

ETMS
data

MATLAB

MATLABMATLAB FACETAMPL
CPLEX

transformation
into MILP

arrival
times ti

executions
{τ1 · · · τN}

ETMS
readable
data

list of ATC
commands

Arrivals

simulations
traffic analysis

Figure 4.4: Block diagram of the implementation of the algorithm.

Even though this implementation works in real time for a reasonable number of aircraft

in most of the realistic cases (flow almost metered, i.e. such that few changes in order of

arrival and flight plan modifications are needed to achieve an acceptable spacing between the

aircraft), it is important to show the limits of this approach as well, i.e. identify a threshold

number of aircraft above which the CPU time required by the method becomes too large

to be realizable online. We expect the method to work well in cases where heuristics are

available to rule out large number of possible integer solutions. For example when ai,1 > bj,nj

holds for a large number of aircraft, it is likely that the resulting partial order (aircraft i

has to arrive after aircraft j) will help CPLEX to solve the problem faster. Figure 4.5, left

shows an example for 10 aircraft, in which such heuristic is not obvious.

In the next chapter, we will show that in the case where partial order is not available as a

decision heuristic, the computational time can become extremely large. This phenomenon is

sometimes referred to as exponential computational time or explosion of the combinatorial

state space.

4.4.2 Simulation example: robustness of merging flows

We show a possible use of this algorithm to characterize flow stability of merging traffic.

A very common phenomenon in congested areas (as the Oakland center for example) is

delay of short flights because of incoming transoceanic flights. In general, in the presence of

flights incoming from all destinations (Europe, Asia, South America), ATC tends to delay
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Figure 4.5: Left: Example of solution of the MILP (4.6) for 10 aircraft, with two arrivals to the Oakland
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aircraft i, the two horizontal segments represent the feasible arrival times: [ai,1, bi,1] and [ai,2, bi,2]. In some
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aircraft 6 and 7). This would not happen for the solution of the MILP (4.5) where the goal is to minimize the
makespan. Right: GUI interface of our implementation: arrivals LOCKE1 and MADWIN3 to the Oakland
airport.

or cancel short flights (for example from L.A., Seattle, Vancouver) if the capacity of the

arrival airports is limited, because the international flights are already airborne and might

not have as much freedom in delays (for fuel reasons). We would like to show that our

algorithm enables quantification of the influence of additional traffic into merging traffic.

We ask the following question:

Problem 4. Given a sequence of m incoming aircraft into a single airport, by

how much does an additional set of n aircraft reduce the available spacing of the

original sequence ?

In other words, we want to compute the ∆∗ resulting from an additional n aircraft when

solving the following MILP:
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Figure 4.6: Left: Feasible arrival times intervals for the perturbed flow. Aircraft 1 to 10 are incoming
into locke 1 and madwin 3 through oal, mva and fmg. Aircraft 11 to k (where k ∈ {11, · · · , 20} are
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(large k), the smaller ∆∗ becomes.

Maximize: ∆

Subject to: ti ≥ ai,1 ∀i ∈ {1, · · · , N}
ti ≤ bi,ni ∀i ∈ {1, · · · , N}
ti ≥ ai,k+1 −Ddik ∀i ∈ {1, · · · , N}, ∀k ∈ {1, · · · , ni − 1}
ti ≤ bi,k +D(1− dik) ∀i ∈ {1, · · · , N}, ∀k ∈ {1, · · · , ni − 1}
dik ∈ {0, 1} ∀i ∈ {1, · · · , N}, ∀k ∈ {1, · · · , ni − 1}
ti − tj ≥ ∆− Ccij ∀(i, j) ∈ {1, · · · , N}2, s.t. i > j

ti − tj ≤ −∆+ C(1− cij) ∀(i, j) ∈ {1, · · · , N}2, s.t. i > j

cij ∈ {0, 1} ∀(i, j) ∈ {1, · · · , N}2, s.t. i > j

(4.6)

We generate the following scenario (see Figure 4.5 right for the map and Figure 4.6 left for

the schedule): m aircraft are scheduled to come into Oakland through the two arrival locke

1 and madwin 3, entering through the waypoints oal, mva and fmg. An additional n aircraft

are fed into locke 1 through czq, with very little available maneuvering freedom (short

single intervals [ai,1, bi,1]). Figure 4.6 shows a numerical example of achievable schedule

for this scenario, with m = n = 10. Figure 4.6 (right) shows the averaged results of 300

simulations of perturbed merging traffic. We perturb m = 10 aircraft by n aircraft, where
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n increases from 1 to 10. We compute the maximal available spacing ∆∗ for the set of

m+n aircraft. We see that the additional 10 aircraft reduce the spacing by a factor almost

three. In this case, we thus see that holding patterns will be necessary, since in general, one

aircraft a minute is too high a frequency for a single track airport like Oakland (because of

the vortex wake hazard). More generally, this algorithm enables the prediction of a feasible

spacing (and the set of instructions to achieve it), and enables the ATC to take appropriate

decisions given the spacing available at the destination airport.
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Chapter 5

Combinatorial optimization

algorithms for task planning

Chapter 4 ended with a formulation of ATC maneuver assignment problems as a mixed

integer linear program (MILP). Preliminary implementations in the architecture presented

in Chapter 4 have suggested that the combinatorial explosion of the state space makes

this problem intractable for more than 20 aircraft in the general case, without a proper

algorithmic treatment [27]. The goal of this chapter is to show evidence of this fact and to

develop proper algorithms to circumvent this difficulty.

This chapter derives algorithms to solve subproblems of the general routing sequencing

problem posed in Chapter 4. We believe that the general form of the problem derived

in Chapter 4 is NP-complete, i.e. that under the common assumption P 6= NP (see for

example [76, 153]), it is not possible to derive a deterministic algorithm which solves this

problem in polynomial time. In subcases which we investigate in this chapter, we will

construct algorithms, which either (i) solve a subproblem exactly in polynomial time (in

cases which we identify and for which it is possible); (ii) are approximation algorithms, i.e.

they approximate the solution in polynomial time, within worst case guaranteed bounds

which we compute.

Section 5.1 investigates the case in which the number of arrival intervals is one for each

aircraft. This corresponds to the physical situation in which only one arrival is available

65
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to each aircraft, and ATC does not want to put the aircraft on a holding pattern. Several

questions can be posed for this scenario: (i) Is a given separation at the destination airport

feasible? (ii) What is the largest possible separation at the airport which ATC can guarantee

given the constraints? Question (i) turns out to be a simple polynomial time solvable

scheduling problem; question (ii) can be reduced to a polynomial time solvable problem

via a bisection algorithm for which we derive an explicit stopping criterion. We implement

our algorithm and show numerical evidence of its superiority over the leading commercial

software to solve MILPs.

Section 5.2 investigates the case in which only one arrival is open to each aircraft, but they

can fly a large number of holding patterns (which can be bounded). Since aircraft can be

held for as long as needed, feasibility is not a problem anymore, but sum of the delays,

or arrival times of the last aircraft (makespan) are a problem. We derive approximation

algorithms which are polynomial time, and are proved to converge to a value with guaranteed

worst case bounds from the optimum.

5.1 A polynomial time algorithm for a one interval MILP

5.1.1 Problem formulation

We considerN aircraft converging to a single airport. Aircraft are indexed by i∈ {1, · · · , N}.
As a result of ATC actuation, the set of arrival times for aircraft i is a union of intervals

called Si :=
⋃ni
k=1[ai,k, bi,k]. For each i, ni is the number of intervals of time in which

aircraft i can arrive. These intervals encode a set of maneuvers which are relatively easy to

implement for ATC, as was shown in the previous chapter. A key problem for an Air Traffic

Controller is to estimate the largest time spacing achievable with this set of maneuvers, in

order to determine if the use of large maneuvers is necessary (significant flight plan changes

or large numbers of holding patterns at the direct vicinity of airports):

Problem 5. What is the maximal separation we can guarantee at the airport,

without putting the aircraft on a holding pattern?
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Note that the solution to this problem also provides the safety buffer – or margin, which

is the difference between the maximal spacing that ATC can guarantee and the spacing

required by the airport.

As was derived in the previous chapter, the general problem translates into the following op-

timization problem: given {Si}i∈{1,··· ,N}, we want to find a N -tuplet (t1, · · · , tN ) ∈
∏N
i=1 Si

of feasible arrival times for the N aircraft maximizing the minimum time separation ∆

between any two aircraft:

Maximize: ∆

Subject to: ti ∈
⋃ni
k=1[ai,k, bi,k] ∀i∈ {1, · · · , N}

|ti − tj | ≥ ∆ ∀(i, j)∈ {1, · · · , N}2
(5.1)

For the present Section, in which we only allow one arrival and prohibit holding patterns, we

focus on the one interval case (ni = 1 for all i), and show that this problem is polynomial-

time solvable. As was shown in the previous chapter, for the one interval case, the problem

can be rewritten in the following form:

Maximize: ∆

Subject to: ti ≥ ai,1 ∀i ∈ {1, · · · , N}
ti ≤ bi,1 ∀i ∈ {1, · · · , N}
ti − tj ≥ ∆− Ccij ∀(i, j) ∈ {1, · · · , N}2, s.t. i > j

ti − tj ≤ −∆+ C(1− cij) ∀(i, j) ∈ {1, · · · , N}2, s.t. i > j

cij ∈ {0, 1} ∀(i, j) ∈ {1, · · · , N}2, s.t. i > j

(5.2)

5.1.2 Closed form solution for fixed arrival order

In order to solve (5.2), we need to identify which constraints are active in the optimal

solution: in the present case, they determine the optimum of the problem analytically. For

this, we fix the order of arrival at an arbitrary setting, which enables us to find the active

constraints. The result obtained for this arbitrary order will be used for solving the general

problem (5.2). Theorem 1 is thus a building block of the full algorithm, which is presented

in Section 5.1.4. Lemma 1 below is used to prove Theorem 1.
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Thus, assume for this section only that the order of arrival of the aircraft is known a priori.

Without loss of generality, assume that the aircraft have been labeled in this order (aircraft

1 arrives first, aircraft 2 arrives second, · · · ). Then, problem (5.2) reduces to

Maximize: ∆

Subject to: ti − ti−1 ≥ ∆ i ∈ {2, · · · , N}
ti ≥ ai,1 i ∈ {1, · · · , N}
ti ≤ bi,1 i ∈ {1, · · · , N}

(5.3)

Lemma 1. The optimal solution ∆ of (5.3) satisfies ∆ ≤ m, where

m = min
(i,j)∈{1,··· ,N}2, i<j

(
bj,1 − ai,1
j − i

)

(5.4)

Proof — Call (k, l) = argmin(i,j)∈{1,··· ,N}2, i<j
(
bj,1−ai,1
j−i

)

, i.e. one pair of aircraft such that
(
bl,1−ak,1
l−k

)

= m and k < l. Suppose that ∆ > m. Then (l− k)m < (l− k)∆ ≤ bl,1 − ak,1 =
(l − k)m. The first inequality is by assumption. The second by definition of ∆: the best

spacing between aircraft k and l is bounded by the mean. The last equality is by definition

of m. This inequality cannot be true. Therefore ∆ ≤ m. ¤

Theorem 1. It is possible to construct a sequence (t1, · · · , tN ) such that (m, t1, · · · , tN )
satisfies (5.3), which proves that

∆ = min
(i,j)∈{1,··· ,N}2, i<j

(
bj,1 − ai,1
j − i

)

(5.5)
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Proof — We prove this theorem by induction on N . For N = 2, the solution is trivial.

For N = 3, we see that the following solution achieves the optimal:

t1 = a1,1

t2 = (b3,1 + a1,1)/2 if (b3,1 + a1,1)/2 ∈ [a2,1, b2,1]

= a2,1 if (b3,1 + a1,1)/2 < a2,1

= b2,1 if (b3,1 + a1,1)/2 > b2,1

t3 = b3,1

(5.6)

Suppose now that we have proved the property up to N , i.e. that (5.5) is the solution of

(5.3) for N aircraft. We now prove that (5.5) is the solution of (5.3) for N +1 aircraft. Call

m(k, l) the following quantity, with k and l both in {1, · · · , N + 1}, and k < l:

m(k, l) := min
(i,j)∈{k,··· ,l}2, i<j

(
bj,1 − ai,1
j − i

)

(5.7)

We obviously have m(1, N + 1) = min
{

m(1, N),mini∈{1,··· ,N}
(
bN+1,1−ai,1
N+1−i

)}

. We now

investigate which of these terms achieves the min for m(1, N + 1).

Case 1: m(1, N + 1) = m(1, N). We thus have m(1, N) ≤ bN+1,1−ai,1
N+1−i for all i ≤ N (i.e.

the arrival interval of aircraft N + 1 does not decrease the overall minimum). Take tN+1 =

bN+1,1. Now call b′N,1 = min{bN+1,1 −m(1, N), bN,1}.

• If b′N,1 = bN,1, we have successfully constructed (t1, · · · , tN+1): tN+1 satisfies

tN+1 − tN ≥ m(1, N + 1) = m(1, N), and for all (i, j) ∈ {1, · · · , N}2 such that

i < j, tj − ti ≥ m(1, N) = m(1, N + 1).

• If b′N,1 = bN+1,1 − m(1, N). Let us rename every other bi,1 as b′i,1, for i < N , for

notational ease. Now define m = mini<N

(
b′N,1−ai,1
N−i

)

. Now

m = min
i<N

(

b′N,1 − ai,1
N − i

)

= min
i<N

(
bN+1,1 −m(1, N)− ai,1

N − i

)

(5.8)

Thus

m = min
i<N

(
bN+1,1 − ai,1
N + 1− i

N + 1− i
N − i − m(1, N)

N − i

)

≥ m(1, N)min
i<N

(
N + 1− i
N − i − 1

N − i

)

(5.9)
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which proves m ≥ m(1, N), and therefore the change in bN,1 into b′N,1 = bN+1,1 −
m(1, N) does not decrease (5.7). We now have successfully constructed (t1, · · · , tN+1):

tN+1− tN ≥ m(1, N+1) = m(1, N), and for the N -tuplet (t1, · · · , tN ), we just proved
that m ≥ m(1, N) is achievable.

Case 2: m(1, N +1) = mini<N+1

(
bN+1,1−ai,1
N+1−i

)

< m(1, N). Obviously, adding a new aircraft

has restricted the available spacing of the others: ∃l ∈ {1, · · · , N} such that m(l, N + 1) =

m(1, N + 1) < m(1, N).

• If l = 1, m(1, N+1) =
bN+1,1−a1,1

N
. The evenly spaced solution is the optimal solution.

Let us show it is feasible, i.e. ∀j ∈ {2, · · · , N}, a1,1 + j−1
N

(bN+1,1 − a1,1) ∈ [aj,1, bj,1].

If this were not the case, then, without loss of generality∗, we would have a1,1 +
j0−1
N

(bN+1,1−a1,1) > bj01 for a particular j0, which would mean
bj0,1−a1,1
j0−1 <

bN+1,1−a1,1
N

,

which is by assumption wrong.

• If l ≥ 2, we can use the symmetry of the problem to flip it (the ai,1 and bi,1 are

inverted)†, and we are now in case 1.

In case 1 and case 2, we were able to construct a solution with spacing m(1, N) for every

N . By Lemma 1, m(1, N) is the best possible ∆ which we can achieve, and equation (5.5)

follows. ¤

5.1.3 Transformation of the feasibility problem into a scheduling problem

The previous section solved for the maximal available spacing in the case of fixed order of

arrival. In the current ATC system, if one interprets ai,1 as the nominal time of arrival

of aircraft i, and (ai,1, bi,1] as the set of possible arrival times with delays, equation (5.5)

predicts the best available spacing without altering the order of arrival (first come first

served policy). Despite the fact that it is used almost all the time in practice, this policy is

of course not optimal.‡ We therefore now allow to change the order of arrival of the aircraft.

∗Since the problem is symmetric.
†We treat first the subset {l · · ·N +1} of aircraft (which we can do using the induction assumption, since

l > 1, and thus (N + 1− l < N)). We then complete with the set {1 · · · , l − 1}, but this time we will be in
case 1 because the argmin of (5.5) is obtained in the set {l · · ·N + 1}.

‡Take for example a1,1 = 00 : 00 : 00, a2,1 = 00 : 00 : 30, b1,1 = 00 : 03 : 00, b2,1 = 00 : 01 : 30,
n1 = n2 = 1.
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We show that the feasibility problem of (5.2) can be reduced to a single processor scheduling

problem with release times and deadlines [76], known to be solvable in polynomial time

[12, 49, 50, 48, 51]. The two following problems are equivalent:

Problem 6. Let ∆ be a given positive number (separation). Given a set of N in-

tervals [ai,1, bi,1], i∈ {1, · · · , N}, find a set {ti}i∈{1,··· ,N} such that ∀i∈ {1, · · · , N},
ti ∈ [ai,1, bi,1] and ∀(i, j) ∈ {1, · · · , N}2, s.t. i > j, |ti − tj | ≥ ∆.

Problem 7. Let D be a given positive number (processing time). Let I =

{1, · · · , N} be a set of jobs. Let each job have a release time ri and a deadline

di. Find an ordering {ti}i∈I such that ti ≥ ri (job i cannot start before the re-

lease time ri), ti + D ≤ di, (job i has to be processed before the deadline di),

ti < tj =⇒ tj ≥ ti +D (two jobs cannot be processed simultaneously).

Solving Problem 7 for a given set of [ri, di] and D, is thus equivalent to finding a feasible

solution to our original problem, with ai,1 = ri and bi,1 + D = di. Problem 7 is a known

problem in scheduling, for which polynomial algorithms have been developed [12, 49, 50,

48, 51]. We will use a slight modification of Carlier’s algorithm [49] to solve the feasibility

problem (Problem 7). This algorithm is presented in Appendix B.

5.1.4 Algorithm

We call Carlier the algorithm presented in Appendix B. Carlier solves Problem 7 above.

We will use the following notation: Carlier(ri, di, D) represents the ordering obtained with

release times ri, deadlines di and processing time D if such a schedule exists.

Theorem 2. Assume that ni = 1 for all i∈ {1, · · · , N}, ai,1 ∈ N, bi,1 ∈ N, D ∈ N. The

following bisection algorithm converges to the exact solution of (5.2) in a finite number

of steps. The time complexity of the algorithm is O(N 2 log(N)(N + logL)) where L =

max bi,1 −min ai,1.
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Bisection algorithm solving (5.2)

Input: One feasible arrival time interval per aircraft.
Output: Maximal spacing available at airport, with corresponding arrival times.

1 ∆ := 1
N−1

(
maxi∈{1,··· ,N} bi,ni −mini∈{1,··· ,N} ai,1

)

2 if Carlier(ai,1, bi,1 +∆,∆) is feasible, return ∆
3 while Carlier(ai,1, bi,1 +∆,∆) is not feasible, ∆ := ∆/2

4 ∆ := ∆, ∆ := 2 ·∆
while

(

(∆−∆) ≥ 1
N−1

)

if Carlier
(

ai,1, bi,1 +
∆+∆
2 , ∆+∆

2

)

is feasible

∆ := ∆+∆
2

else

∆ := ∆+∆
2

5 returnmax
{

∆|∆ ∈ [∆,∆] ∩⋃N−1
k=1

(N
k

)
∧ Carlier(ai,1, bi,1 +∆,∆) feasible

}

Proof — Convergence If ∆ = 1
N−1 [bN,nN − a1,1] is feasible, the algorithm stops at step

2. This is the ideal case (the largest achievable spacing is feasible).

Otherwise, let us call ∆∗ the optimum of the problem. Let us call ν(·) the order of arrival

of the aircraft (aircraft i arrives in position ν(i)). By Theorem 1, we have:

∆∗ = min
(i,j)∈{1,··· ,N}2, i<j

(
bν(j),1 − aν(i),1
ν(j)− ν(i)

)

(5.10)

Because of the limited possible values of the difference ν(j)− ν(i), and because of the fact

that the ai,1, and bi,1 are integers, equation (5.10) implies:

∆∗ ∈
N−1⋃

k=1

N
k

(5.11)

where
⋃N−1
k=1

N
k
= {p

q
| q∈ {1, · · · , N − 1}, p ∈ N} ⊂ Q. In step 3, the algorithm will divide

∆ by 2 until it becomes feasible. In step 4, starting from the last value of step 3, it will

approach ∆∗ by bisection until it comes within 1
N−1 of ∆∗. Then we know that ∆∗ ∈ [∆,∆].
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Because of the previous remark on ∆∗, ∆∗ ∈ [∆,∆] ∩⋃N−1
k=1

(N
k

)
. But this set contains at

most N − 1 elements since ∆−∆ ≤ 1
N−1 , which are easy to enumerate (step 5). ∆∗ is the

largest of them.

Complexity The number of calls to Carlier is 1 for step 2, and N − 1 for step 5. The worst

case for step 3 is if ∆ has to be divided by 2 p times until

1

N − 1
≥ max bi,1 −min ai,1

N − 1

1

2p

and the same applies for step 4, which gives the following bound for the number of calls to

Carlier: §

N +

⌈
2

log 2
log (max bi,1 −min ai,1)

⌉

(5.12)

The number of calls of the procedure Carlier is thus O(N + logL), where L = max bi,1 −
min ai,1. The complexity of the modified Carlier’s algorithm is O(N 2 log(N)) (see Appendix

1). The complexity of the algorithm is thus O(N 2 log(N)(N + logL)). ¤

Corollary 1. Theorem 2 also holds for ai,j ∈ Q and bi,j ∈ Q.

Proof — Call ai,j =
p
j
i

q
j
i

and bi,j =
r
j
i

s
j
i

, and call L the least common denominator of the qji

and sji (note that L =
∏N
i=1

∏ni
j=1 q

j
i s
j
i works as well). Then problem (4.5) is equivalent to

the following problem:

Maximize: Lδ

Subject to: Lθi ∈
⋃ni
j=1[L

p
j
i

q
j
i

, L
r
j
i

s
j
i

]

|Lθi − Lθj | ≥ Lδ ∀(i, j) ∈ {1, · · · , N}2, s.t. i > j

(5.13)

In the previous optimization program, L
p
j
i

q
j
i

∈ N and L
r
j
i

s
j
i

∈ N. Therefore, Theorem 2 gives

us a solution (∆∗, t1, · · · , tN ) = (Lδ∗, Lθ1, · · · , LθN ). Therefore, (δ∗, θ1, · · · , θN ) solves the
problem in Q. ¤

§Combining the length of the two intervals might give a slightly better bound than (5.12) but does not
change the complexity.
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Figure 5.1: Left: CPU time used by our algorithm and by CPLEX to solve the same problems. The

curve is an average over 100 runs for each value of N (1800 runs for CPLEX, 9900 runs for our algorithm).

Right: Comparison of the results for the first 1800 simulations realized. As can be seen, even for N ≥ 14, a

significant number of CPLEX computations are faster than our algorithm by at least one order of magnitude.

5.1.5 Numerical performance of the algorithm

The running time of the algorithm is theoretically bounded above by O(N 2 log(N)(N +

logL)), where O(·) means there is a constant in front of N 2 log(N)(N + logL) and it is

independent of N and L. To verify this time bound we have simulated a set of 1800 cases

and compare the measured CPU time used by our algorithm and that using CPLEX to

solve the same problem, to demonstrate the efficiency of our algorithm (N ∈ {2, · · · , 19}).
We have run 8100 additional simulations (N ∈ {20, · · · , 100}) to assess the performance of

our algorithm in a range of N where CPLEX cannot handle the computation in real time.

We simulate situations in which N aircraft are within one hour of the destination airport.

For each value of N , we randomly generate intervals [ai,1, bi,1] within one hour of Oakland,

with various width bi,1 − ai,1 ranging from 30 sec. (almost no possibility to adjust the

arrival time of the aircraft) to 15 min. We measure the CPU time needed by our method to

compute the largest available ∆∗ between the aircraft. We run 100 simulations for each N .

Our algorithm is implemented in MATLAB; the CPLEX solution is coded in AMPL in-

terfaced with MATLAB, so that both methods can run from the same application on the
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same platform.¶ The results of these runs are shown in Figure 5.1. This figure suggests a

few comments. The average result is not representative of the relative performance of the

two algorithms. Looking at Figure 5.1 (left) would suggest that CPLEX’s performance is

much worse than our algorithm for N ≥ 14. Figure 5.1 (right) shows that the average is

“polluted” by abnormal runs: in fact for the set of simulations shown here, CPLEX is faster

than our algorithm in 85% of the cases, but among the 15% remaining, the CPU time used

by CPLEX exceeds the CPU time used by our algorithm by several orders of magnitude,

which increases the average significantly.

We are also aware that there might be more efficient ways to encode the MILP (4.5) in

CPLEX or even the one interval version (5.2). For example, another way to encode (4.5) is:

Maximize: ∆

Subject to: ti ≥ ai,ni +
∑ni−1

j=1 xij(ai,j − ai,j+1) ∀i∈ {1, · · · , N}
ti ≤ bi,ni +

∑ni−1
j=1 xij(bi,j − bi,j+1) ∀i∈ {1, · · · , N}

xij ≤ xi j+1 ∀i∈ {1, · · · , N} ∀j∈ {1, · · · , ni − 2}
xij ∈ {0, 1} ∀i∈ {1, · · · , N} ∀j∈ {1, · · · , ni − 1}

(5.14)

This formulation (suggested to us by Francis Carr) has been observed by other researchers

to be more efficient than (5.2). Regardless of the respective benefits of different MILP

formulations of the original problem (5.1), the goal of our algorithm is to provide a guarantee

on running time for a given task, which CPLEX does not provide, as is illustrated by

Figure 5.1.

5.2 An approximation algorithm for a periodic MILP

5.2.1 Problem and related work

We now consider the case in which each aircraft can only use one arrival, but can do a

possibly large number of holding patterns before being released back into the arrival.

¶We use a SOLARIS 8 workstation under UNIX (2GB of RAM). This is not important as long as the
two methods run on the same machine. Comment: The MATLAB implementation is quite unfavorable to
our algorithm. MATLAB is notoriously slow for conditional operation such as“if”,“else”... Note that the
CPLEX/AMPL solution procedure is coded separately, and MATLAB is used for it only an interface.
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This problem can be formulated as a single machine scheduling problem as follows. We are

given N jobs denoted by J1, J2, · · · , JN . Each job Jj is characterized by two nonnegative

numbers rj and dj . We are given two nonnegative numbers ∆ (processing time), and

T (holding time). In a feasible schedule (i) each job Jj is assigned a starting time τj ,

such that rj + l · T ≤ τj ≤ dj + l · T − ∆, for some integer l ≥ 0 which represents the

number of holding patterns used; (ii) if j 6= j ′ then |τj − τj′ | ≥ ∆. Our goal is to find a

feasible schedule such that one of the two following objectives are minimized: the makespan

Cmax = max1≤j≤n τj+∆ (the time at which all jobs are finished) and the sum of the starting

times of all jobs
∑n

j=1 τj .

Note that this problem is not an airline scheduling problem, but an Air Traffic scheduling

problem, which is why the relevant cost functions are either sum of arrival times (which

represents the overall minimization of delays), or makespan (which represents the fastest

way to land a given number of aircraft). Another relevant cost function might be the

weighted sum of arrival times, which might help to penalize some aircraft less than others

(for example if they suffered ground delay prior to departure). Finally, other cost functions

might be considered for airline scheduling problems, but they are beyond the scope of this

work.

To the best of our knowledge, this scheduling problem has not been studied before in

approximation algorithm literature.

In [27], the authors posed the general aircraft scheduling problem with holding time. They

used an integer programming approach to solve the problem, using CPLEX, and showed

the limit of this approach (the computational time grows exponentially with the number

of aircraft, making this approach unattractive for online implementations). In Section 5.1,

we present a polynomial time algorithm for solving the single interval case: the objective is

to maximize δ := mini<j |τj − τi| without putting the aircraft on hold. In the general case,

δ < ∆, which forces ATC to put aircraft on hold: the present algorithm has been developed

to address this situation.

Our problem generalizes those studied by Dantzig and Fulkerson [65], and Gertsbakh and

Stern [78] where each job’s starting time can only be in a single interval [rj , dj−∆]. To find

a feasible schedule for the given jobs, one can schedule them on parallel identical machines.

Here, the goal is to minimize the number of machines needed. One can easily see that
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this problem is equivalent to our problem when the objective is to minimize the number of

periods we have to use and when all dj ∈ [0, T ]. The problem can be solved to optimality

if rj = dj −∆ for for j. If rj < dj −∆, the complexity of the problem is still open.

This work can also be related to the job interval selection problem (JISP) [56, 69]. If the

maximum number of intervals required for feasibility of our problem is known a priori, our

problem might be reduced to the JISP. However, the number of intervals of the correspond-

ing JISP is O(L) where L = O(maxj dj −minj rj), which is an undesirable feature. Given

the similarity of our problem with the JISP, we believe that our problem is NP-complete.

Another closely related scheduling problem is the one studied by Carlier [49] and Baptiste

[12] where the job’s starting time is restricted to a single interval [rj , dj −∆] and the ob-

jective is to maximize the number of jobs which can be scheduled. This problem can be

solved in polynomial time [12]. Their results imply that for our problem, if all the jobs can

be scheduled in the first available interval for each aircraft, the problem is polynomial time

solvable.

Notice that when the processing time for each job is the same, minimizing the sum of starting

times of jobs is equivalent to minimizing the sum of completion times of jobs. Designing

approximation algorithms for various scheduling problems with the objective minimizing

the sum of completion times has received considerable attention during the last decades,

see for example an excellent survey by Chen, Potts and Woeginger [54]. However, because

of the structure of our problem, it seems that none of the algorithms presented above can be

applied to give an approximation for our problem. In most of the models, only release times

of jobs are present, but here, each job has a deadline, although the job can be scheduled in

a prescribed later range if this deadline cannot be met.

5.2.2 Results and techniques

We present an approximation algorithm which approximates the sum of completion times

with factor 5. We extend it to approximate makespan with factor 3.

Our first attempt at this problem is based on a simple observation that the starting time

of the jobs can be restricted to a polynomial bounded set. Therefore, the problem can be

formulated as a constrained assignment problem: assign the jobs to those possible starting
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points, with the constraints that at most one job can be assigned to any interval of length ∆.

As a standard approach, we solve the linear programming (LP) relaxation of this constrained

assignment problem. The key in our algorithm is the rounding of the LP solution x, which

is fractional in general, into an integer solution for the original problem. Here we observe

that there is a way to modify the fractional solution x and obtain another fractional solution

x̄ (which still satisfies the constraints of the LP) such that the corresponding costs (both

makespan and the sum of the starting times) are increased by a factor of at most 3 if all

rj ≥ T . Then we construct an instance of the (unconstrained) assignment problem such

that x̄ is a feasible solution of the assignment problem and any integer solution of the new

instance will automatically satisfy the constraints of the original problem. Using the fact

that we can find an integer solution for the (unconstrained) assignment in polynomial time,

whose cost is not worse than that of x̄, we find an approximation solution for the original

problem with guaranteed error factor if all rj ≥ T . However, bounding the ratio of the

algorithm if there are jobs with rj less than T requires an initial step to schedule these jobs.

Motivated by the results of Baptiste [12] that for the single interval case, there exists a

polynomial time algorithm that can schedule the maximum number of jobs, we treat the

jobs with rj < T separately. We thus develop a greedy approach: we schedule the maximum

number of jobs in the first period [0, T ], and then apply the above mentioned LP-based

algorithm to the rest of the jobs. Two issues need to be addressed. (i) After we schedule

the jobs in the first interval, how do we bound the optimal cost of the rest of the jobs?

Indeed, when we apply the LP-based algorithm to the rest of the jobs, we are comparing

their cost in this schedule with their cost if they were scheduled by the optimum solution.

Our proof provides a bound on the ratio of these two costs. (ii) Scheduling the maximum

number of jobs in the first period does not necessarily imply that the sum of starting times

of this set of jobs is minimized. Here, we generalize the algorithm and result of Baptiste [12]

and apply it to the set of aircraft which can arrive before T : we derive a polynomial-time

algorithm for the single interval problem, which schedules (feasibly) the maximum number

of jobs; furthermore, we show that among all feasible schedules that schedule the same

number of jobs, the algorithm produces a solution that has the minimum sum of starting

times. The algorithm is based on dynamic programming.

Combining the above algorithms, we obtain an approximation algorithm which approxi-

mates the optimal solution of minimizing the sum of starting times with factor 5. For

makespan, we modify both parts of the algorithm and obtain a ratio 3.



5.2. AN APPROXIMATION ALGORITHM FOR A PERIODIC MILP 79

The rest of this Chapter is organized as follows. Section 5.2.3 describes the optimization

program formulation of the physical problem. Section 5.2.4 shows a trivial 2 approximation

algorithm for the case in which T ≤ ∆, which works when the objective function is sum of

arrival times or makespan. Section 5.2.5 provides a high level description of the approxi-

mation algorithm for the sum of arrival times in the case T > ∆. The part of the algorithm

which schedules the first set of jobs before T (dynamic programming) is explained in detail

in Section 5.2.6. Section 5.1.4 presents the part of the algorithm which schedules the rest of

the jobs after T (LP rounding). Section 5.2.8 explains how to modify the algorithm to pro-

vide a 3-approximation algorithm for makespan. The proof of the algorithm of Section 5.2.6

is presented in Appendix B.

5.2.3 Optimization program

We call ai the earliest arrival time of aircraft i, and bi the latest arrival time of aircraft

i without holding pattern.‖ In the absence of holding pattern, the problem of scheduling

aircraft i in [ai, bi] for all i ≤ N such that two aircraft are separated by at least ∆ is

equivalent to scheduling N jobs on a single machine, with processing times ∆, release

times ri = ai, deadlines di = bi + ∆. We call T the time of a holding pattern, and let

[aj , bj ] + TN :=
⋃∞
k=0[aj + kT, bj + kT ]. The problem can be formulated as follows:

min:
∑

j∈{1,··· ,N} τj

s.t.: τj ∈ [aj , bj ] + TN ∀j∈ {1, · · · , N}
|τj − τ ′j | ≥ ∆ ∀(j, j′) ∈ {1, · · · , N}2, such that j 6= j ′

(5.15)

5.2.4 A trivial algorithm for the T ≤ ∆ case

In this case, the following first come first served algorithm reads:

Theorem 3. The first come first served algorithm is a 2 approximation algorithm for

makespan and sum of arrival times.

‖We use the notation ai and bi rather than ai,1 and bi,1 for simplicity, since all other intervals in (5.15)
are obtained from [ai, bi] by translation by an integer multiple of T .
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First come first served approximation 2 algorithm

Input: Arrival time intervals for each aircraft, time to hold T .
Output: Approximation 2 schedule.

1) Sort the aircraft by earliest possible time of arrival: without loss of generality, we can
write a1 ≤ a2 ≤ · · · ≤ aN−1 ≤ aN .
2) Construct the following schedule:

τ1 = a1
τj = min{x | x ∈ [τj−1 +∆,+∞)∩

([aj , bj ] + TN)} ∀j∈ {2, · · · , N}

Proof of Theorem 3: Sum of arrival times: Divide the N aircraft into K subsets:

S1 = {N1, · · · , N2 − 1}, S2 = {N2, · · · , N3 − 1}, · · · , SK = {NK , · · · , N}, where

N1 = 1

Nk = min{p|aNk−1 + (p−Nk−1)(∆ + T ) < ap}

For all k∈ {1, · · · ,K − 1}, for all j ∈ Sk, the algorithm provides τj ≤ aNk+(j−Nk)(∆+T ).

Indeed, if it were not true, we would have a j ∈ Sk such that τj > aNk + (j −Nk)(∆ + T ),

which would contradict the definition of Nk+1. We call c the cost of this algorithm:

c ≤∑K
k=1

∑

j∈Sk τj

≤∑K
k=1

∑

j∈Sk (aNk + (j −Nk)(∆ + T ))

≤∑K
k=1

∑

j∈Sk
(aNk+(j−Nk)(∆+T ))(aNk+(j−Nk)∆)

aNk+(j−Nk)∆

Since we know that OPT ≥∑K
k=1

∑

j∈Sk(aNk + (j −Nk)∆), we get the following approxi-

mation ratio β for the sum of arrival times:

β = maxKk=1maxj∈Sk

{
aNk+(j−Nk)(∆+T )

aNk+(j−Nk)∆

}

= maxKk=1maxj∈Sk

{

1 + (j−Nk)T
aNk+(j−Nk)∆

}

≤ 1 + T
∆ ≤ 2

(5.16)

Makespan: We know that τN ≤ aNK +(N −NK)(∆+T ). Since the jobs have been ordered

such that a1 ≤ a2 ≤ · · · ≤ aN−1 ≤ aN , the arrival time τ ∗N of aircraft N in the optimum

schedule has to satisfy τ ∗N ≥ aNK + (N −NK)∆. The approximation ratio α for makespan
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thus satisfies:

α ≤ aNK+(N−NK)(∆+T )+∆

aNK+(N−NK)∆+∆

≤ 1 + (N−NK)T
aNK+(N−NK)∆+∆ ≤ 2

¤

5.2.5 The case T > ∆

Before presenting our algorithm, we introduce some notation and initial steps.

Data preprocessing

Input: Arrival time intervals for each aircraft, time to hold T .
Output: Reduced constrained set containing the optimum of the optimization program.

(i) Sort the aircraft by earliest possible time of arrival: without loss of generality, we can
write a1 ≤ a2 ≤ · · · ≤ aN−1 ≤ aN .
(ii) Divide the N aircraft into K subsets:
S1 = {N1, · · · , N2 − 1},
S2 = {N2, · · · , N3 − 1}, · · ·
SK = {NK , · · · , N}

where N1 = 1, and Nk is given by Nk = min{p|aNk−1 + (p−Nk−1)(∆ + T ) < ap}.

(iii) Let σk =
{
⋃

l∈Sk{al +∆N + TN}
}

∩ [aNk , aNk + (Nk − Nk−1)(∆ + T )] for each k.

Index the elements ti of Σ =
⋃K
k=1 σk by i∈ {1, · · · , |Σ|} in increasing order.

Step (i) is used for notational convenience. Step (ii) enables us to construct a grid of

polynomial size: it separates aircraft into groups for which we have at least a feasible

solution (which we can construct using the trivial algorithm of Section 5.2.4). In step (iii),

the K groups are gridded (σk) and assembled in a single grid Σ of size O
(
T
∆N

2
)
. The set

⋃

l∈Sk{al+∆N+TN} is the set of earliest arrival times plus an integer number of T (holding

patterns) and/or ∆ (time to process one aircraft). It follows from Proposition 1 that the

optimum schedule lies on this grid (the optimum is sometimes referred to as left shifted).

In the Main algorithm shown above, I(i) represents the set of aircraft for which the arrival

times are less than ∆ time units after ti, and thus not allowed if ti is chosen by an integer

solution of (5.17). G(j) represents the set of i such that ti is available for aircraft j.
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Main Algorithm

1. If a1 < T , call F the set of i such that [ai, bi] ∩ {t|t ≤ T} is not empty. Call
[ai, b

′
i] = [ai, bi]∩{t|t ≤ T}. Schedule the maximum number of aircraft of F according

to the algorithm of Section 5.2.6. If this number is equal to N , stop.

2. Solve the relaxed LP (5.17) for the remaining aircraft. If a1 ≥ T , solve the relaxed
LP (5.17) directly.

Minimize:
∑

j

∑

i∈G(j) tixij
Subject to:

∑

i∈G(j) xij = 1 ∀j∈ {1, · · · , N}
xij ≥ 0 ∀j∈ {1, · · · , N}, ∀i ∈ G(j)
∑

i′∈I(i)
∑

j xi′j ≤ 1 ∀i∈ {1, · · · , |Σ|}
(5.17)

where ∀i∈ {1, · · · , |Σ|}, I(i) = {i′ ≤ |Σ| | ti′ ≥ ti ∧ ti′− ti < ∆}, and ∀j∈ {1, · · · , N},
G(j) = Σ ∩ {[aj , bj ] + TN}.

3. Modify the xij using the procedure xij = TransformLPsol(xij).

4. Compute the integer solution x̃ij = Matching(xij) of the matching problem con-
structed by theMatching procedure. The result is a feasible schedule for the remaining
aircraft.

We call n the number of aircraft scheduled before T by the algorithm of Step 1 of the Main

Algorithm, and m = N − n the number of aircraft scheduled after T . In the rest of this

Chapter, as well as for the proofs, we use the notation of Table 5.1:

Lemma 2. Consider the |F | aircraft of F (Step 1 of the Main Algorithm). Step 1 sched-

ules the largest number of them in
⋃|F |
i=1[ai, b

′
i], with minimum sum of arrival times. The

complexity of Step 1 of the algorithm is O(|F |9).

Lemma 3. The sum of starting times for the m = N − n other aircraft scheduled after

T is bounded above by 5 · OPT(m, last). The complexity of scheduling these m aircraft is

dominated by solving the LP (5.17).

Theorem 4. The Main Algorithm has a 5-approximation ratio for the sum of arrival times.

Its complexity is O(N 9), and is dominated by Step 1 of the Main Algorithm.

Proof of Theorem 4: Let cn be the cost of the n jobs scheduled before T by Step

1. Let cm be the cost of the m jobs scheduled after T by Step 4. By Lemma 2, we have



5.2. AN APPROXIMATION ALGORITHM FOR A PERIODIC MILP 83

C(n) cost of scheduling n jobs before T with Step 1 of the Main Algorithm
(cost means sum of arrival times)

C(LP,m) min. cost of relaxed LP (5.17) for the m jobs
C(IP,m) min. cost of a feasible integer solution to (5.17) for the m jobs
C(x,m) cost of the fractional solution (for the m jobs) xij of (5.17) produced

by Step 3 of the Main algorithm
C(x̃,m) cost of the fractional solution (for the m jobs) x̃ij produced by Step 4

of the Main Algorithm
OPT(m) cost of the m jobs when scheduled by the optimal solution OPT
OPT(n, first) cost of the first n jobs when they are scheduled by OPT
OPT(m, last) cost of the last m jobs when they are scheduled by OPT

Table 5.1: Notation for the main algorithm

cn ≤ OPT(n, first). By Lemma 3, we have cm ≤ 5 ·OPT(m, last). Now combining the two

bounds for cn and cm, we get:

cn + cm ≤ OPT(n, first) + 5 ·OPT(m, last)

≤ 5 ·OPT

The complexity of Step 1 of the algorithm is O(|F |9). The worst case is when |F | = N (all

jobs can be scheduled in F ), therefore the complexity of Step 1 is O(N 9). The complexity of

the other steps is determined by solving the linear program (5.17), so the overall complexity

is O(N9). ¤

5.2.6 Dynamic programming algorithm for step 1 of the main algorithm

We call |F | = f ∈ N. We are given a set of time intervals [ri, di], i ∈ {1, · · · , f}, and

assume that the di have been sorted in chronological order: d1 ≤ d2 ≤ · · · ≤ df . A schedule

{ti}i∈{1,··· ,l} is said to be admissible if for all i in {1, · · · , l}, ti ≥ ri (jobs start after their

release time), ti +∆ ≤ di (jobs are finished before their deadline), and ∀i 6= j, |ti − tj | ≥ ∆

(two jobs cannot be processed simultaneously). For l given (l ≤ f), we want to compute

min
∑l

p=1 tip , the minimum of the sum of starting times of l of the f jobs.

Definition 1.

• We call Θ = {t | ∃i ∈ {1, · · · , f}, ∃l ∈ {0, · · · , f}, such that t = ri + l∆}.
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• We call Uk(s, e) = {Ji | i ≤ k and s ≤ ri < e} the set of jobs of index less than k released

between s and e.

• For a given l, we call Ck(s, e, l) the minimum sum of starting times among the set of

admissible schedules containing l jobs in Uk(s, e), which satisfy

(i) for all i, ti ≥ s+∆ (job i starts after s+∆)

(ii) for all i, ti +∆ ≤ e (job i is processed before e)

(iii) for all i, ti ∈ Θ (starting times are in Θ).

We pose Ck(s, e, l) = +∞ for all l > k.

Proposition 1. (Carlier [49], Baptiste [12]) There exists an optimal schedule such that

ti ∈ Θ for any i scheduled.

The proof of Proposition 1 is an extension of the work of Carlier and Baptiste [49, 12].

Proposition 2. Ck(s, e, l) can be computed recursively by the following formula:

Ck(s, e, l) = Ck−1(s, e, l)

if rk /∈ [s, e) for the kth job Jk, and

Ck(s, e, l) = min







Ck−1(s, e, l),

min (Ck−1(s, s′, l − q) + s′ + Ck−1(s′, e, q − 1))

s′ ∈ Θ

1 ≤ q ≤ l − 1

max(rk, s+∆) ≤ s′ ≤ min(dk, e)−∆

otherwise.

The proof of Proposition 2 can be found in the Appendix.

Proof of Lemma 2: The aircraft scheduling problem can be transformed into a job

scheduling problem by letting ri = ai and di = b′i + ∆, for i ∈ F , as defined in the Main

Algorithm. We call f = |F |. For notational convenience, we can relabel these jobs from 1 to

f . Note that f can range from 1 to N . We can now apply Proposition 2. For all k, s, e, l,

such that
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Figure 5.2: Illustration of the procedure TransformLPsol. This procedure transforms the feasible fractional

solution x = xij of (5.17) into another feasible fractional solution x = xij with idle time. Half of the

fractional xij in the interval [qT, (q + 1)T ) is shifted to [(3q − 2)T, (3q − 1)T ) (shift by (2q − 2)T ), and the

other half to [(3q − 1)T, 3qT ) (shift by (2q − 1)T ). The interval [3qT, (3q + 1)T ) is empty for now; this is a

waste of space, but this enables us to satisfy the constraints of (5.17) for the part of the fractional solution

between i∆Q (i9 on the figure) and iTq+1.

k ≤ f
s ≥ minfi=1 ri −∆

e ≤ maxfi=1 di

l ≤ f

one can compute recursively Ck(s, e, l), and find l0, the largest l such that Cf (minfi=1 ri −
∆,maxfi=1 di, l0) is finite.

k and l range from 1 to f , e and s are on the grid Θ of Proposition 2, thus they are in a set

of size O(f2). The size of the dynamic program table to build is thus O(f 6). In building

the table, we take the minimum over a set of size O(f 3), since it is indexed by s′ ∈ Θ and

q∈ {1, · · · , l − 1}. Thus, the total cost of the algorithm is O(f 9). ¤
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5.2.7 Linear programming based algorithm for steps 2-3-4 of the main

algorithm

This section summarizes steps 2-3-4 of the Main Algorithm. We first solve the relaxed LP

(5.17). This LP is a constrained assignment problem: aircraft j are assigned arrival times

ti; the last constraint means that any integer solution of this problem can only assign one

ti every ∆ (by definition of the interval I(i)). In the relaxed version, it means that the xij

(fractional assignments) sum to at most 1 over a period of length ∆.

Procedure TransformLPsol

Input: fractional solution xij of (5.17).
Output: xij , another feasible fractional solution of (5.17).

Perform the following assignment:

• xij = xi′j where ti = ti′ + (2q − 2)T , if ∃q ≥ 0, ∃l ≥ 0, such that l < b T∆c is even, and
ti′ ∈ [qT + l∆, qT + (l + 1)∆) or such that l = b T∆c is even, and ti = ti′ + (2q − 2)T
for ti′ ∈ [qT + l∆, (q + 1)T ).

• xij = xi′j where ti = ti′ + (2q − 1)T , if ∃q ≥ 0, ∃l ≥ 0, such that l < b T∆c is odd, and
ti′ ∈ [qT + l∆, qT + (l+1)∆) or such that l = b T∆c is odd, and ti = ti′ + (2q− 1)T for
ti′ ∈ [qT + l∆, (q + 1)T ).

The two last items correspond to the last (incomplete) chunk of [qT, (q + 1)T ).

The fractional solution x is transformed to another fractional solution x by the procedure

TransformLPsol (illustrated in Figure 5.2). The fractional solution is decomposed into sets

of ti such that ti ∈ [qT, (q + 1)T ), where q ∈ N. Each of these sets is decomposed into

chunks of length ∆. Figure 5.2 shows one of these intervals (eight chunks of length ∆,

and the last chunk of length less than ∆). The xij in each of these chunks is shifted by

(2q−2)T or (2q−1)T depending on parity, in order to insert idle time of length ∆ between

the corresponding chunks (see arrows in Figure 5.2). Because of the last chunk (interval

{i∆9 , · · · , i∆q+1} in Figure 5.2), it is necessary to insert a period of idle time of length at least

∆ after the highest shifted xij (the black chunk coming from {i∆8 , · · · , i∆9 } in Figure 5.2).

This is done by adding a full interval [3qT, (3q + 1)T ) of idle time after 3qT .∗∗ The result

is another fractional solution x which satisfies (5.17) and has idle time periods of length ∆

∗∗This is not optimal, but enables us to construct x systematically. This might be improved in the future.
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alternating with non idle time periods of length ∆. This means sets in which x̄ij = 0 for ti

ranging in an interval of length ∆ alternate with sets of the same length with nonzero x̄ij .
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Figure 5.3: Illustration of the procedure Matching. This procedure transforms the feasible fractional

solution xij into a weighted matching problem. In the fractional LP solution, only the nonzero xij are

represented (solid if they are in the range of the figure, dashed if they connect aircraft with arrival times

outside the figure). On the right plot, the weights are the arrival times from the fractional LP solution: for

example, Θrj−1 = t27.

The procedure Matching takes the new fractional solution x, and constructs a feasible in-

stance of a weighted assignment problem. An illustration is given in Figure 5.3. Every

chunk {i∆m, · · · , i∆m+1 − 1} with nonzero xij is reduced to a single node indexed by r. Any

aircraft j which has one (or more) nonzero xij with i ∈ {i∆m, · · · , i∆m+1−1} is now linked to r

(Figure 5.3 right). The weight on the corresponding link is the smallest ti with nonzero xij

in {i∆m, · · · , i∆m+1 − 1}. For example in Figure 5.3 right, the weight on the link r → (j − 1)

is t27 because in Figure 5.3 left, node j − 1 was such that x27, x29 and x35 are nonzero.

The corresponding weighted assignment problem is (5.18). A fractional feasible solution

x̃ is obtained from x by adding all xij emanating from the same chunk towards aircraft

j. We know that (5.18) has an integer optimal, which is therefore less or equal to our

fractional feasible solution. We are now able to prove Lemma 3 (notations are defined in

Section 5.2.5).
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Procedure Matching

Input: fractional solution xij of (5.17).
Output: integer solution of a matching problem solving (5.17).

1. Construct the following set of Θqj :

q = 1, r = 1
while ∃ti > qT such that ∃j∈ {1, · · · , N} such that xij 6= 0
i∆1 = iTq , m = 1

while i such that ti = ti∆m +∆ is less than iTq+1

i∆m+1 = i such that ti = ti∆m +∆, r = r + 1

for j = 1 to N
if ∃i ∈ {i∆m, · · · , i∆m+1 − 1} s.t. xij 6= 0

Θrj = min{ti | i∈ {i∆m, · · · , i∆m+1 − 1}, xij 6= 0} end if
end for

end while
for j = 1 to N
if ∃i ∈ {i∆m, · · · , iTq+1 − 1} s.t. xij 6= 0

r = r + 1, Θrj = min{ti | i∈ {i∆m, · · · , iTq+1 − 1}, xij 6= 0} end if
end for
q = q + 1

end while
for all j, call H(j) the set of r for which Θrj has been assigned.

2. Solve for the integral solution x̃ij of the following weighted matching problem:

Minimize:
∑

j

∑

q∈H(j)Θqj x̃qj
Subject to:

∑

q∈H(j) x̃qj = 1 ∀j∈ {1, · · · , N}
0 ≤ x̃qj ≤ 1 ∀j∈ {1, · · · , N}, ∀q ∈ H(j)
∑

j x̃qj ≤ 1 ∀q ∈ ⋃N
j=1H(j)

(5.18)
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Proof of Lemma 3: Let us call cm the cost of the m jobs scheduled after T . For each of

these jobs, we compute an upper bound of the ratio by which the cost is increased by the

procedure TransformLPsol for each nonzero xij . The minimum cost C(IP,m) of scheduling

the m jobs after T is less than the cost of scheduling these m jobs within OPT and shifting

them by T . Therefore:

C(LP,m) ≤ C(IP,m) ≤ OPT(m) +mT

Let us define Bq as the sum of fractional xij in interval [qT, (q + 1)T ):

Bq =
∑

i:qT≤ti<(q+1)T

∑

j

xij .

Let us call r the largest q such that Bq 6= 0. By construction of the LP (5.17), we have

r∑

q=1

Bi = m and
r∑

q=1

Bq · qT ≤ C(LP,m)

Let us define C(Bq) as the cost of the fractional LP solution of (5.17) corresponding to the

interval [qT, (q+1)T ). As shown in Figure 5.2, the amount by which xij is shifted is either

(2q−2)T or (2q−1)T , and therefore the increase in cost of the xij in interval [qT, (q+1)T )

due to the procedure TransformLPsol is at most Bq · (2q− 1)T . Thus, we have the following

upper bound on the cost cm of the m jobs scheduled after T by our algorithm.

C(x,m) ≤ ∑r
q=1 (C(Bq) +Bq · (2q − 1)T )

= C(LP,m) +
∑r

q=1Bq · (2q − 1)T

≤ OPT(m) +mT +
∑r

q=1Bq · (2q − 1)T

= OPT(m) + 2
∑r

q=1 qBqT +mT −∑r
q=1BqT

= OPT(m) + 2
∑r

q=1 qBqT

≤ OPT(m) + 2C(LP,m)

≤ OPT(m) + 2 (OPT(m) +mT )

≤ 3 ·OPT(m) + 2mT

≤ 5 ·OPT(m, last)

cm is the optimal solution of the weighted matching problem (5.18) obtained by the proce-

dure Matching. We know from [2] that there exists at least one integral solution which
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achieves cm, which we can find in polynomial time. For this solution, we thus have

cm ≤ C(x,m) ¤

5.2.8 Modified algorithm for makespan

Theorem 5. The following modification of the Main Algorithm is a 3-approximation algo-

rithm for makespan.

Proof of Theorem 5: If Carlier’s algorithm schedules the N aircraft before T , it follows

from [49] that this schedule provides the optimum makespan. If n < N , Carlier’s algorithm

implies that it is not possible to schedule N aircraft in [0, T ]. Therefore the optimum

makespan C∗max satisfies C∗max > T . Applying Steps 2-3-4 of the algorithm directly provides

a feasible solution Cmax. A similar proof as for Lemma 3 provides the approximation ratio

3 for makespan. ¤

Modified algorithm for makespan

Input: Same as for the Main Algorithm
Output: Arrival schedule, with approximation ratio 3 for makespan.

1) In Step 1, replace the algorithm of Section 5.2.6 by Carlier’s algorithm [49]. If this
algorithm schedules N aircraft, Stop. Else, apply Step 2 directly to the N aircraft.

2) In step 2, given Cmax, let us replace (5.17) with the following feasibility problem:

∑

i∈G(j) xij = 1 ∀j∈ {1, · · · , N}
xij ≥ 0 ∀j∈ {1, · · · , N}, ∀i ∈ G(j)
∑

i′∈I(i)
∑

j xi′j ≤ 1 ∀i∈ {1, · · · , |Σ|}
(5.19)

where ∀i∈ {1, · · · , |Σ|}, I(i) = {i′ ≤ |Σ| | ti′ ≥ ti ∧ ti′ − ti < ∆}, and ∀j∈ {1, · · · , N},
G(j) = Σ ∩ {[aj , bj ] + TN} ∩ [0, Cmax]. If there exists a fractional solution to the set (5.19)
of constraints with corresponding Cmax-dependent G(j), it represents a fractional schedule
of makespan less than Cmax, which provides a lower bound on the makespan of the original
problem. We can compute the smallest possible Cmax solving (5.19) to ε using bisection.
(In fact, we can compute it in O(log |Σ|) bisection steps, since the total number of grid
points is |Σ|.)

3,4) Steps 3 and 4 are identical with those in the Main Algorithm. The complexity of the
algorithm is dominated by the solution of the LPs (5.19) and (5.18).



Chapter 6

An Eulerian model of network

air traffic flow

In Chapter 3, we derived a Lagrangian model of sector-based traffic flow, which relies on

hybrid automata, in order to model the aircraft’s behavior. This model enabled the analysis

of congestion propagation into the system. It also modeled human Air Traffic Controller

actuation on the flow, as a cost function trying to minimize a cost corresponding to a set

of hierarchical priorities of the Air Traffic Controller. In Chapter 4, we used this model to

pose the problem of optimally routing and sequencing aircraft into an arrival airport. This

problem was first posed as a hybrid system controller synthesis problem, and reduced to

a Mixed Integer Linear Program (MILP). Finally, in Chapter 5, we derived combinatorial

optimization algorithms to solve the MILP, with guaranteed bounds on optimality and

speed.

As was explained in Chapters 2 and 3, while the sector Air Traffic Controllers deal mainly

with traffic separation, the Traffic Flow Management (TFM) at the Center level tries to

optimize the flow. At the highest control level (ATCSCC, see Figure 2.1 in Chapter 2), the

control authority is interested in controlling mass balances in the NAS, i.e. controlling the

system at a higher level (multi-Center). At this level of control, the individual trajectories

of the individual aircraft might not be crucial; what is more important is their density (or

concentration) in the system. This entails preventing the density of aircraft from becoming

too large in certain regions of airspace, and operating efficient reroutes when the weather

91
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does not allow traffic to cross a given region of airspace. These tasks are currently not

optimized, not even automated. Rather, they are prescribed by playbooks (as defined in

Chapter 4).

The goal of this Chapter and the next is to derive a model and a mathematical method

to achieve the same effects, in an automated way, and to create an optimization strategy

capable of automatically generating more efficient control strategies for these tasks. At

this level of description of the system, one is interested in deriving “flow patterns”, that is,

coming up with ways to route streams of aircraft by generating the corresponding aircraft

velocities. The individual identity of the aircraft is thus not important, since the objective

of such tasks is to come up with a more efficient use of the airspace, rather than optimizing

local trajectories of aircraft. Ideally, one would like to automatically generate Air Traffic

Control - friendly procedures of the following kind: “all aircraft on airway 148 at 33,000 ft,

fly at 450 kts for the next hour and then accelerate by 25 kts for the next half hour”.

This suggests following an Eulerian approach advocated by Menon et al. [110, 111] and

dividing the airspace into line elements corresponding to portions of airways, on which we

can describe the density of aircraft as a function of time and of the coordinate along the line.

Such an approach focuses on the conservation of aircraft on the line elements. A traditional

way to describe the evolution of the density along these portions of lines is to use a partial

differential equation (PDE), written in conservation law form. This PDE appears naturally

in highway traffic and is called the Lighthill-Whitham-Richards (LWR) PDE [102, 138, 121].

In this work, we will derive a modified version of the LWR PDE specifically applicable to

the Air Traffic Control (ATC) problem of interest.

The primary goal of this chapter is to show that despite the information loss inherent in any

Eulerian model, the aircraft count (which is a crucial ATC metric defined in this chapter)

is predicted accurately. In Chapter 7, our goal is to show that fast numerical analysis

tools can be applied efficiently to this problem for simulations purposes, and that adjoint

based methods advocated by Bewley [35, 52, 36] can be adapted for this real-time network

control problem. The main difference between ours and previous work using LWR models

of air traffic [110, 111] or highway traffic [62, 120, 154] is that we generate an optimization

technique using the continuous PDE directly (instead of its discretization), which enables

the use of fast numerical techniques specifically developed to treat first order hyperbolic
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PDEs with discontinuities in their solutions. Furthermore, the optimization methodology

enables the treatment of constraints in the control and the state.

This Chapter is organized as follows. Since the air traffic flow problem is significantly differ-

ent from the highway problem, we will first rederive the LWR PDE for the case of interest

in Section 6.1 (which shows a modified form of the standard LWR equation), and generalize

it to a network. Then, we determine an analytical solution for the case of time-invariant

velocity control, which, in Chapter 7, will be used for numerical validation purposes. In

Section 6.2, we explain how to identify the numerical values of the parameters for the

airspace of interest, using Enhanced Traffic Management System (ETMS) data. Finally, in

Section 6.3, we validate the model against real data.

6.1 A new Eulerian network model of airspace

6.1.1 A modified LWR model of air traffic

In describing the air traffic system, like the road system, one has to first look at aircraft (or

cars) present in the system and estimate a density of vehicles. Therefore, given a portion

of airspace (airway or sector), one needs to introduce the aircraft count [39] defined as the

number of aircraft in that region. Let us consider a portion airway of length L, described

by a coordinate x ∈ [0, L]. The number of aircraft in the segment [0, x] at time t is called

n(x, t). Thus, n(L, t) represents the aircraft count on the portion of airway [0, L]. Assuming

a static mean velocity profile v defined on [0, L], v(x) > 0 represents the mean velocity of

aircraft at location x, and the motion of an aircraft is described by the dynamical system

ẋ = v(x).

Introducing K(x) =
∫ x

0
ds
v(s) , it is fairly easy to see that if an aircraft were at location x0 at

time t0, it would be at x at time t = t0 + K(x) − K(x0). Because of the sign of v, K is

invertible, and therefore x0 is related to x, t and t0 by x0 = K−1(K(x)− (t− t0)).

Consider a point x and x + h > x. The number of aircraft between x and x + h at t

can be related to the number of aircraft at t0 at locations x0 = K−1(K(x) − (t − t0))

and xh = K−1(K(x + h) − (t − t0)) (conservation of aircraft): n(x + h, t) − n(x, t) =
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n(K−1(K(x + h) − (t − t0)), t0) − n(K−1(K(x) − (t − t0)), t0). In other words, assuming

that there is no inflow at 0,

n(x, t) = n(K−1(K(x)− (t− t0)), t0)

Some simple algebra (two successive applications of the chain rule) shows that the space

derivative and the time derivative of n are related by:

∂n(x, t)

∂t
+ v(x)

∂n(x, t)

∂x
= 0

We recognize this as a first order linear hyperbolic PDE, and can now enunciate the following

proposition:

Proposition 3. Let v(·) : [0, L] → R+ be a PC1([0, L]) function (i.e. piecewise differen-

tiable) with a finite number of discontinuities at {xk}k∈{0,··· ,K} on [0, L] such that ∃m > 0,

m ≤ v(x) for all x ∈ [0, l]. Let qin ∈ C0([0, T ]) and n0 ∈ C0([0, L]). Then the following

PDE 





∂n(x,t)
∂t

+ v(x)∂n(x,t)
∂x

= qin(t) in [0, L]× (0, T ]

n(x, 0) = n0(x) in [0, L]× {0}
n(0, t) = 0 in {0} × (0, T ]

(6.1)

admits a unique continuous (weak) solution, given by:

n(x, t) = n0
(
K−1(K(x)− t

)
) +

∫ t

0 q
in(u)du if t ≤

∫ x

0
du
v(u)

n(x, t) =
∫ t

t−K(x)+K(0) q
in(u)du if t ≥

∫ x

0
du
v(u)

(6.2)

where K(x) =
∫ x

0
du
v(u) , and K

−1 is its inverse.

Proof — Existence: K is well defined because v(x) ≥ m for all x ∈ [0, l]. Its inverse

exists because K is (strictly) increasing. It is easy to check that (6.2) satisfies (6.1) almost

everywhere, and that it is continuous. This solution has been constructed using a technique

analogous to the algorithm of [26] (also shown in Chapter 8, based on the method of

characteristics).

Uniqueness: Let us call n1 and n2 two continuous weak solutions of (6.1). Call δ := n1−n2.
δ satisfies: ∂δ

∂t
+ v(x) ∂δ

∂x
= 0 a.e. in [0, L] × (0, T ], δ(x, 0) = n0(x) in [0, L] × {0} and
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δ(0, t) = 0 in {0} × (0, T ]. Multiplying this PDE by δ and integrating from x0 = 0 to the

first discontinuity x1 of v(·) gives:
∫ x1

x0

δ(u, t)
∂δ

∂t
(u, t)du+

∫ x1

x0

v(u)δ(u, t)
∂δ

∂x
(u, t)du = 0

from which we deduce

1

2

d

dt

∫ x1

x0

δ(u, t)2du+

∫ x1

x0

v(u)δ(u, t)
∂δ

∂x
(u, t)du = 0

Integrating by parts gives

1

2

d

dt

∫ x1

x0

δ(u, t)2du ≤
∫ x1

x0

v′(u)
1

2
δ(u, t)2du−

[

v(u)
1

2
δ(u, t)2

]x1

x0

≤
∫ x1

x0

v′(u)
1

2
δ(u, t)2du

since δ(x0, t) = 0 and v(x1) > 0. Using the fact that v(·) ∈ C1([x0, x1]), ∃M > 0, |v′(x)| ≤
M for all x ∈ [x0, x1], from which we deduce

∫ x1

x0

v′(u)
1

2
δ(u, t)2du ≤M

∫ x1

x0

1

2
δ(u, t)2du

we can write
1

2

d

dt

∫ x1

x0

δ(u, t)2du ≤M
∫ x1

x0

1

2
δ(u, t)2du

Using Gronwall’s lemma, this implies δ(x, t) = 0 almost everywhere in [x0, x1]. By continu-

ity, n1(x, t) = n2(x, t) everywhere in [x0, x1], and therefore at x1. The same proof applies to

[x1, x2] since n1(x1, t) = n2(x1, t) for all t. By induction on xk, they are equal everywhere

in [x0, xk] and therefore in [0, L]. ¤

In equation (6.1), qin represents the inflow at the entrance of the link (i.e. at x = 0). In

highway traffic flow analysis, n is sometimes referred to as cumulative flow. It can be related

to the vehicle density through the integral relation

n(x, t) =

∫ x

0
ρ(u, t)du (6.3)

where ρ(x, t) is the vehicle density. It can be checked that the vehicle density satisfies the
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following PDE: 





∂ρ(x,t)
∂t

+ ∂
∂x

(ρ(x, t)v(x)) = 0

ρ(0, t)v(0) = qin(t)

ρ(x, 0) = ρ0(x)

(6.4)

Equation (6.4) can be related to equation (6.1) by a simple integration of ρ along [0, x].

Equation (6.4) is a mass conservation equation, written in conservation law form. This

equation is very closely related to the original LWR PDE [102, 138, 121].

The LWR PDE, originally developed for highways, in fact reads ∂ρ(x,t)
∂t

+ ∂
∂x

(q(ρ(x, t))) = 0,

where q(·) is a flux function depending on ρ, which relates the car density on the highway to

the flux. In practice, q(·) is empirically determined, and several models of q(·) are currently
used [5, 62, 55]. Computation of the numerical value of the parameters associated with

these flux functions is a difficult task, which can for example be achieved with Kalman

filtering techniques [154]. In the present case, the flux function q(·) is replaced by a mean

velocity v(·) multiplied by the density. In the next chapter, v(x) will also depend on t and

will be the control input of the system.

It is also possible to rewrite the first equation in (6.4) as

∂(ρ(x, t)v(x))

∂t
+ v(x)

∂

∂x
(ρ(x, t)v(x)) = 0

which provides the following corollary:

Corollary 2. The corresponding solution for ρ is given by:

ρ(x, t) =







ρ(K−1(K(x)− t), 0) v(K−1(K(x)−t))
v(x) if t ≤ K(x)

qin(t−K(x))
v(x) otherwise

(6.5)

Note that a more convenient way to write the solution for t ≤ K(x) is ρ(x, t) =

ρ(x0(x, t), 0)
v(x0)
v(x) where x0 = K−1(K(x) − t) is the origin of the characteristic curve of

the system in the (x, t) plane, going through x at t.

The interpretation of the corollary is the following: the quantity ρv is conserved along the

characteristic curves t− t0 = K(x)−K(x0).
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At this stage, ρ is defined by ρ = ∂n
∂x

and satisfies (6.4). However, unlike for highway traffic,

the density ρ might not be the best way to characterize the flow situation at a given time:

if the number of aircraft in the system is small, ρ will be a set of spikes, which is intractable

numerically. Therefore, a more tractable quantity to work with would be δn
δx
, where δn

represents the number of aircraft contained in a finite interval of length δx. This quantity

does not a priori satisfy the PDE (6.4).

It is meaningful to introduce an additional “density-like” quantity called r, which satisfies

the PDE and for which we can suggest a physical interpretation.

r(x, t) =
1

2trefv(x)
[n(K−1(K(x)− (t− tref)))− n(K−1(K(x)− (t+ tref)))] (6.6)

where tref is a reference time. r(x, t)v(x) represents the number of aircraft included into

a window of 2tref time units of location x and can be referred as “time density”. This

way of accounting for density is meaningful for Air Traffic Control, since it incorporates a

time scale tref into the density computation and thus provides access to the time separation

between aircraft. It is easy to show that r itself satisfies the same PDE as ρ for any value

of tref:
∂r(x, t)

∂t
+
∂(r(x, t)v(x))

∂x
= 0

One can also show that in the limit tref → 0, r and ρ are the same:

lim
tref→0

[
n(K−1(K(x)− (t− tref)))− n(K−1(K(x)− (t+ tref)))

2trefv(x)

]

= lim
tref→0

n(x,−tref)− n(x, tref)
2trefv(x)

=
1

v(x)

(

−∂n(x, t)
∂t

)

=
1

v(x)
v(x)

∂n(x, t)

∂x

= ρ(x)

At this stage, we have three quantities: ρ, δn
δx

and r. The meaning of ρ as we know it in

fluid mechanics assumes a large number of particles (i.e. aircraft) per unit volume. The

threshold number is sometimes defined by the Knüdsen number. In the present case, the

number of aircraft we consider will almost certainly be below this number, meaning that

the fluid approximation is questionable. This means that instead of using ρ = ∂n
∂x

, we will
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Figure 6.1: Tracks of flights incoming into the Chicago ORD airport from the east coast and Canada. The

upper stream comes from Canada, the lower respectively from New York and Boston. Additional streams

merge into the network (Detroit and Hartford Bradley). The data comes from ETMS. A diagram of the

network is shown in Figure 6.2.

use ρ ∼ δn
δx

in the PDE: we will justify this approximation with appropriate validations. In

particular, we will have to make a choice of a numerical parameter called Lref := δx/2. This

will be done in Section 6.2. We then will validate the model against real data to show its

accuracy and predictive capabilities (Section 6.3).

6.1.2 Network model

The model of the previous section describes traffic on a single portion of airway or line

element. As was done earlier for highways [63], this model can be generalized to airway

networks, i.e. sets of interconnected airways. Figure 6.1 shows aircraft tracks for inbound

traffic into Chicago (ORD) from the east coast.

We now derive a framework to describe unidirectional air traffic in a network such as the

network shown in Figure 6.1. We describe the topology of the network by a unidirectional

graph (E, V ), in which E is the set of edges or links, and V the set of vertices. For

simplicity of notation, we will index the links by i∈ {1, · · · , N}, rather than by the indices

of the two corresponding vertices. For all i∈ {1, · · · , N}, we call U(i) the set of upstream

links merging into link i, and M the set of links for which the upstream links are only
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Figure 6.2: Network model for the tracks shown in Figure 6.1 with waypoints labeled. The model includes

five links, merging into Chicago (ORD). The corresponding inflow terms correspond to a single airport as

in Boston (Boston BOS) or Detroit (DTW), or to a set of airports, as in New York (Newark EWR, John F.

Kennedy JFK, La Guardia LGA).

merging. The number of links merging into a single link is not limited; it is possible to have

|U(i)| > 2.

If there is a divergence at the end of a link i, we assume for simplicity that there are only two

emanating links from the corresponding vertex. We index by il and ir the two emanating

links (left and right), and call βi the portion of the flow going from i to il, and 1 − βi the
proportion of the flow going from i to ir. We call D the set of links with a divergence at

the end of it. The βi are not known a priori and have to be determined. These coefficients

might depend on t as well, and therefore a dependence βi(t) is included in the model.

We call S the set of sources in the network, and T a sink of the network, at which we

might want to perform optimization. We index all variables of the previous section by i:

the aircraft density on link i is ρi, the coordinate is xi, the main velocity profile is vi, etc.

Note that we are NOT using Einstein’s notation. The notation is summarized in Table 6.1.

The governing PDE system thus reads:
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N number of links
S set of source links
M set of links into which other links merge
D set of links ending in a fork
U(i) set of links merging into link i (if i ∈M)
il, ir indices of the two links of a fork if link i ∈ D
Li length of link i
xi arclength on link i: xi ∈ [0, Li]
ρi(xi, t) aircraft density on link i
ρ◦i (xi) initial aircraft density on link i
vi(xi) nominal velocity profile on link i: vi(·) : [0, Li]→ R+

qini (t) inflow at xi = 0 for link i (if applicable)
βi(t) portion of ρi which flows into link il (if applicable)

Table 6.1: Notation for the network problem.







∂ρi(xi,t)
∂t

+ ∂
∂xi

(ρi(xi, t)vi(xi)) = 0 ∀i∈ {1, · · · , N}
ρi(x, 0) = ρ◦i (x) ∀i∈ {1, · · · , N}
ρi(0, t)vi(0, t) =

∑

j∈U(i)
ρj(Lj , t)vj(Lj , t) + qini (t) ∀i ∈M

{

ρil(0, t)vil(0, t) = βi(t) ρi(Li, t)vi(Li, t)

ρir(0, t)vir(0, t) = (1− βi(t))ρi(Li, t)vi(Li, t)
∀i ∈ D

ρi(0, t)vi(0, t) = qini (t) ∀i ∈ S

(6.7)

In the previous system, the PDE (first equation) describes the evolution of ρi on each link.

The second equation is the initial condition (i.e. the initial density of aircraft on each link).

The third equation expresses the conservation of aircraft at the merging points. The fourth

and fifth equation express the conservation of aircraft at the divergence points. The last

equation expresses the boundary conditions (inflow at the sources of the network). The sinks

of the system are free boundary conditions, and therefore do not appear in the previous

system.

For the example of Figures 6.1 and 6.2, N = 5, the source links are S = {1, 2}, the merging

points are U(5) = {4}, U(4) = {1, 3}, U(3) = {2}, the sink is at the end of link 5, each link

has an inflow term qini . For the link 1, three airports are grouped into a single cumulative

inflow qin1 (airports LGA, JFK, EWR). For this particular example, there is no diverging
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point: D = ∅. Diverging points will be added in the presence of control strategies, for which

some of the flows have to be split among two airways (see next chapter).

Assuming one can solve (6.7), it is possible to use the solution to compute (and optimize)

certain metrics useful for ATC. For example, one quantity of interest is aircraft count,

which is the number of aircraft in a given sector. If all links of a given sector are indexed

by i ∈ Sec, the aircraft count of the sector is obtained by
∑

i∈Sec
∫ Li
0 ρi(xi, t)dxi.

6.2 Application to air traffic flow

In this section, we first explain how to identify the mean velocity profiles from real Air traffic

data. We then explain how to choose the numerical value of parameters of the model. In

the next section, these choices will be validated against real data.

6.2.1 System identification: main velocity profiles

We first explain how we identify the mean velocity profiles vi(xi) on each link. We use

Enhanced Traffic Management System (ETMS) data, which we can obtain at NASA Ames.

ETMS database contains all flight plan information for flights in the National Airspace

System (NAS). Data are collected from the entire population of flights in the NAS with

filed flight plans. ETMS data is sent from the Volpe National Transportation System

Center (VNTSC) to registered participants via the Aircraft Situation Display to Industry

(ASDI) electronic file server. The Federal Aviation Administration (FAA) uses these data

to monitor the effectiveness of its National Route Program, in which the user community is

offered flexible, cost-effective routing options as an alternative to published ATC preferred

routes.

From ETMS data, we can obtain useful flight information at a 1 minute rate: position of

each aircraft in the NAS, altitude, velocity, flight plan (i.e. set of airways and waypoints).

From this data, we are able to identify the routes in which traffic is concentrated. Note that

in recent work, Menon et al. [110, 111] focused on creating a tool which performs similar

tasks automatically at a NAS-wide level, using FACET [39], a tool developed by NASA
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Figure 6.3: Example of velocity profile used for the junction New-York (LGA) to Chicago (ORD). The

horizontal coordinate is the distance from the destination Airport (ORD) in nautical miles. The correspond-

ing links are shown as well as the location of the airspace fixes between the links. The vertical coordinate is

the velocity tracks (knots) from the ETMS data set. The curve is a piecewise affine fit obtained using least

squares. Each of the tracks corresponds to one aircraft at a given time at a given location, over a period of

24 hours. The total number of aircraft used for this plot is 42.

Ames. The details of this tool are not available to us, and we developed our own method

to identify the main links used by aircraft in the NAS.

We analyze 24 hours of ETMS data and select all aircraft using the links of the network

shown in Figures 6.1 and 6.2. We identify all aircraft which use each of the links, and

record all tracks and corresponding speeds between takeoff and landing. For each of the

links shown in Figure 6.1, we identify the mean velocity profiles as piecewise affine function,

using a least squares fit. The total number of aircraft used is 220. The result for the flight

New York – Chicago is displayed in Figure 6.3 and Table 6.2. As can be seen, once the en

route altitude is reached, the curve fits are almost flat, which means that the aircraft are

en route at a high altitude cruise speed.

It can also be seen from Figure 6.3 that the data is relatively broadly spread (standard

deviation 19.6 kts). This suggests deriving more precise models, which are multilayer:

dividing the link in sublayers corresponding to altitudes has the benefit of being more

precise, as aircraft tend to have a Mach number – and therefore speed which is a function

of altitude. This will be considered for future work.
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Link Li range (nm) vi(xi) (kts)

1 470.6 [0, 40] 289.7 + 2.4x1
[40, 145] 385.7 + 0.53(x1 − 40)
[145, 470.6] 441.3 + 0.046(x1 − 145)

2 137.7 [0, 30] 320.7 + 0.51x2
[30, 90] 344.2 + 1.62(x2 − 30)
[90, 137.7] 441.38 + 0.045(x2 − 90)

3 417.1 [0, 417.1] 443.5 + 0.006x3
4 112.8 [0, 112.8] 445.8 + 0.2x4
5 98.9 [0, 85] 468.3− 1.8x5

[85, 98.9] 315.3− 3.6(x5 − 85)

Table 6.2: Velocity profiles and characteristics along the links of the network shown in Figure 6.1.

6.2.2 Identification of the initial and boundary conditions

Once the mean velocity profiles are computed, we identify the initial density of aircraft and

the inflow (boundary conditions) in the network.

The initial position of the aircraft is easy to extract from the ETMS data: at the prescribed

time, all airborne aircraft which are on the relevant links are selected.

• For any selected aircraft a at location xai on link i, the classical density ρi(xi, 0) =

ρ◦i (xi) is taken to be a “box” around xai , of length 2Lref. Calling χI the character-

istic function of an interval I (i.e. equal to 0 outside of I and 1 inside), ρi(xi, 0) is
1

2Lref
χ[xai−Lref,xai+Lref](xi). Taking all aircraft initially airborne on link i, the density

is:

ρ◦i (xi) =
∑

a in link i

1

2Lref
χ[xai−Lref,xai+Lref](xi)

• Similarly, the density-like function r is computed using the knowledge of the mean

velocity profile along link i, called vi(xi), and the parameter tref:

r◦i (xi) =
∑

a in link i

1

2trefvi(x
a
i )
χ[xai−trefvi(xai ),xai+trefvi(xai )](xi)

The inflows (boundary conditions) can also be extracted from ETMS data: each time an

aircraft takes off, it will appear in the ETMS data as soon as it is airborne. The ETMS
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data also shows the filed flight plan, which we select when it intends to use the links of

interest to us. qin(t) is computed the following way. At any instant when the data shows a

new aircraft on one of the source links S, the track is in general passed the entrance point

of that link (because of the sampling rate of 3 minutes). Calling xai the position of this

aircraft on link i at the first time it appears, we compute the time ta at which it crossed

the location xi = 0 (using the knowledge of the mean velocity profile on the link). We then

use one of the two definitions above to compute qin(t) corresponding to either ρ or r.

In this chapter, there is no diverging link, therefore there is no need to identify the βi. In

Chapter 7, the βi will be a control parameter, which we will have to determine. Note that

for networks with diverging links, determining the βi(t) is a very difficult task, as it depends

on the final destination of the aircraft, and therefore cannot be modeled in a totally Eulerian

framework. This difficulty was already pointed out by Menon [110, 111] and is also known

for highway traffic [63]. For control problems, since βi is a control parameter, this difficulty

partially disappears, since we have the freedom to change it to achieve the desired effects,

while maintaining the proper outflow at the sink(s).

6.2.3 Identifying the numerical parameters

As explained in Section 6.2.2, we have two ways of describing the density of aircraft in the

network, in terms of a density function ρ and a “density-like” function r, which respectively

account for spatial and temporal distribution of aircraft. The function ρ depends on the

numerical parameter Lref, which we need to adjust. The value of this parameter is crucial

for predicting aircraft count: Figure 6.4 shows how errors can occur in translating density

functions into aircraft count. We want to determine the choice of parameters leading to the

smallest error in aircraft count prediction.

We first run the following set of experiments. For the link New York – Chicago, we run

a set of simulations involving Naircraft aircraft, where Naircraft successively takes all values

between 1 and 50. We vary Lref between 0 and 120 nm. For each value of Naircraft and Lref,

we run 400 experiments. Each experiment corresponds to a uniformly distributed random

density of Naircraft aircraft along link 1 in [0, 400] (see Figure 6.2). The simulation starts at a

time t0 with the density ρ◦i computed as in the previous section, and computes the solution

of the LWR PDE until the time t0+∆T . For the experiments, ∆T was chosen equal to one
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Figure 6.4: Different predictions obtained by the use of ρ and r for aircraft density. Above: density

propagation through the PDE system (6.7); below: position update form ETMS data and from the result

of the PDE.

hour (note that the duration of the total flight is on the order of two and a half hours). This

solution is compared with the solution obtained by propagating the Lagrangian trajectories

of each of the aircraft independently from t0 to t0+∆T and computing the resulting density.

In mathematical terms, we compare the two following quantities

• ρi(·, t0 +∆T ) computed by the LWR PDE (6.7)

• ρ̃i(·, t0 + ∆T ) :=
∑

a in link i
1

2Lref
χ[xai (t0+∆T )−Lref,xai (t0+∆T )+Lref](·) where xai (t0 + ∆T )

is the position of aircraft a at time t0 +∆T .

In order to characterize the best choice of numerical parameters, we compute the following

two quantities:

• The relative density error, defined by

∑

i=1,4,5

∫ Li
0 |ρi(xi, t0 +∆T )− ρ̃i(xi, t0 +∆T )| dxi

∑

i=1,4,5

∫ Li
0 ρi(xi, t0 +∆T )dxi

This quantity represents the error in density prediction due to the propagation of ρ

by the PDE.

• The absolute aircraft count error, defined by

∑

i=1,4,5

∑

sublinks of i

∣
∣
∣
∣

∫ Li

0
ρi(xi, t0 +∆T )dxi − ](a|a ∈ link i)

∣
∣
∣
∣
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where ] means number. This quantity is the sum of count error for all sublinks of

links 1,4, and 5. Typically, a link is divided into sublinks which correspond to different

airspace sectors. For example, if link 1 goes through 8 sectors, we divide it in 8 sublinks

and are interested in the aircraft counts on these sublinks. This error thus estimates

the difference between the number of aircraft predicted by the PDE and the number

obtained by a Lagrangian propagation of aircraft, where the error is the sum of all

errors on the sublinks.
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Figure 6.5: Left: Illustration of the computation of the relative density error depicted in Figure 6.6. The

difference between the two density curves (shaded area) is divided by the area below the ρi curve. Right:

Illustration of the computation of the error in aircraft count. The link is divided into sublinks (which can

correspond to sectors). For each of these sublinks, we compare the number of aircraft predicted by the

method (depicted by arrows, which are computed from the density) with the number of aircraft obtained by

a Lagrangian propagation of the trajectories. The error is the sum of errors for all sublinks, i.e. the sum of

the errors in sector counts.

The computation of both quantities is illustrated in Figure 6.5. The relative density error

and absolute aircraft count error are averaged (over the 400 runs) and plotted for the range

of n and Lref considered. The result is shown in Figure 6.6. The left plot shows the relative

density error. As expected, the error decreases when the number of aircraft increases and

Lref increases (typically in fluid mechanics, the Knüdsen number defines the number of

particles per volume above which the fluid approximation becomes valid). The right plot

shows the absolute aircraft count error, averaged over 400 simulations. For this plot, each

of the links 1, 4 and 5 have been divided in sublinks (20 total), of about 50 nm length.

This is a worst case scenario, i.e. the number of relevant sectors for a flight of this length is

never higher. One can see that for Lref ≤ 60 and Naircraft ≥ 25, the average aircraft count

error is always extremely small.

The best choice for Lref is thus obtained at the intersection of the lowest level sets of both

plots of Figure 6.6, i.e. for a range of Lref ∈ [20, 60] and Naircraft ≥ 20.
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Figure 6.6: Left: Relative density error between the density predicted by the Eulerian PDE propagation

of the density. Right: Absolute aircraft count error for the junction New York – Chicago.

6.3 Validation of the model

In the previous section, we have shown that the use of the modified LWR PDE either with

r (with any tref) or ρ ∼ δn
δx

(with an appropriate choice of Lref) enables accurate aircraft

count predictions. In this section, we validate the model against real data: in particular,

we had made the assumption that vi(xi, t) = vi(xi). As we know, this will not be the case

in general. Therefore we run simulations and assess if the model is still in agreement with

real data over two separate experiments.

Static validation

In the first experiment, we use the static velocity profiles vi(·) determined in the previous

sections for the validation of the method. We use a 6 hour ETMS data set. From this data

set, we extract the position of the aircraft, at the initial time, construct the corresponding

initial aircraft density, and propagate it through the PDE system. At any given time, we

compare the aircraft count predicted by our method and the aircraft count provided by the

ETMS data (which is exact, since it provides the position of each aircraft). We compute

the error in aircraft count for a set of ten sublinks for the network shown in Figure 6.2.

The result is shown in Figure 6.7 (left). The window width Lref was taken equal to 15 nm.

One can see on the left plot that the total error (for all airborne aircraft in this airspace)

is relatively low (the maximal error is 7 aircraft). In fact, the results are much better than
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Figure 6.7: Left: Error in aircraft count for the static validation over a five hour period. Right: Error

in aircraft count for the dynamic validation over a five hour period.

they seem: most of the errors come from the fact that the aircraft distribution is such that

there is always at least one or two aircraft close to a sublink boundary, which will thus be

counted in the wrong sublink. In fact, this is not really a problem, as it is more an artifact of

the computation rather than a true error (Figure 6.8 shows that the density unambiguously

shows where the aircraft is). Furthermore, some of the errors in aircraft count are due to

errors present in the ETMS data (some have clearly erroneous data; this fact has also been

reported in [53]).

Dynamic validation

We extend the validation to a case in which the velocity profiles are time dependent, i.e.

vi(xi, t). The details of the identification of these profiles are technical and are not explained

here. The comparison is the same as in the static case. Note that our analytical solution

does not handle dynamic velocities. This difficulty is alleviated by using a numerical scheme

presented in Chapter 7. The results are shown in Figure 6.7 and are more accurate than the

static results, as expected. The same remarks apply, and the results are again affected by

the quality of ETMS data and the inclusion of the computation artifact. The only weakness

of this validation is that the simulation is run using data from the same day as the data

used in identification. A way to improve this would be to perform the velocity identification

with data of a given day over a 24 hour period, and validate it over the next 24 hour period,

using the fact that there is periodicity in the traffic for normal days [84]. This was not
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done here due to lack of available data. An animation (.avi movie file) corresponding to the

snapshots of Figure 6.7 is available at [157].

In both cases, the validation is very encouraging and shows strong predictive capability

for our model. The model was also tested successfully using data from the western states

(Oakland Center with traffic incoming into Bay Area airports), though for brevity these

results are not included here. Finally, in Chapter 7, we will use the model for control:

in that case, one of the control variables is speed, which means that we will have direct

access to vi(xi, t) (since we compute it). This alleviates difficulties of mean velocity profile

identification shown before.

Figure 6.8: Display of the traffic situation for the static validation. The density of the links is depicted

by the color. The colored rectangles shown in this plot represent the density. The colorscale is: white for

zero density; black for highest density. The actual aircraft positions are superimposed (triangles). Traffic is

shown at t0 (top left), t0 + 8min (top right), t0 + 16min (middle left), etc. As can be seen, the peaks of

density corresponds to the actual positions of the aircraft.
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6.4 Concluding modeling remarks

In this Chapter, we have derived an Eulerian model of the airspace based on a modified

LWR partial differential equation. The network structure of the airspace was modeled as

a set of coupled LWR PDEs. Given initial positions of aircraft and airports inflows, this

system of PDEs enables the prediction of the aircraft density at further times. An analytical

solution was derived for a single link in the case in which the mean velocity profiles of aircraft

along airways do not vary with time (just with space). It can be used for multiple links

as well. ETMS data was used to identify the numerical parameters associated with this

model. The data is also used to validate the model, i.e. to demonstrate good predictive

capability of this method. Future work might incorporate a recently developed tool [111],

which automatically identifies network links and the corresponding velocity profiles.

Note that in addition to the ATC system presented in this chapter and [110, 22, 21], nu-

merous physical systems are best modeled by PDEs, which in turns make their control

challenging, as PDE control is still an unexplored field. The highway system may be mod-

eled by the LWR PDE, which inspired the ATC work [102, 138, 121]. The governing PDE is

a first order hyperbolic conservation law (in fact very similar to Burger’s equation), which

makes the concept of entropy solution directly applicable [70] to solution selection. An

analogous problem to the ATC problem shown here, or the highway network problem, is

the irrigation channel problem, which is also a network problem [108, 104] governed by a

conservation law with diffusive term (Saint-Venant equation). Several other similar PDE

driven systems are available in [132], with corresponding control strategies (telegraphist

equation, Burgers equation, wave equation). In general, as soon as one expands to more

complicated PDEs or systems of PDEs, the application fields become more numerous, with

several examples in fluid flow control [35, 79], biology [4, 95], process engineering [40, 132]

thermal manufacturing [66], solid mechanics [156].

In the next chapter, we will show how efficient numerical schemes can be used to perform

numerical simulations of the system of LWR PDEs, even in the case in which the velocity

profiles are time dependent. Finally, we will show that adjoint-based techniques enable

the control of this model, through velocity and routing assignments. The outputs of this

technique could thus be used by Air Traffic Controllers as high level policies for speed

assignments and routing in congested airspace.



Chapter 7

Adjoint-based constrained control

of Eulerian networks

In Chapter 6, we have described how to model the National Airspace System (NAS) using

an Eulerian framework, inspired by the work of Menon et al. [110, 111]. The result of

this chapter was a model of airspace as a network of interconnected links, on which the

aircraft density is governed by a set of first order hyperbolic partial differential equations

(PDEs), coupled through boundary conditions. Despite the inherent questions regarding

the continuous approximation of aircraft density, which we addressed, we validated this

model and showed that it predicts accurate aircraft counts.

In this chapter, we first show how to apply standard numerical analysis tools to perform

accurate numerical simulations of this system of PDEs, when we do not have explicit ana-

lytical solutions available to us (which is the case in general). The major difficulty which

we will show is that the solutions we construct are by essence discontinuous and have kinks,

a very undesirable property for numerical solutions of PDEs. We also show that the use

of linear numerical schemes to approximate the solution of the PDE perform very poorly,

which unfortunately precludes the use of standard linear optimization programs to control

the system.

We therefore have to rely on flow control techniques [87, 88, 89, 92, 99, 35, 52, 36], which are

directly applicable to PDE-driven systems. We use an adjoint-based method, which enables

111
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us to compute the gradient of a cost function algebraically using the adjoint problem. We

have to adapt the adjoint method to the case in which the system is described by a set of

PDEs coupled through the boundary conditions, in presence of constraints. Unfortunately,

this is a nonlinear control problem which does not provide proofs of convergence to a global

optimal. However, this method, as well as other flow control approaches [11, 1], has been

shown to work extremely well in practice in fluid mechanics. In addition, the dimension of

our PDE is one, enabling online implementations, as solving a set of one dimensional PDEs

may be done extremely quickly.

Controlling transportation networks in general is extremely challenging and numerically

difficult [63, 120, 80]. In the present case, the control consists in speed assignments and

routing policies (i.e. determining optimal routes for the aircraft). As shown in the previous

chapter, we use an Eulerian framework for this problem, despite the known difficulties

inherent to PDE control [87, 88, 89, 92, 99, 35, 11, 1]. However, there are a few benefits of

the above outlined approach over Lagrangian methods, which incorporate all trajectories of

all aircraft:

• Most of the Lagrangian methods will end up posing a control problem as an integer op-

timization program. Integer optimization programs are in general intractable because

they are NP-complete [34], and therefore do not provide guarantees of convergence to

a global optimum. In addition, the solution provided by these methods often takes

advantage of actuating single aircraft individually [33], which precludes the derivation

of global policies, which we are interested in for this chapter. Finally, this frame-

work scales very well with the number of aircraft (the higher the number of aircraft

is the better the more accurate the model becomes, without further computational

complexity).

• The method presented below is very general and can be very easily adapted to specific

classes of controllers, which are “Air Traffic Controller friendly”, i.e. it is possible to

use this method to derive a control law in a required format, which is compatible with

aircraft capabilities.

• This method can be applied to highway traffic with minor modifications [23] and,

we believe, can be extended to other problems such as networks of irrigation chan-

nels [104].
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This chapter is organized as follows. In Section 7.1, we show the relative benefits of several

numerical schemes, and run tests against an analytical solution derived previously. We

select the Jameson-Schmidt-Turkel (JST) scheme for the rest of this study. In Section 7.2,

we derive the adjoint system to our problem, and show how to use it to determine the

required velocity profiles along the links as well as the routing policy to apply in order to

control the system. Finally, in Section 7.3, we show how to apply this method to a busy

portion of airspace: the area enclosed by Chicago, New-York, Boston and the east coast of

Canada.

7.1 Numerical solutions

The Eulerian PDE model which we presented before (equation (6.7)) is summarized as

follows.







Ni(ρi) := ∂ρi(xi,t)
∂t

+ ∂
∂xi

(ρi(xi, t)vi(xi, t)) = 0 ∀i∈ {1, · · · , N}
ρi(x, 0) = ρ◦i (x) ∀i∈ {1, · · · , N}
ρi(0, t)vi(0, t) =

∑

j∈U(i)
ρj(Lj , t)vj(Lj , t) ∀i ∈M

{

ρil(0, t)vil(0, t) = βi ρi(Li, t)vi(Li, t)

ρir(0, t)vir(0, t) = (1− βi)ρi(Li, t)vi(Li, t)
∀i ∈ D

ρi(0, t)vi(0, t) = qini (t) ∀i ∈ S

(7.1)

where notations are summarized in Table 6.1. Please refer to the previous chapter for more

precision about the different variables used. In (6.7), Ni(·) represents the LWR operator.

7.1.1 Numerical schemes

Even for a single link i, it is in general not possible to solve the system (6.7) analytically

(by hand). In the previous chapter, we show an analytical solution based on the method of

characteristics presented in [26] and Chapter 8, which works in the case in which vi(xi, t) =

vi(xi), i.e. the nominal velocity does not depend on time. When the velocity depends on

time, numerical integration is needed. We can benefit from numerous numerical schemes to

do that, which we now summarize.
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The solutions of the LWR PDE in the system (6.7) have very undesirable properties for

numerical integrations: they are by construction discontinuous (see the construction of ρi

in Chapter 6); they can develop kinks if the velocity profiles are discontinuous. Ad hoc

numerical schemes of the original LWR PDE have been the focus of recent research [64]

in order to address similar difficulties encountered in the original LWR PDE; they have

proved extremely efficient in the case of highway traffic. We have chosen to use three

different schemes to compare their respective benefits.

• The well known Lax-Friedrichs scheme [82], for which the update is simply given at

every time step by

ρn+1
k =

1

2
[ρnk+1 + ρnk−1]−

1

2∆x
∆T [v(xk+1)ρ

n
k+1 − v(xk−1)ρnk−1].

This scheme is linear; we chose it motivated by the recent work of Menon et al.

[110, 111], which makes explicit use of the linearity of their discretization scheme in

the control synthesis for their problem.

• A left-centered scheme, inspired by the Daganzo scheme in light traffic: the time

update at every time step is given by [64]:

ρn+1
k =

(

ρnk(1−
v(xk)∆T

∆x
) + ρnk−1(

v(xk)∆T

∆x
)

)(

1− v(xk)∆T

∆x
+
v(xk−1)∆T

∆x

)

.

Note that this scheme only provides a first order approximation of the PDE, in the

case in which v is continuous. However, it has been shown to work well in practice.

• The Jameson-Schmidt-Turkel (JST) scheme. This scheme is nonlinear, and has very

desirable properties for this work: it captures shocks (which are present in the so-

lutions we compute, as will be seen), and when the PDE has an entropy solution,

which is the case for highway traffic in the original LWR setting, it converges to

the entropy solution of the problem. It combines second order accuracy with non-

oscillatory properties, adds an anti-diffusive term to the first-order approximation of

the flux. This makes the scheme accurate especially in discontinuous regions where

traditional schemes diffuse. Moreover, the coefficients of this additional term are vari-

able and chosen in order to ensure that the maxima cannot increase and the minima

cannot decrease. This condition has been proved to prevent oscillations. The JST
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scheme finally produces a low level of diffusion in regions were the solution is smooth

but prevents oscillations near discontinuities. Details of this scheme are available

in [90, 91].

7.1.2 Numerical validation

Even if a numerical scheme is theoretically proved to converge to the analytical solution

of a PDE, one usually does not know a priori the required gridsize to guarantee that the

numerical solution is close to the analytical solution. Even if this type of validation is

standard in numerical analysis [82], it seems to be absent from literature using these schemes

for highway or air traffic problems [110, 111, 64]. We use the method developed in the

previous chapter to compute the analytical solution of the following three problems, which

we use as benchmark problems to assess the accuracy of our numerical method. We start

with one link and present three validation scenarios.

• Case 1: Continuous initial conditions and inflow, continuous velocity profile

Velocity profile:

v(x) =

{

2 if x ∈ [0, 1]

3− x if x ∈ [1, 2]
(7.2)

Initial conditions:

ρ(x, 0) =

{

sin(2πx) for x ∈ [0, 1
2
]

0 for x ∈ [ 1
2
, 2]

(7.3)

Inflow conditions:

q(t) =







0 for t ≤ 1
4

sin(2π(1− 2t)) for t ∈ [ 1
4
, 1
2
]

0 for t ≥ 1
2

(7.4)

• Case 2: Discontinuous initial conditions and inflow, continuous velocity profile

Velocity profile:

v(x) =

{

2 if x ∈ [0, 1]

3− x if x ∈ [1, 2]
(7.5)

Initial conditions:

ρ(x, 0) =

{

1 for x ∈ [0, 1
2
]

0 for x ∈ [ 1
2
, 2]

(7.6)

Inflow conditions:

q(t) =







0 for t ≤ 1
4

1 for t ∈ [ 1
4
, 1
2
]

0 for t ≥ 1
2

(7.7)
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• Case 3: Continuous initial conditions and inflow, discontinuous velocity profile

Initial conditions and inflow conditions: as in Case 1. Velocity profile:

v(x) =

{

2 if x ∈ [0, 1]

1 if x ∈ [1, 2]
(7.8)

Note that even if these scenarios seem academic, they are relevant for the real scenarios

which will be simulated in the next section. In particular, in case 2, we have discontinuous

densities: this can happen when aircraft are isolated in the network (locally, the density is

a “box” centered around the aircraft). We need to capture this type of solution accurately,

particularly the width and height of the boxes (which encode positions and number of

aircraft), which the JST scheme does, because of its anti-diffusive term. In case 3, the

velocity profile is discontinuous: this can model an area in which the aircraft are required

to vector (see definition in Chapter 3): when this is the case, the projected velocity (along

the direction to the destination waypoint) is discontinuous at the start of the vector.

The results of the computations are shown in Figure 7.1 for Case 1, Figure 7.2 for Case 2,

Figure 7.3 for Case 3. As can be seen for the three cases, the Lax-Friedrichs scheme is

very diffusive. Note that the behavior of the Lax-Friedrichs scheme is very representative of

linear schemes to approximate a hyperbolic PDE. Consequently, we do not think that it is

a good idea to use linear numerical schemes to approximate the solution of the PDE, even

if it would have the advantage of making the constraints linear in the resulting optimization

program, which would be used for control. The left centered scheme is less diffusive, but

fails to capture the kinks of the solution. We also show a plot of the L2 norm of the error

as a function of the number of grid points. The result is shown in Figure 7.4. As can be

seen, The Jameson-Schmidt-Turkel scheme gives the best results overall and will be used

for the rest of this study.

This validation is to the best of our knowledge the first which was actually implemented

to assess the accuracy of the approximation as a function of the discretization size. Note

also that confusion often arises between scale cell size (defined previously by Daganzo [63],

i.e. line element) and discretization size (whose mathematical definition is available in [82]).

These quantities are completely unrelated, as cell size is a physical length which pertains

to the application (for example a portion of highway or jetway), whereas the discretization

length is an arbitrary small length chosen between gridpoints such that the discretization

will approximate the continuous problem accurately. Typically, a cell should contain at

least a dozen grid points (in fact at least a hundred in the present simulations).
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Figure 7.1: Numerical experiment for Case 1. Result of the LxF (·), Left Centered (- -),
JST (−·) schemes and the exact solution (solid) for 200 grid-points. Horizontal axis: x;
vertical axis: ρ.
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Figure 7.2: Numerical experiment for Case 2. Result of the LxF (·), Left Centered (- -),
JST (−·) schemes and the exact solution (solid) for 200 grid-points. Horizontal axis: x;
vertical axis: ρ.
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Figure 7.3: Numerical experiment for Case 3. Result of the LxF (·), Left Centered (- -),
JST (−·) schemes and the exact solution (solid) for 200 grid-points. Horizontal axis: x;
vertical axis: ρ.
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Figure 7.4: L2 error due to the discretization method, as a function of the number of grid
points for both schemes. The analytical solution presented in the previous chapter is used
for this comparison. Lax-Friedrichs scheme (solid), Jameson-Schmidt-Turkel scheme (−·),
left-centered scheme (- -).

7.2 Network control via adjoint methods

7.2.1 Control problem, derivation of the adjoint

Consider solving the following problem: maximize the throughput (i.e. flux of landing

aircraft) at a destination airport, while maintaining the density of aircraft everywhere lower

than a given threshold. Let us call ρmax,i the maximal allowed density on link i, vmax,i(·)
and vmin,i(·) the maximal and minimal achievable speeds on link i (which can depend on

location). Using the notations of Section 7.1, the optimization problem thus reads:

min: −∑i:i∈F
∫ T

0 ρi(Li, t)vi(Li, t) dt

s.t.: (6.7)

ρi(xi, t) ≤ ρmax,i ∀i∈ {1, · · · , N}, ∀xi ∈ [0, Li], ∀t ∈ [0, T ]

vmin,i(xi) ≤ vi(xi) ≤ vmax,i(xi) ∀i∈ {1, · · · , N}, ∀xi ∈ [0, Li], ∀t ∈ [0, T ]

0 ≤ βi(t) ≤ 1 ∀i ∈ D, ∀t ∈ [0, T ]

(7.9)

where F is the set of links merging into the sink or airport (see Table 6.1 for notation). In

the optimization program above, the control variables are βi and vi; ρi is the state. The

difficulty posed by the constraints can be avoided in practice by using a classical optimization
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technique called barrier (see for example Boyd et al. [41]), in which the cost is augmented

by a logarithmic term, which prohibits violation of the constraints.

min: −∑i:i∈F
∫ T

0 ρi(Li, t)vi(Li, t) dt

− 1
M

∑N
i=1

∫ T

0

∫ Li
0 log ((ρmax − ρi(xi, t))(vmax − vi(xi, t))(vi(xi, t)− vmin,i)) dxi dt

− 1
M

∑

i:i∈D
∫ T

0 log(βi(t)(1− βi(t))) dt
s.t.: (6.7)

(7.10)

We call H(v, β, ρ) the augmented cost function. When ρ, β and v are used without indices,

it means that they are vectors, i.e. v = [v1, · · · , vN ]. Note that the two last constraints in

the optimization program (7.9) have disappeared into the cost function. This constrained

optimization problem is easier to solve in practice. It is asymptotically equivalent to the

problem of interest when M → +∞.

We use an adjoint method to algebraically compute the gradient of the cost function. This

method was extensively used by Jameson [87, 88, 89, 92, 99] and Bewley [35, 52, 36] in flow

control. We now adapt the adjoint method to the case in which we have a set of PDEs

coupled through the boundary conditions, and subject to constraints. The adjoint method

computes the gradient of the cost function H(v, β, ρ) when ρ is an implicit function of v

and β via the dynamics (6.7). Let us denote J the cost function of the two variable v

and β: J : (v, β) → J (v, β) = H(v, β, ρ) where ρ is the solution of the PDE system (6.7).

Following Bewley [35], we compute the linearized (6.7), which we will use to compute the

gradient of the cost function in the optimization program (7.10).

We denote by ’ the linearized quantities around a nominal value denoted by ¯ : ρi = ρ̄i+ρ
′
i.

We call N ′i (·) the linearized LWR operator, and qi = ρivi. In order to abbreviate the

notation, we will write q′i = ρ′iv̄i+ρ̄iv
′
i and q̄i = ρ̄iv̄i. We omit the time and space dependence

when they are obvious. We are NOT using Einstein’s notations. The linearized (6.7) reads:







N ′i (ρ′i) := N ′iρ′i =
∂ρ′i
∂t

+
∂ρ′iv̄i
∂x

+
∂ρ̄iv

′
i

∂x
= 0 ∀i ∈ {1, · · · , N}

ρ′i(x, 0) = 0 ∀i ∈ {1, · · · , N}
q′i(0, t) =

∑

j∈U(i) q
′
j(Lj , t) ∀i ∈M

q′il(0, t) = β′i(t) q̄i(Li, t) + β̄i(t) q
′
i(Li, t) ∀i ∈ D

q′ir(0, t) = −β′i(t) q̄i(Li, t) + (1− β̄i(t))q′i(Li, t) ∀i ∈ D
ρ′i(0, t)v̄i(0) + ρ̄i(0, t)v

′
i(0, t) = 0 ∀i ∈ S

(7.11)
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The cost function perturbation can be obtained by linearization of the objective function

in (7.10):

J ′ = − ∑

i:i∈F

∫ T

0 ρ′i(Li, t)v̄i(Li, t) + ρ̄i(Li, t)v
′
i(Li, t)

+ 1
M

∑N
i=1

∫ T

0

∫ Li
0

(
ρ′i(xi,t)

ρmax,i−ρ̄i(xi,t) +
v′i(xi,t)

vmax,i−v̄i(xi,t) −
v′i(xi,t)

v̄i(xi,t)−vmin,i

)

dxi dt

+ 1
M

∑

i:i∈D
∫ T

0
β′i(t)

1−β̄i(t) −
β′i(t)

β̄i(t)
dt

(7.12)

An integration by parts leads to the following identity for any two functions ρ′i and ρ
∗
i .

∫ T

0

∫ Li
0 ρ∗iN ′iρ′i dxi dt =

∫ Li
0 [ρ∗i ρ

′
i]
T
0 dxi −

∫ T

0

∫ Li
0

∂ρ′i
∂t
ρ∗i dt dxi+

∫ T

0 [ρ∗i ρ
′
iv̄i]

Li
0 dt−

∫ T

0

∫ Li
0 ρ′iv̄i

∂ρ∗i
∂xi

dt dxi
(7.13)

which can be rewritten using the standard inner product denoted 〈·|·〉i for the domain [0, Li]×
[0, T ]:

〈ρ∗i |N ′iρ′i〉i = 〈N ∗i ρ∗i |ρ′i〉i + bi (7.14)

with {

Ni∗ = −∂(.)
∂t
− v̄i ∂(.)∂xi

bi =
∫ Li
0 [ρ∗i ρ

′
i]
T
0 dxi +

∫ T

0 [ρ∗i ρ
′
iv̄i]

Li
0 dt

(7.15)

We will denote by 〈·, ·〉[0,T ] the standard inner product in [0, T ]. N ∗i is called the adjoint

operator of N ′i . In order to express the gradient of J as a function of the v′i and β
′
i only,

we choose an adjoint density field ρ∗i that cancels all the terms containing ρ′i in the cost

function.

First, in order to eliminate the term 1
M

∑N
i=1

∫ T

0

∫ Li
0

ρ′i(xi,t)
ρmax,i−ρ̄i(xi,t)dxidt, we choose ρ∗i such

that

Ni∗ρ∗i =
1

M(ρmax,i − ρ̄i)
(7.16)

This is a first order linear hyperbolic PDE, which is well-posed if ρ̄i is known and both the

boundary conditions at one location and the initial conditions at one time are specified. This
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allows us to enforce two other conditions for ρ∗i in order to cancel all the terms containing

ρ′i. We can choose:







ρ∗i (xi, T ) = 0 ∀i∈ {1, · · · , N}, ∀xi ∈ [0, Li]

ρ∗i (Li, t) = −1 ∀i ∈ F , ∀t ∈ [0, T ]

ρ∗i (0, t) = ρ∗j (Lj , t) ∀i ∈M, ∀j ∈ U(i), ∀t ∈ [0, T ]

ρ∗i (Li, t) = β̄i(t)ρ
∗
il
(0) + (1− β̄i(t))ρ∗ir(0) ∀i ∈ D, ∀t ∈ [0, T ]

(7.17)

where ir and il have been defined in Table 6.1 in the previous chapter. These conditions

have been chosen by necessity of the algebraic derivation, in order to cancel appropriate

terms in the perturbation of the cost function, as will appear in the derivation below.

In addition, a physical interpretation of the boundary and terminal conditions of the adjoint

can be given. The first condition is terminal and stipulates that the sensitivity of the

solution to perturbations of the system at t = T is zero. The second condition accounts

for the sensitivity of the solution at the sink: by actuating directly there, one decreases the

objective function. The third condition at every merging node says that the sensitivity is

the same for all branches connected to the node, at that point. The last condition says the

same at the diverging nodes, weighted by the mean β̄i which represents the portion of flow

choosing the respective links outgoing from the node.

We now show the algebra which led to the “good choice” (7.17).

J ′ = − ∑

i:i∈F

∫ T

0 q′i(Li, t) dt

−∑N
i=1

( ∫ T

0

∫ Li
0 ρ∗i

∂v′iρ̄i
∂xi

dxi dt+
∫ L

0 [ρ∗i ρ
′
i]
T
0

︸ ︷︷ ︸

0

dxi +
∫ T

0 [ρ∗i ρ
′
iv̄i]

Li
0 dt

)

+ 1
M

N∑

i=1

∫ T

0

∫ Li
0

(
v′i(xi,t)

vmax,i−v̄i(xi,t) −
v′i(xi,t)

v̄i(xi,t)−vmin,i

)

dxi dt

+ 1
M

∑

i:i∈D

∫ T

0

(
β′i(t)(t)

1−β̄i(t) −
β′i(t)

β̄i(t)

)

dt

The cancellation of the terms shown here is due to the initial condition on ρ′i and the
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terminal conditions on ρ∗i . Thus, an integration by parts leads to:

J ′ = − ∑

i:i∈F

∫ T

0 q′i(Li, t)

+
N∑

i=1

( ∫ T

0

∫ Li
0

∂ρ∗i
∂xi

v′iρ̄i dxi dt−
∫ T

0 (ρ∗i (Li, t)q
′
i(Li, t)− ρ∗i (0, t)q′i(0, t)) dt

)

+ 1
M

N∑

i=1

∫ T

0

∫ Li
0

(
v′i(xi,t)

vmax,i−v̄i(xi,t) −
v′i(xi,t)

v̄i(xi,t)−vmin,i

)

dxi dt

+ 1
M

∑

i:i∈D

∫ T

0

(
β′i(t)

1−β̄i(t) −
β′i(t)

β̄i(t)

)

dt

Partitioning the terms in two, we have

J ′ = +
N∑

i=1

∫ T

0

∫ Li
0

∂ρ∗i
∂xi

ρ̄iv
′
i dxi dt

+ 1
M

N∑

i=1

∫ T

0

∫ Li
0

(
v′i(xi,t)

vmax,i−v̄i(xi,t) −
v′i(xi,t)

v̄i(xi,t)−vmin,i

)

dxi dt

+ 1
M

∑

i:i∈D

∫ T

0

(
β′i(t)

1−β̄i(t) −
β′i(t)

β̄i(t)

)

dt







A

−
∫ T

0

(
∑

i:i∈F
q′i(Li, t) +

N∑

i=1
ρ∗i (Li, t)q

′
i(Li, t)− ρ∗i (0, t)q′i(0, t)

)

dt

}

B

The term B can be written as follows:

B = −
∫ T

0

(
∑

i:i∈F
q′i(Li, t) + ρ∗i (Li, t)q

′
i(Li, t)

︸ ︷︷ ︸

0

+
∑

i:i∈D
ρ∗i (Li, t)q

′
i(Li, t)− ρ∗il(0, t)q′il(0, t)− ρ∗ir(0, t)q′ir(0, t)

− ∑

i:i∈M

(

ρ∗i (0, t)q
′
i(0, t)−

∑

j:j∈U(i)
ρ∗j (Lj , t)q

′
j(Lj , t)

︸ ︷︷ ︸

0

)

− ∑

i:i∈S
ρ∗i (0, t) q

′
i(0, t)
︸ ︷︷ ︸

0

)

dt

The first cancellation in the term above is due to the choice ρ∗i (Li, t) for the links merging

into the sink. The second cancellation is due to the choice of ρ∗i at the merging links and

the conservation of mass of the perturbed flow at the merging points. Exploiting the flow

boundary conditions at the diverging links, similar cancellations are obtained:

B = −

∫ T

0

( ∑

i:i∈D

q′i(Li) (ρ
∗(Li, t)− βi(t)ρ

∗
il
(0, t)− (1− βi(t))ρ

∗
ir (0, t))

︸ ︷︷ ︸

0

−β′iq̄i(Li, t)(ρ
∗
il
(0, t)− ρ∗ir (0, t))

)

dt
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Figure 7.5: Network model shown in Chapter 6. We now add a divergence link in order to be able to

show that we are able to control the density of aircraft by splitting the flow. For this simulation, we restrict

ourselves to the box including ORD. The new additional link is shown with a dashed line. We call β1 the

portion of flow which stays on link 1 (called 1 bis) and 1 − β1 the portion which goes into the new link

(link 6).

The remaining terms can be rewritten in scalar product form:

J ′ =
N∑

i=1

〈

ρ̄i
∂ρ∗i
∂xi

+ 1
M

(
1

vmax,i−v̄i −
1

v̄i−vmin,i

)∣
∣
∣ v′i

〉

i

+
∑

i∈D

〈

ρ̄i(Li)v̄i(Li)(ρ
∗
il
(0)− ρ∗ir(0)) + 1

M
( 1
1−β̄i −

1
β̄i
)
∣
∣
∣β′i

〉

[0,T ]

(7.18)

where again 〈·, ·〉i denotes the inner product for the domain [0, Li]× [0, T ] and 〈·, ·〉[0,T ] for
the domain [0, T ].

7.2.2 Restriction to specific classes of control

The functions vi(·, ·) and βi(·) generated by this method might be ill-behaved and thus be

inappropriate for practical Air Traffic Control applications. We can alleviate this difficulty

by projecting the descent direction ρ̄i
∂ρ∗i
∂xi

+ 1
M

(
1

vmax,i−v̄i −
1

v̄i−vmin,i

)

into a vector space E of

appropriate functions, for example the set of continuous functions with bounded derivative,

or the set of continuous piecewise affine functions.
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Figure 7.6: Decrease of the cost as a function of the iterations for the three scenarios. The increases in

M are clearly visible (steps), while the gradient descent provided by (7.18) is more subtle. Congested traffic

(solid); heavy traffic (- -); normal traffic (−·).

7.3 Application to controller design for the airspace

In this section, we demonstrate the effectiveness of the method by applying it to the air

traffic model built in the previous chapter. Please refer to it for a description of airspace.

Figure 7.5 shows the area which we will control (enclosed by a box). The inflows into the

box are thus now qin new
1 and qin new

2 as shown in Figure 7.5. We want to impose the following

constraint: for all links, the density should be below a threshold ρmax which we impose. We

allow the flow to be split into a new link (link 6), in order to aid satisfaction of the maximal

density constraints. We call β1 the corresponding split factor: β1 is the fraction of the flow

which stays on link 1 (called 1 bis); 1 − β1 is the fraction which is routed through link 6.

This new link might use another arrival into the airport (it enters the arrival airspace from

another direction).

We simulate the following three scenarios:

• Scenario 1: normal traffic. (Real data) We take ETMS data, from which we ex-

tract initial conditions and inflows, as explained in Chapter 6. We impose a restriction

on the density and control the flow.

• Scenario 2: heavy traffic. (Modified real data) We take the same data as for the

previous case, and add additional aircraft in order to overload even more the network.



7.3. APPLICATION TO CONTROLLER DESIGN FOR THE AIRSPACE 127

• Scenario 3: congested network. We generate data with very high densities of

aircraft. This situation does not use ETMS data; it is generated randomly.
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Figure 7.7: Evolution of the β1 parameter as a function of time.
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Figure 7.8: Decrease of the true cost as a function of the iterations for the three scenarios. The true cost

is the cost J without the barrier terms. The method does not guarantee the monotonicity of the decrease

but only the convergence.

Figure 7.6 shows the decrease in cost for the three scenarios as a function of the total number

of iterations (i.e. iterations on M and gradient advances). As can be seen in this Figure,

the more congested the situation is, the higher the cost is. The evolution of the cost with

iterations exhibits two distinct behaviors, as often with barrier methods [41]: large jumps

corresponding to the increases in M , and shallower decreases corresponding to the gradient
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advances. Convergence is clearly observed for the three scenarios. Figure 7.8 shows the true

cost for the congested network experiment (true cost means J minus the barrier terms). As

can be seen, this cost effectively decreases through the experiment, and eventually converges

to a minimum.

We display some of the results for the third case. An animation (in form of an .avi movie

file) corresponding to each of the three scenarios is available at [157]. An animation showing

the evolution of density ρi(·, ·) and vi(·, ·) as a function of time an optimization iterations is

also available: it shows how the cost is decreased and the velocity functions modified with

the increase of M . We now describe in detail the scenario corresponding to Case 3.

We run a one hour simulation. Figure 7.11 shows the aircraft density on all links at various

instants, in the absence of control: the velocity is the mean velocity profile determined for

each link in the previous chapter, and no aircraft is allowed into link 6 (i.e. β1 = 1). The

initial density is shown in the top left corner. The inflow into links 1 and 3 is such that

at time t = 27, the density threshold (represented by the horizontal line on each subplot)

is violated until time t = 45. At time t = 55, it is violated again, until the end of the

experiments. Figure 7.10 shows the same experiment when link 6 is now opened to traffic,

and velocity is enabled. As can be seen, about half of the traffic incoming into link 1 is

rerouted into link 6, and the other half into link 1 bis. Figure 7.7 shows the variation of β1

with time. As can be seen, around t = 20 min., there is a peak of about 25% of aircraft

routed into link 6, which settles to 50% at t = 30. The routing control enables avoidance

of violation of maximal density shown in subfigures 11 and 12 of Figure 7.11. The first

violation (shown in subfigures 5–8 of Figure 7.11) is avoided by velocity changes.

The velocity profiles vi(xi, t) are shown in Figure 7.9. Each of the subplots corresponds to

one of the links. For links 5 and 6, one can clearly see the descent velocity profiles. Also, for

link 6 (subfigure below), one can see a ridge. It corresponds to a set of aircraft which have

to fly at high speed into the airport. One can also see similar ridges on the other subplots,

which have the same interpretation. For any ridge, the Air Traffic Controller command

could be to the corresponding set of aircraft: “fly direct at 420 kts direct into [the next

waypoint]”.

Note that in the absence of control, the first violation of the aircraft density threshold occurs

33 minutes after the beginning of the experiment, almost at the end of the network, which
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Figure 7.9: Evolution of the velocity fields as a function of time for the different links. Each of the plots

corresponds to a link, (see top left corner). The axis of each subplot are: xi (arclength along the link), t

(time) and vi(xi, t), the velocity distribution.

is not intuitive. This shows the efficiency of the method, which is capable of generating the

right routing and speed assignments to prevent undesirable events from happening much

later.

Finally, the simulations shown in Figure 7.7, 7.9, 7.10, 7.11 are also depicted on a US map

in Figure 7.12 using the same density encoding as in Figure 7.12. One can see that before

t = 27, all aircraft choose the direct route through link 5 to Chicago (it is shorter). After

t = 27, the excessive amount of flow incoming into links 1 and 3 forces the flow to be split

through links 1 bis and 6.
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Figure 7.10: Evolution of the aircraft density on the different links in the absence of control. Each of

the subplot shows the density distribution at a given time on the corresponding link as in Figure 7.9 (see

legends on the upper left plot). The horizontal line represents the density threshold (all quantities are

nondimensionalized by ρmax, so that the threshold density is 1).As can be seen, the density threshold is

violated in link 5 at t = 27 until t = 45, and again at t = 55 until t = 59. This figure is also available in

form of a .avi file at [157].
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Figure 7.11: Evolution of the aircraft density with control applied. Note that link 6 is now open, and used.

This prevents the second violation of density threshold observed in Figure 7.10 (from t = 55 to t = 59):

some of the flow is directly routed from link 1 to link 6. The first violation seen in Figure 7.11 is avoided by

speed changes. One can see that at t = 45 and t = 55, the maximal density is exactly ρmax. This figure is

also available in form of a .avi file at [157].
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Figure 7.12: Aircraft density in the network around Chicago in presence of control and velocity assignment.

The density of the links is depicted by the color. The colored rectangles shown in this plot represent the

density. The colorscale is: white for zero density; black for highest density. As can be seen and was shown

in Figures 7.11 and 7.10, a good portion of the flow is routed into link 6 starting at time t = 51.
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Algorithms for vehicle-vehicle

interaction
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Chapter 8

Theoretical and computational

frameworks for Hamilton-Jacobi

formulations of reachability

problems

As was mentioned throughout this dissertation, one of the most important and time con-

suming Air Traffic Controller tasks is to prevent losses of separation (LOS) between aircraft;

for high altitude sectors (above 29,000 ft), this means that the Air Traffic Controller must

keep each pair of aircraft in the sector separated by more than 5 nautical miles (nm) hor-

izontally, and 1000 feet vertically. The terminology protected zone is used to represent the

5 nm radius, 2000 foot high cylinder around an aircraft, that another aircraft must not

penetrate. For any pair of aircraft, the relative configuration or state (relative position and

orientation) is referred to as unsafe if there is a rational process of actions which leads one

aircraft to penetrate the protected zone of another.

The previous chapters dealt with models of the airspace and corresponding control policies

at a high level, i.e. for a large number of aircraft. In the Lagrangian setting, the control

consisted in determining an optimal maneuver assignment in order to achieve the optimum

of a prescribed cost function. This assignment was posed as an optimization program, which

135
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we solved using combinatorial optimization. In the Eulerian setting, the goal was to balance

aircraft density in the system, which was achieved using flow control techniques based on

adjoint formulations.

Both approaches suppose that at the sector level, the Air Traffic Controller has the ability to

separate the aircraft, given the constraints imposed by this “higher level control”, and that

the corresponding potential conflict avoidance resolution mechanisms would not affect the

overall objective. Several methodologies have tried to incorporate conflict resolution into

more general objectives, such as scheduling (see for example [133]). Others have tried to

quantify the impact of conflict resolution on scheduling, for example [38, 119]. Solving large

scale problems while guaranteeing safety (i.e. aircraft separation) is still an open problem,

and it is not clear that it is actually solvable.
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Figure 8.1: Sketch of the reachable set. Aircraft a is following the dashed flight plan; aircraft b is following
the dash-dotted flight plan. The isocontours show all possible locations of aircraft a in the next 30, 60, 90,
etc. seconds in relative dynamics of the two aircraft. This is called the reachable set and will be defined
mathematically in this chapter.

However, in practice, aircraft have conflicting flight plans (see Figure 8.1). In the cur-

rent system, the problem is solved by humans, using rules based on experience. Several

methodologies have been proposed for automating this set of tasks (see [96] for an extensive

survey). Given a protocol, i.e. a rule that aircraft follow when encountering a conflict, a

proof of safety is a mathematical proof that no matter how both aircraft behave within a

set of behaviors which we assume we can model, the separation between the two aircraft is

always above the minimum required by FAA. Figure 8.1 illustrates this idea: the isolines

represents all possible positions of the left aircraft in relative dynamics, for the times labeled
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on the isolines. These positions incorporate uncertainties (for example unexpected behavior

of the right aircraft, or winds), within bounds which we know a priori. This set is called

the reachable set and will be precisely defined in this chapter. Naively phrased, proving the

safety of a conflict avoidance protocol between two aircraft thus consists in checking that

the “uncertain” aircraft will not lie in the reachable set, provided proper action is taken (a

more mathematical definition will be given in the next sections).

This chapter is organized as follows. Section 8.1 describes the reachability problem and

defines a mathematical framework which enables the proof of safety of protocols for avoid-

ing collisions, with use of the reachable set. Section 8.2 links this framework with other

frameworks historically developed to solve the same problems (viability theory and opti-

mal control), through an equivalence proof. This mathematical proof is crucial, since it

links our formulation with known mathematical results, which enable the proof of safety.

In Section 8.3, we show how to solve analytically a Mayer problem, which is the problem

formulation of used in the framework of Section 8.1.

8.1 The reachability problem

8.1.1 Origins of the problem

This section investigates the definition and contraction of the reachable set. For a dynamical

system, one can define a set of states (which is a subset of the state space) in which it is

undesirable to be as a target. The reachable set can be informally defined as the set of states

from which a disturbance has the possibility to drive the system into the target, no matter

what action the control takes. The problem was formalized at the beginning of the 1950’s

and a memorandum was written by Isaacs [85], which became one of the founding stones

for the field of differential games. In this work, numerous differential games are posed, and

a solution method is proposed, which Isaacs called the retrograde path equations method.

It is in fact an adapted version of the method of characteristics, which dates back to the

early age of the theory of partial differential equations [70, 145]. The method of Isaacs

enabled researchers to solve by hand numerous problems posed as differential games, at a

time when computers were not available. Isaacs also notes the connection of the differential

game problem with the static Hamilton-Jacobi Equation (HJE), but had “found no means
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as yet of capitalizing on this fact” [85]. Isaacs’ formulation of the differential game problem

inspired active research in the field of differential games, which lasted for decades and

produced numerous analytical solutions to specific differential game problems, for example

[97, 81, 98, 112, 129, 32].

Until the discovery of the viscosity solution of the HJE for control problems [59, 58] in

1983 and its generalization to differential game problems [71], followers of Isaacs had been

computing analytical solutions of the Hamilton-Jacobi equations, which at best were weak

solutions [70]. The concept of viscosity solution, which is a specific weak solution selected

through a test functions criterion, enables the proof of existence and uniqueness of a correct

solution to the differential game problem. This discovery opened the door to a new type

of research, in which the emphasis was not anymore on analytically constructing weak

solutions of the HJE, but viscosity solutions, and later, with the advent of fast computers,

convergent approximation schemes to the viscosity solution.

In the late 1980’s, research emanating from the set valued analysis [9, 10] community led to

the emergence of Viability Theory [6], which is the first systematic attempt to classify the

different problems from control theory and differential games as sets depending on infor-

mation patterns and type of game or control problem. Viability theory provides numerous

existence and uniqueness theorems for these problems, and characterizes conditional victory

domains, guaranteed victory domains, reachable tubes, capture basins, viability kernels, etc.

mathematically. The link between viability theory and viscosity solutions of the Hamilton-

Jacobi equations was made several times [44, 45, 46, 74], and show the equivalence of both

formulations under specific regularity assumptions.

In the mid 1990’s, the development of computer power gave the research community the

possibility to realize massive numerical computations for discretization of PDEs. Initially

motivated by fields such as computational fluid dynamics [82] which itself dates back to the

1970’s, researchers started developing very efficient methods to compute numerical solutions

to the Hamilton-Jacobi equations. Level Set Methods and Fast Marching Methods [128,

142, 127], which find their roots in this research are very powerful tools which enable the

computations of such solutions.

The original formulation of Isaacs (a static Hamilton-Jacobi equation sometimes referred to

as Hamilton-Jacobi-Isaacs or HJI PDI), and its viability counterpart both share the same
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difficulty however: the value function which they attempt to compute is discontinuous, and

can have infinite values. These features are very undesirable for numerical computations.

This difficulty is well known and motivated numerous algorithms and methods to alleviate it.

These methods either try to solve for this ill-behaved value function directly [139, 14], or try

to transform the problem in a numerically more tractable problem [14]. In both cases, the

difficulties posed by these numerical issues made it very hard to compute accurate solutions

to the problem (even though mathematical proofs of convergence were given, practical cases

were observed to converge very slowly).

The work presented in this chapter is part of a joint research effort which started in Berkeley

in the mid 1990’s and which to our best knowledge is the first to have successfully posed the

problem of reachability in a Hamilton-Jacobi format enabling accurate computations. A

time dependent Hamilton-Jacobi formulation of the reachability problem was proposed in

[147, 149]. Initial implementations were realized later in [118, 117]. The actual mathematical

proof of the validity of this method was recently completed in [116]. The main contribution

of this work, which will be explained through this chapter, is to transform the problem

of computing a ill-behaved value function into another one, which we can guarantee to be

continuous.

8.1.2 Formal definition of the reachability problem

In this section we formally define the reachable set for a system, discuss a few of its prop-

erties, and formulate a terminal value HJI PDE whose solution describes it.

We model our system with the ordinary differential equation

dx

dt
= ẋ = f(x, a, b), (8.1)

where x ∈ Rn is our state, a(·) is the input for player I and b(·) is the input for player II.

Assumption 1. The input signals are drawn from the following sets

a(·) ∈ A(t) , {φ : [t, 0]→ A|φ(·) is measurable}
b(·) ∈ B(t) , {φ : [t, 0]→ B|φ(·) is measurable}

where A ⊂ Rna and B ⊂ Rnb are compact and t ∈ [−T, 0] for some T > 0. We will consider

input signals which agree almost everywhere to be identical.
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Assumption 2. The flow field f : Rn × A × B → Rn is uniformly continuous, bounded,

and Lipschitz continuous in x for fixed a and b. Consequently, given a fixed a(·) ∈ A(t),

b(·) ∈ B(t) and initial point, there exists a unique trajectory solving (8.1).

Solutions of (8.1) are trajectories of our system and will be denoted by

ξf (s;x, t, a(·), b(·)) : [t, 0]→ Rn

where

d

ds
ξf (s;x, t, a(·), b(·)) = f(ξf (s;x, t, a(·), b(·)), a(s), b(s)) almost everywhere,

ξf (t;x, t, a(·), b(·)) = x.

Note that we employ a semi-colon to distinguish between the argument s of ξf and the

trajectory parameters t, x, a(·) and b(·).

Assumption 3. The target set G0 ⊂ Rn for our reachability problem is closed and can

be represented as the zero sublevel set of a bounded and Lipschitz continuous function v0 :

Rn → R
G0 = {x ∈ Rn|v0(x) ≤ 0}. (8.2)

We assume that player I will try to steer the system away from the target with her input a(·),
and player II will try to steer the system towards the target with her input b(·). For readers
who prefer a more intuitive understanding of the inputs, consider that in our example the

target set will represent the capture set in a pursuit-evasion game. Our control will then

be player I and the adversarial disturbance will be player II.

In a differential game setting, it is important to address what information the players know

about each other’s decisions. To specify our information pattern, define first a strategy for

the second player as a map γ : A(t) → B(t) which specifies an input signal for player II

as a function of the input signal that player I chooses. We will allow player II to use only

nonanticipative strategies; that is strategies

γ ∈ Γ(t) , {β : A(t)→ B(t)|a(r) = â(r)∀r ∈ [t, s] =⇒ β[a](r) = β[â](r)∀r ∈ [t, s]}.



8.1. THE REACHABILITY PROBLEM 141

It will turn out that this choice gives an advantage to player II over player I. A more detailed

description of the information patterns is available in [45, 46].

Note that in our formulation of the problem, a trajectory starts at some initial time t < 0

and we would like to know if it has passed into or through the target set by time zero. We

will sometimes want to discuss the length of time that a trajectory has had to evolve; we

adopt the differential game notation τ = −t to denote this positive quantity. We use the

free variables s and r to denote times in the range [t, 0].

To solve the backwards reachability problem, we want to determine the backwards reachable

set G(τ) for τ ∈ [0, T ]. Remembering that t = −τ , we define this set as

G(τ) , {x ∈ Rn|∃γ ∈ Γ(t), ∀a(·) ∈ A(t), ∃s ∈ [t, 0], ξf (s;x, t, a(·), γ[a](·)) ∈ G0}. (8.3)

Informally, G(τ) is the set of states from which there exists strategies for player II that for

all inputs of player I will generate trajectories which lead to the target set within time τ .

Theorem 6 (Modified HJE formulation of the reachability problem). Let v :

Rn × [−T, 0]→ R be the viscosity solution of the terminal value HJI PDE

Dtv(x, t) + min[0, H(x,Dxv(x, t))] = 0, for t ∈ [−T, 0], x ∈ Rn;

v(x, 0) = v0(x), for x ∈ Rn;
(8.4)

where

H(x, p) = max
a∈A

min
b∈B

pT f(x, a, b). (8.5)

The zero sublevel set of v describes G(τ)

G(τ) = {x ∈ Rn|v(x, t) ≤ 0}.

The significance of this theorem is that we can harness well developed numerical schemes

from the level set literature to compute accurate approximations of v(x, t), and therefore

accurate approximations of G(τ), for even complicated nonlinear dynamics. The full proof

of this theorem is presented in [116]. An alternate proof was derived at the same time and

is available in [105, 106].
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8.2 Link with viability and minimum time

In the following sections, we review a variety of alternative techniques for finding the back-

wards reachable set. In Section 8.2.3, we prove the equivalence between our formulation

and other formulations from optimal control.

In the discussion below, we restrict ourselves to the optimal control case of a single input

attempting to drive the system into the target set. The dynamics in this case are

dx

dt
= ẋ = f(x, b), (8.6)

because this restriction is equivalent to removing player I from the game in section 8.1. As

a consequence, we no longer need worry about the strategy of player II and can define the

reachable set in the slightly simpler form

G(τ) , {x ∈ Rn|∃b(·) ∈ B(t), ∃s ∈ [t, 0], ξf (s;x, t, b(·)) ∈ G0}. (8.7)

8.2.1 Minimum time to reach

In this section we examine two formulations of the reachability problem which can theoreti-

cally compute the exact reachable set G(τ). Analytically, their results are equivalent to one

another and to those produced by our formulation (see section 8.2.3), but their practical

implementations differ.

The first, and perhaps most basic among all reachability formulations draws on theminimum

time to reach function, originally defined in optimal control [43, 144] which we will define

as

t(x, b(·)) =







min{τ |ξ(0;x,−τ, b(·)) ∈ G0}, if {τ |ξ(0;x,−τ, b(·)) ∈ G0} 6= ∅;

+∞ otherwise.
(8.8)

Note that t(x, b(·)) ≥ 0, because our trajectories always start from some t = −τ ≤ 0. The

minimum time to reach function is then

T(x) = inf
b(·)∈B(−∞)

t(x, b(·)). (8.9)
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For more mathematical details on this formulation, see [13, 14] (the definitions (8.8) and (8.9)

are respectively equivalent to the functions tx(b) and T (x) discussed in [13, 14], although

the statement of (8.8) differs slightly due to the shifted time domain in our formulation).

Those references also discuss how to move these definitions and most of the results described

below into the differential game setting.

Based on (8.8) and (8.9), it is easy to deduce the following fact.

Fact 1. The reachable set G(τ) is the τ sublevel set of the minimum time to reach function

G(τ) = {x ∈ Rn|T(x) ≤ τ}. (8.10)

Although there exists a static Hamilton-Jacobi equation whose solution is T(x), it involves

infinite boundary conditions applied along a boundary which cannot always be determined

a priori.

8.2.2 A Formulation from Viability Theory

An alternative approach to reachability is based on viability theory [6] and set valued analy-

sis [10]. The first step is to transform our ordinary differential equation with one input (8.6)

into an input free differential inclusion [9].

dx

dt
= ẋ ∈ F (x) , {f(x, b) ∈ Rn|b ∈ B} (8.11)

almost everywhere in t. The right hand side of this equation F is a set valued map—for

any x, F (x) ⊆ Rn. For reasons related to the existence of solutions to (8.11) [6], viability

theory typically assumes that F (x) is convex, compact and nonempty for any x ∈ Rn and

F is uppersemicontinuous with linear growth in x; an F with these properties is called a

Marchaud map. We make the following assumption in any subsequent discussion involving

viability theory.

Assumption 4. The set valued map F is a Marchaud map. If the flow field f satisfies

Assumptions 1 and 2, then the only additional constraint we need to put on F to guarantee

that it is Marchaud is that its value F (x) is a convex set for any x ∈ Rn.
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A solution of (8.11) is a trajectory ζF (τ ;x) : [0,∞]→ Rn such that

d

dτ
ζF (τ ;x) ∈ F (ζF (τ ;x)) almost everywhere,

ζF (0;x) = x.

We use the symbol ; for set valued maps in the same way that → is used for regular

functions. Define SF : Rn
; C([0,+∞],Rn) so that SF (x) is the set of absolutely continuous

trajectories leading from a point x ∈ Rn. Thus ζF (·;x) ∈ SF (x).

With these definitions in place, we can define the τ finite horizon capture basin of the target

set G0 under differential inclusion F as

CaptF (G0, τ) , {x ∈ Rn|∃ζF (·;x) ∈ SF (x), ∃τ̂ ∈ [0, τ ], ζF (τ̂ ;x) ∈ G0}. (8.12)

In words, the capture basin is the set of states from which emanates at least one trajectory

leading to G0 in time τ or less. The equivalence of the capture basin and reachable set is

stated in Theorem 7. The concept of capture basin can also be extended to the differential

game setting in the form of leadership and discriminating kernels, see [45, 46] for more

details.

Based on earlier work [75, 139] an algorithm has been developed to compute CaptF (G0, τ)
directly [46]. Their scheme divides the state space into a fixed grid. Each point on the

grid is labeled by a boolean variable which is true if that mesh point is within the capture

basin—initially, only points in G0 will have a true value. Given a fixed timestep ∆τ , they

compute a discrete approximation of F at each mesh point and hence determine for that

point what other mesh points can be reached in a single timestep. They then iterate,

setting the value of a mesh point to true if it can be reached from any mesh point that is

already true (this procedure is the forward Euler scheme adapted to set valued differential

inclusions). Any mesh point which is true after τ/∆τ timesteps is in CaptF (G0, τ). The

cost of the algorithm is doubly exponential in the dimension of the state space, because in

general F must be discretized for each mesh point separately.

The approximation provided by this algorithm can be shown to converge to the true capture

basin as the grid is refined [46], although explicit convergence rates are only given in spe-

cific cases [140, 47]. Unlike the methods based on PDEs, this algorithm can guarantee an
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overapproximation of the reachable set if the discretization of F is sufficiently overapproxi-

mated. Because of the boolean nature of the data on the grid, this algorithm has no problem

treating systems whose time to reach function is discontinuous. Conversely, absolutely no

subgrid resolution of the capture basin is possible because every grid point is either com-

pletely inside or completely outside of it. Adaptive mesh refinement in the neighborhood

of the capture basin’s boundary has been used to develop more accurate approximations,

but the cost grows very quickly as the grid is made finer.

A slightly modified version of this algorithm can be used to compute underapproximations

of the viscosity solution T(x) of the static Hamilton-Jacobi equation [46, 16].

8.2.3 Equivalence of the different formulations

The different formulations above generate the same reachable set:

Theorem 7 (Equivalence of Convergent Formulations). The following sets are equiv-

alent

G(τ) = CaptF (G0, τ) = {x ∈ Rn|T(x) ≤ τ} = {x ∈ Rn|v(x, t) ≤ 0}

where τ = −t > 0.

We keep our proof brief in order to maintain the focus of this section on the comparison of

various reachability algorithms.

Proof. Because the set of trajectories which solve (8.6) is the same as the set of trajectories

which solve (8.11) [57, Section 0.4], the equivalence of G(τ) and CaptF (G0, τ) is a trivial

consequence of their definitions. In the viability literature, the τ sublevel set of T(x) is

given as an alternative definition for the capture basin in time τ [7, Definition 2.7.4], so

clearly the second and third sets are equivalent.

Theorem 6 provides the equivalence of G(τ) and the zero sublevel set of v(x,−τ); the proof

is developed in [116]. An alternative method of achieving the same equivalence result is to

show that the τ sublevel set of T(x) and the zero sublevel set of v(x,−τ) are the same: we

now prove that

{x ∈ Rn|T(x) ≤ τ} = {x ∈ Rn|v(x,−τ) ≤ 0}, (8.13)
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and thereby draw some connections with previous results from viability theory.

We begin with some additional definitions from viability theory. The epigraph of some

function ψ : Rn → R+ is the set of all points above the graph of that function

Epi(ψ) , {(x, y) ∈ Rn × R+|ψ(x) ≤ y}. (8.14)

The viability kernel of a differential inclusion Ψ for some setM is the set of all points from

which a trajectory of Ψ begins that stays inM for all time

ViabΨ (M) , {x ∈M|∃ζΨ((·);x) ∈ SΨ(x), ∀s ∈ R+, ζΨ(s;x) ∈M}. (8.15)

The concepts of viability kernel and capture basin are related, although that relationship

is not important for the discussion below. Let ch (M) be the convex hull of M, and then

define

F̃ (x) , ch (F (x) ∪ {0}) . (8.16)

Now define the two auxiliary set valued maps Φ,Ψ : Rn+1
; Rn+1

Φ((x, y)) ,







F (x)× {−1}, if x /∈ G0;

F̃ (x)× [−1, 0] if x ∈ G0;
(8.17)

Ψ((x, y)) ,







F̃ (x)× {−1}, if x /∈ G0;

F̃ (x)× [−1, 0] if x ∈ G0;
(8.18)

where F : Rn
; Rn is the Marchaud map (8.11), F̃ : Rn

; Rn is the Marchaud map (8.16),

x ∈ Rn and y ∈ R. Because we use Φ and Ψ below as the right hand side of some differential

inclusions, let us introduce the notation

ζ̃Ψ(τ ; (x, y)) =
[

ζΨ(τ ;x), ζ
Ψ
(τ ; y)

]

to break apart the two components ζΨ(τ ;x) ∈ Rn and ζ
Ψ
(τ ; y) ∈ R of the trajectory

ζ̃Ψ(τ ; (x, y)) ∈ Rn+1 which solves

d

dτ
ζ̃Ψ(τ ; (x, y)) ∈ Ψ(ζ̃Ψ(τ ; (x, y))) almost everywhere,

ζ̃Ψ(0; (x, y)) = (x, y).
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A similar definition applies for ζ̃Φ(τ ; (x, y)) and its components. By the construction of Ψ,

∀ζΨ(·;x), ∃ζF̃ (·;x) such that ζΨ(τ ;x) = ζF̃ (τ ;x), ∀τ ≥ 0;

∀ζF̃ (·;x), ∃ζΨ(·;x) such that ζF̃ (τ ;x) = ζΨ(τ ;x), ∀τ ≥ 0.
(8.19)

Finally, define the set H ⊂ Rn+1

H , Rn × R+

With these definitions in place, we can demonstrate (8.13) by proving the four equations

{(x, t) ∈ Rn × [T, 0]|T(x) ≤ −t} = {(x, t) ∈ Rn × [T, 0]|(x,−t) ∈ Epi(T)} (8.20)

Epi(T) = ViabΦ (H) (8.21)

ViabΦ (H) = ViabΨ (H) (8.22)

{(x, t) ∈ Rn × [T, 0]|(x,−t) ∈ ViabΨ (H)} = {(x, t) ∈ Rn × [T, 0]|v(x, t) ≤ 0} (8.23)

Proving (8.20) is a simple matter of substituting the definition (8.14) of the epigraph.

Theorem 8 shows that (8.21) holds, while Lemma 5 shows that (8.22) holds. Finally,

Lemma 6 demonstrates (8.23). This sequence of equations may seem like a lot of work

to generate an alternative proof for part of Theorem 7, but we feel that it makes some

worthwhile connections between viability theory and our formulation of reachability. In

particular, we would like to draw attention to the equivalence of allowing the system’s

dynamics to be frozen everywhere or in only the target set. Lemma 5 shows that the viable

set under Φ (which allows frozen dynamics via F̃ in the target set only) is the same as the

viable set under Ψ (which allows frozen dynamics everywhere). We anticipate future payoffs

from this equivalence and the fact that Ψ (and its associated ODE flow field f̃) modifies

the system’s dynamics more consistently throughout the state space.

The remainder of this section is devoted to the theorems and lemmas needed to prove (8.20)–

(8.23). The following theorem of Cardaliaguet, Quincampoix and Saint-Pierre states that (8.21)

holds.

Theorem 8 (Cardaliaguet - Quincampoix - Saint-Pierre). The epigraph of T is the

viability kernel of Φ in H
Epi(T) = ViabΦ (H) .
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Proof. See [46, Theorem 3.2]

Before proceeding to show that (8.22) holds, we need an intermediate result.

Lemma 4. A point is in the viability kernel of H under Ψ if and only if a trajectory

beginning at that point reaches G0 in finite time.

(x, y) ∈ ViabΨ (H)⇐⇒ ∃ζF̃ (·;x) ∈ SF̃ (x), ∃z ∈ [0, y], ζF̃ (z;x) ∈ G0.

Proof. Case 1 ( =⇒ ): We prove the contrapositive. Assume that ζF̃ (z;x) /∈ G0 for all

ζF̃ (·;x) ∈ SF̃ (x) and z ∈ [0, y]. By (8.19), for all ζ̃Ψ(·; (x, y)) ∈ SΨ((x, y)), ζΨ(z;x) /∈ G0.
By (8.18), the corresponding ζ̇

Ψ
(z; y) ∈ {−1} and thus ζ

Ψ
(z; y) = y − z. In particular,

ζ
Ψ
(y; y) = 0, which implies ζ̃Ψ(y; (x, y)) ∈ ∂H. Since ζ̇

Ψ
(y; y) ∈ {−1}, we also have that

˙̃
ζΨ(y; (x, y)) points out of H, and by standard continuity arguments about the trajectory,

ζ̃Ψ(y + ε; (x, y)) /∈ H for any ε > 0. Since ζ̃Ψ(·; (x, y)) was arbitrary, there is no trajectory

starting at (x, y) that stays in H forever, and hence (x, y) /∈ ViabΨ (H).

Case 2 (⇐=): Given that there exists ζF̃ (·;x) ∈ SF̃ (x) and z ∈ [0, y] such that ζF̃ (z;x) ∈
G0, by (8.19) there exists a component ζΨ(·;x) of some ζ̃Ψ(·; (x, y)) ∈ SΨ((x, y)) such that

ζΨ(z;x) ∈ G0. The remaining component ζ
Ψ
(·; y) of ζ̃Ψ(·; (x, y)) is free, and we choose

d

dτ
ζ
Ψ
(τ ; y) =







−1, for τ ∈ [0, z];

0, for τ ∈ [z,∞];

(which is legal by (8.18)) so that

ζ
Ψ
(τ ; y) =







y − τ, for τ ∈ [0, z];

y − z, for τ ∈ [z,∞].

Because y − z ≥ 0, ζ
Ψ
(τ ; y) ∈ R+ for all τ ≥ 0, ζ̃Ψ(τ ; (x, y)) ∈ H, and therefore (x, y) ∈

ViabΨ (H).

A simple consequence of Lemma 4 is that

(x, y) ∈ ViabΨ (H)⇐⇒ ∃ζF̃ (·;x) ∈ SF̃ (x), ∃z ∈ [0, y], ∀τ ∈ [z, y], ζF̃ (τ ;x) ∈ G0 (8.24)
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We are now ready to show that (8.22) holds.

Lemma 5. The viability kernels in H under Φ or Ψ satisfy

ViabΦ (H) = ViabΨ (H) .

Proof. We want to show inclusion in both directions. We prove the inclusion in one direction.

The first inclusion is trivial, because for all (x, y) ∈ Rn+1 we have Φ((x, y)) ⊆ Ψ((x, y)) and

thus

ViabΦ (H) ⊆ ViabΨ (H) .

We outline a sketch of the proof for the inclusion in the other direction. To show inclusion

in the other direction, assume (x, y) ∈ ViabΨ (H). By (8.15), there exists ζ̃Ψ(·; (x, y)) ∈
SΨ((x, y)) such that ζ̃Ψ(τ ; (x, y)) ∈ H for all τ ≥ 0. Using this solution of Ψ, we will

construct a solution of Φ that remains in H for all time, and thus show that (x, y) ∈
ViabΦ (H).

Because F (x) is compact and convex for all x ∈ Rn, for any ηF̃ ∈ F̃ (x) there exists

ηF ∈ F (x) and b ∈ [0, 1] such that ηF̃ = bηF . Therefore, for all τ ∈ [0, y] there exists

b(τ) ∈ [0, 1] and ηF (τ) ∈ F (ζΨ(τ ;x)) such that ζ̇Ψ(τ ;x) = b(τ)ηF (τ). Let ζηF (·;x) be the

trajectory associated with the differential inclusion

ζ̇ηF (τ ;x) ∈ {ηF (τ)} for all τ ∈ [0, y].

Note that the set might be a single point for some values of τ . Note also that one still needs

to show in which sense ζηF (·;x) is a solution to the differential inclusion above. Based on

this definition, ζ̇Ψ(τ ;x) = b(τ)ζ̇ηF (τ ;x). Let σ : [0, y]→ [0, y] be the pseudo-time variable

σ(τ) =

∫ τ

0
b(λ) dλ.
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By (8.24), ζΨ(y;x) ∈ G0 because (x, y) ∈ ViabΨ (H). Also,

ζΨ(y;x) = ζΨ(0;x) +

∫ y

0
ζ̇Ψ(λ;x) dλ,

= x+

∫ y

0
ζ̇ηF (λ;x)b(λ) dλ,

= x+

∫ σ(y)

0
ζ̇ηF (σ

−1(ρ);x) dρ,

= x+

∫ σ(y)

0
ζ̇F (ρ;x) dρ,

= ζF (σ(y);x),

where we have introduced the trajectory ζF (τ ;x) = ζηF (σ
−1(τ);x). A justification of this

variable change in the integration is given in [116]. Thus, we can see that ζF (σ(y);x) ∈ G0.
In addition, we have∗ that

ζ̇F (τ ;x) = ζ̇ηF (σ
−1(τ);x) = ηF (σ

−1(τ)) ∈ F (ζΨ(σ−1(τ);x)), for τ ∈ [0, σ(y)].

Therefore, we can construct a trajectory of Φ whose first n components are

ζΦ(τ ;x) =







ζF (τ ;x), for τ ∈ [0, σ(y)];

ζF (σ(y);x), for τ ≥ σ(y).

Because ζΦ(τ ;x) = ζF (τ ;x) ∈ G0 for τ ≥ σ(y), according to (8.17) we can choose the last

component of this trajectory as

ζ
Φ
(τ ; y) =







y − τ, for τ ∈ [0, σ(y)];

y − σ(y), for τ ≥ σ(y).

Since ζ
Φ
(τ ; y) ≥ y − σ(y) ∈ R+ for all τ ≥ 0, ζ̃Φ(τ ; (x, y)) ∈ H for all time and (x, y) ∈

ViabΦ (H). Consequently
ViabΨ (H) ⊆ ViabΦ (H) .

Our final lemma shows that (8.23) holds.

∗Note that this is not a differential inclusion in the traditional setting ẋ ∈ F (x) since the x is not the
same in the time derivative operator and the F . It remains to be proved that the formula stated defines a
solution to the desired differential inclusion.
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Lemma 6. The zero sublevel set of v(x, t) is a particular subset of the viability kernel of Ψ

in H

{(x, t) ∈ Rn × [T, 0]|(x,−t) ∈ ViabΨ (H)} = {(x, t) ∈ Rn × [T, 0]|v(x, t) ≤ 0} (8.25)

Proof. Start with (x,−t) ∈ ViabΨ (H). By (8.24)

∃ζF̃ (·;x) ∈ SF̃ (x), ζF̃ (−t;x) ∈ G0. (8.26)

Now consider constructing a finite horizon optimal control problem with terminal payoff

V (x, τ) = inf
ζ̂
F̃
(·;x)∈S

F̃
(x)
v0(ζ̂F̃ (τ ;x)), (8.27)

where v0 defines our target set (8.2). It can be shown [13, 57] that V (x, τ) solves the

Hamilton-Jacobi PDE

DτV + Ĥ(x,DxV ) = 0, for τ ∈ [0,∞[, x ∈ Rn;

V (x, 0) = v0(x), for x ∈ Rn;

where

Ĥ(x, p) = max
q∈F̃ (x)

−pT q,= max
q∈F (x)

[0,−pT q].

With a change of variables τ = −t, it can be shown that v(x, t) = V (x, τ) [71]. From (8.26)

and (8.27) we can see

v(x, t) = V (x, τ) = inf
ζ̂
F̃
(·;x)∈S

F̃
(x)
g(ζ̂F̃ (τ ;x)) ≤ g(ζF̃ (τ ;x)) ≤ 0.

The steps above can all be reversed to prove the converse direction of (8.25).

8.3 Analytical closed form solution of the Mayer problem

As was noted in Section 8.1, some formulations of the reachability problem rely on a modified

Hamilton-Jacobi equation, which is originally a formulation of the Mayer problem. In

the early stage of this work, two unanswered research questions had struck the control
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community, which triggered the results presented in this section. We list these two questions,

which provide the context of the present work.

(i) In trying to compute the reachable set (prior to actual implementation of level set

methods on control problems [118, 117]), several authors [152] observed separation of char-

acteristics, which they could not explain. (ii) In other works [151] using a new formulation

of the reachability problem [118], authors were observing the disappearance of level sets in

reachability computations and attributed this fact to numerical dissipation.

Question (i) has been resolved since by looking at an earlier work of Merz [112], available

in a more modern version [114], which shows how to match characteristics correctly in

order to compute the solution of the reachability problem using traditional differential

games techniques. Question (ii) was resolved using the method presented in this section,

subsequently published in [26].

The method presented below relies on the method of characteristics [70, 145], which was

historically the first method used to solve (analytically) the Hamilton-Jacobi equation, at

a time when computers were unavailable. The technique of Isaacs [85] is based on it, and

was used intensely afterwards (see [100, 15] for a more modern treatment of the subject). A

new approach linking the viscosity solution to the method of characteristics and the work

of Isaacs was recently developed by Melikyan [109], but we were unable to use these results

for this work.

8.3.1 Construction of C0 solutions of a 1D Hamilton-Jacobi equation

In this section and the following, we explain how to construct continuous solution to the

following one dimensional Hamilton-Jacobi equation:

Dtv(x, t) +H(x,Dxv(x, t)) = 0, for t ∈ [−T, 0], x ∈ R;

v(x, 0) = v0(x), for x ∈ Rn;
(8.28)

associated with the dynamics (8.1), where the Hamiltonian is given by:

H(x, p) = max
a∈A

min
b∈B

pT f(x, a, b). (8.29)
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The problem (8.28)-(8.29) is sometimes referred to as the Mayer problem [74, 43, 144, 14,

13, 8]. Note that (8.4)-(8.5) is in fact a modified version of the Mayer problem. The intuitive

interpretation of the Mayer problem is the following. Given a point x in the space and a

terminal payoff function v0, the value v(x, T ) gives the optimal payoff obtained by both

players in T time units. Optimal means maximal for player a and minimal for player b.

Sections 8.3.2 and 8.3.3 respectively solve the cases in which a single shock or a single void

appear in the solution. Section 8.3.4 generalizes this to a problem with an arbitrary number

of shocks and voids. We do not provide any proof that the solution constructed below is

the viscosity solution. We only use the method of characteristics to analytically explain

numerical phenomena observed in practical implementations [118, 151].

Inspired by earlier work [147, 149], we consider a differential game with input a ∈ A = [−1, 1]
and disturbance b ∈ B = [−1, 1], for a specific dynamical system of the following form:

ẋ = f(x, a, b) = g0(x) + ag1(x) + bg2(x) (8.30)

where x ∈ R, g0, g1, g2 : R→ R are chosen so that the hypotheses of the previous section

hold. In one dimension, the optimal input and worst disturbance can be computed explicitly

and (8.28) can be written in the simplistic form:

Dtv(x, t) + (f(x) + ( |g1(x)| − |g2(x)| ) sgn(Dxv(x, t))Dxv(x, t) = 0 (8.31)

This formulation is somewhat simplistic, and does not generalize easily to multiple dimen-

sions, though we will be able to adapt it in the next sections. We define the set valued

map F (x) = [ f(x)− | |g1(x)| − |g2(x)| | , f(x) + | |g1(x)| − |g2(x)| | ], and notice that the

sign of Dxv(x, t) makes the Hamiltonian switch between the two extremal values of F . We

show the construction in forward time for simplicity, but the examples will be constructed

in backward time, as is required for the Mayer problem (8.28)-(8.29). We use the following

notations and assumptions (which could be weakened to be more general if needed):

• We rewrite (8.31) asDtv(x, t)+φσ(x)Dxv(x, t) = 0 where we have introduced φσ(x) :=

f(x) + σ| |g1(x)| − |g2(x)| |, with σ = ±1. σ is thus determined by the sign of the

gradient Dxv of v (see Figure 8.2). Let us assume that given σ, φσ is at least C0, and

∀x ∈ R, φσ(x) 6= 0.
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• Let xc ∈ R be arbitrary for now. Call Φσ(x) =
∫ x

xc
du

φσ(u)
and assume it is defined.

• Assume { (x, t) | (x, t) ∈ R×R+, ∃x0 ∈ R, s.t. x = Φ−1σ (Φσ(x0)+ t− t0) } = R×R+.

This statement guarantees that each family of characteristics (x(t), t), spans the whole

characteristic space R+ ×R. This situation is sometimes referred to as characteristic

boundary conditions [70, 145].

• Assume that v(x, t) = v0(Φ
−1
σ (Φσ(x)− (t− t0))) is the C1 solution of vt+φσ(x)vx = 0

obtained with the classical method of characteristics for σ = ±1.

No solution provided 
by the method of
characteristics in 
this region

Multivalued solution 
provided by the method
of characteristics in 
this region

PSfrag replacements

x−(t)

x−(t)

xc

xc

x+(t)

x+(t)

Dxv > 0

Dxv > 0

Dxv < 0

Dxv < 0

t

t

x

x x

x

v

v

σ = −1

σ = −1

σ = 1

σ = 1

Figure 8.2: Problems usually encountered using characteristics: separation or void (top), collapse or shock
(bottom)

Before proceeding further, we show an example, inspired by Clarke et al. [57], in which the

classical method of characteristics provides the viscosity solution.

Example (classical method of characteristics): Consider solving the following prob-

lem, written in the terminology originally proposed by Tomlin et al. [147, 149, 150]:

Dtv(x, t) + min
d∈[−1,1]

dxDxv(x, t) = 0 (8.32)

with terminal condition v(x, 1) = v0(x) = x, and t ∈ [−∞, 1] (backwards time). This

example is one of the few cases in which the classical method of characteristics works: one

can carefully check that the characteristics span the R×] −∞, 1] in the (x, t) plane. The

characteristics are given by:

{

x > 0 t = 1− log(x/x0)

x < 0 t = 1 + log(x/x0)
(8.33)
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These two families of characteristic curves are separated by a vertical one ending at (x, t) =

(0, 1). We now can compute the solution at each point of R×]−∞, 1]:
{

x ≥ 0 v(x, t) = v0(xe
t−1)

x ≤ 0 v(x, t) = v0(xe
−(t−1))

(8.34)

where v0(x) = x here but it could in fact have been any monotonically increasing function.

8.3.2 Single C0, PC1 shock construction procedure

We now show how to construct a C0, PC1 weak solution of (8.31): we find the domains of

validity of the characteristics and explain how to construct the solution when they intersect.

The present construction is in forward time. The same procedure applies in backward time

with appropriate sign changes.

Assume here that v0 is decreasing in ]−∞, xc], and increasing in x ∈ [xc,∞[ (i.e. σ = +1

for x ∈] − ∞, xc] and σ = −1 for x ∈ [xc,∞[). v0 has thus a local minimum at xc. A

shock appears instantaneously at xc: call xσ(t) = Φ−1σ (Φσ(xc) + (t − t0)) the respective

characteristics emanating from xc. Then, x−(t) ≤ x+(t) at least in a vicinity of (xc, t0),

which means the characteristics cross and the solution is not uniquely defined.

Initial data matching: Since v0(xc) is a local minimum of v0 (in fact global) and v0 is

C0, then ∃(xl, xr) ∈ [−∞, xc] × [xc,∞] and ∃m :]xl, xc] → [xc, xr[ bijective, such that

∀x ∈]xl, xc], v0(x) = v0(m(x)). Consider the set {(x, t)|t ≥ 0 ∧ x−(t) ≤ x ≤ x+(t)}. In this

set, consider the curve x = Sc(t) defined by the solution of the following system:

s ∈]xl, xc]
{

t− t0 = Φ+(x)− Φ+(s)

t− t0 = Φ−(x)− Φ−(m(s))
(8.35)

We now define v which is by construction a C0 a.e. solution of (8.31):

v(x, t) = v0(Φ
−1
+ (Φ+(x)− (t− t0))) if x ≤ Sc(t)

v(x, t) = v0(Φ
−1
− (Φ−(x)− (t− t0))) if x ≥ Sc(t)

(8.36)

Thus, we have matched the initial data: we defined regions in which the two families of

characteristics are valid, such that the overall v(x, t) is C0 because each intersecting pair
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of characteristics originate from points with same initial value v(x, t0) = v0(x). The curve

(Sc(t), t) is a specific case of a singular surface called dispersal surface by Isaacs [85].

Construction procedure for a single shock:

Input: Initial conditions of the HJE PDE (8.28).
Output: C0, PC1 solution of (8.28) for the single shock case.

1 Find xc := argmin(v0(x)) (maximum if backwards in time)
2 Generate the bijection m :]xl, xc]→ [xc, xr[ s.t. ∀x ∈]xl, xc], v0(x) = v0(m(x))
3 Solve equation (8.35) and construct x = Sc(t)
4 Define v(x, t) according to (8.36)

Example (C0, PC1 shock): Consider the following HJE (8.28), written in the same ter-

minology as previously [147, 149, 150]:

Dtv(x, t) + min
d∈[−1,1]

dDxv(x, t) = 0 (8.37)

where time is backwards, with the following terminal conditions at T = 1:

{

v0(x, 1) =
1

1+x2
if x ∈ R−

v0(x, 1) =
1

1+(2x)2
if x ∈ R+

(8.38)

Here we trivially have xc = 0, m : x0 → −x0/2, xl = −∞, xr = ∞: the shock can be

solved analytically: t = 1 + 3x, (Sc(t) = 1
3(t − 1)). The C0, PC1 solution constructed by

our method reads:
v(x, t) = v0(x+ t− 1) for x ≤ t−1

3

v(x, t) = v0(x− t+ 1) for x ≥ t−1
3

(8.39)

In this case, the solution (8.39) is the only continuous solution that can be constructed using

the method of characteristics, to a set of zero measure. Note though that unless proved,

nothing in this case guarantees that this solution is the viscosity solution of the HJE PDE

(8.28). Several steps could be undertaken to achieve such a proof, that go beyond the work

of this dissertation. (i) Prove it directly with test functions, using Evans’ definition [70,

Chap. 10, p. 542]. (ii) Prove it using the equivalence with the Frankowska solutions and

epiderivatives [74, 8]. (iii) Prove it using a minimax criterion, such as the criterion proposed

by Clarke et al. [57, Chap. 7, p. 225]. None of these definitions is in fact appealing, and
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checking that an analytical solution is the viscosity solution of a particular HJE is in general

a difficult process. Simple examples are available in [14].

8.3.3 Single C1 void construction procedure

When v0 is C1 and characteristics separate, we are able to construct a C1 solution, which

is then the classical (therefore viscosity and unique) solution of HJE.

Plateau construction: We now assume that v0 is C1, is increasing in x ∈] − ∞, xc] and
decreasing in [xc,∞[. (i.e. σ = −1 for x ∈] − ∞, xc] and σ = +1 for x ∈ [xc,∞[). A

void appears instantaneously at xc: call xσ(t) = Φ−1σ (Φσ(xc) + (t − t0)) the respective

characteristics emanating from xc. Then, x−(t) ≤ x+(t) in a neighborhood of (xc, t0): a

void appears (the characteristics separate). v0 is C1, so it follows that v′0(xc) = 0.

Plateau construction for a single void:

Input: Initial conditions of the HJE PDE (8.28).
Output: C0, PC1 solution of (8.28) for the single void case.

1 v(x, t) = v0(Φ
−1
− (Φ−(x)− (t− t0))) if x ≤ x−(t)

2 v(x, t) = v0(xc) if x−(t) ≤ x ≤ x+(t)
3 v(x, t) = v0(Φ

−1
+ (Φ+(x)− (t− t0))) if x+(t) ≤ x

This solution solves (8.28) almost everywhere and is C1 by assumption in the interior of

the three domains above. The continuity of the derivatives on the boundary of the void

(characteristics emanating from xc) is given by:

(Dxv(x, t), Dtv(x, t)) = v′0(xc)φσ(xc)

(

−1, 1

φσ(x)

)

= (0, 0)

(this equality is only true on the boundary of the void). The solution is thus C1 on R×R+.

This procedure will also work when v0 is C0, PC1, but will then only provide a C0, PC1

function (see example below).

Example (C0,PC1 solution): We use our procedure to solve the following HJE, inspired

by an example of Clarke et al. [57]:

Dtv(x, t) + min
b∈[−1,1]

bDxv(x, t) = 0 (8.40)
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where b ∈ [−1, 1] and t ∈]−∞, 1] (time is backwards). The initial condition is v0(x) = |x|.
The solution constructed by our method is:

v(x, t) = v0(max(0, |x|+ t− 1)) = |max(0, |x|+ t− 1)| = max(0, |x|+ t− 1)

Note that v(x, t) = |x| + t − 1 ∀(t, x) ∈] −∞, 1] × R, obtained by filling the whole space

with characteristics, solves (8.28) almost everywhere, but is not the viscosity solution. It is

straightforward to show that it is not the viscosity solution.

If instead, we had chosen v0(x) = x2/(1 + x2) ∈ C1(R,R), the corresponding solution

constructed by our method would be

v(x, t) = v0(x+ t− 1) for x ≤ (t− 1)

v(x, t) = v0(x− t+ 1) for x ≥ −(t− 1)

v(x, t) = 0 for (t− 1) ≤ x ≤ −(t− 1)

Note that v(x, t) is C1 and the classical (therefore viscosity) solution.

8.3.4 General initial data

If v0 ∈ C0(R,R) is arbitrary, we can generalize the previous results and construct a C0, PC1

solution:

Construction procedure for general initial data

Input: Initial conditions of the HJE PDE (8.28).
Output: C0, PC1 solution of (8.28) for the general case.

1 Compute locations xic of extrema of v0(x);
2 Identify the x̄ic corresponding to shocks: φ+ for x ≤ x̄ic, φ− for x ≥ x̄ic

and the xic corresponding to voids: φ− for x ≤ xic, φ+ for x ≥ xic.
We get: ... ≤ x̄i−1c ≤ xic ≤ x̄i+1

c ≤ xi+2
c ≤ ...;

3 Generate the matchings mi of the x̄
i
c;

4 Construct the shocks, fill the (x, t) space with characteristics, and void space.
5 v(x, t) = v0(Φ

−1
σ (Φσ(x)− (t− t0))) in the domains filled with characteristics,

v(x, t) = v0(x
i
c) in the voids.
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Example (general initial data): We now apply our technique to solve a problem with

initial data generating multiple shocks and voids. Consider the following dynamical system

ẋ = (−|x+ 1|+ |x− 1|)b (all quantities in R), for which we solve the following HJE:

Dtv(x, t) + min
b∈[−1,1]

(|1− x| − |1 + x|)bDxv(x, t) = 0 (8.41)

with t ∈ R− (backwards time), and the terminal condition v(x, 0) = v0(x) given by:
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Figure 8.3: Characteristics pattern for (8.41), domains given by Table 8.1. Two voids appear at x = −4
and x = 8, two shocks appear at x = 4 and x = 12.

v0(x) =







x

1+(x4 )
2 ∀x ∈]−∞, 4]

1 +
(
x−8
4

)2
(

2−
(
x−8
4

)2
)

∀x ∈ [4, 12]

1 + 2(x−11)
1+(x−11)2 ∀x ∈ [12,∞]

(8.42)

Two shocks appear in the (x, t) plane for t = 0 at local maxima of v0(t, x) (x = 4 and 12).

Two voids appear for t = 0 at local minima (x = −4 and 8), see Figure 8.3.

The equations of the shocks can be obtained in parametric form with appropriate matchings:

m1(s) =
4

φ(s) [2−
√

4− φ(s)2]
m2(s) = 11 + 1

ψ(s) [1 +
√

1− ψ(s)2]

where
φ(s) = 1 + ( s−84 )2(2− ( s−84 )2) ∀s ∈ [4, 8]

ψ(s) = ( s−84 )2(2− ( s−84 )2) ∀s ∈ [8, 12]
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Figure 8.4: Analytical solution v(x, t) for equation (8.41) for various times. The effect shocks (edges) and
voids (plateaux) are clearly visible.

The equations of the two shocks are given by solving the matching problems for m1 and

m2:

(t(s), x(s)) = ( 14(m1(s)− s), 12(m1(s) + s))

(t(s), x(s)) = ( 14(s−m2(s)),
1
2(m2(s) + s))

(8.43)

For each of them we compute the shock t→ Sc(t), given by the solution of (8.43).

We now define the different subdomains Di of R×]−∞, 0] which are displayed in Figure 8.3,

mathematically described in Table 8.1. The corresponding solution is depicted in Figure 8.4,

and summarized in Table 8.2.

In table 8.1, x = X1(t) and x = X2(t) are the explicit solutions of (8.43). The analytical

solution obtained with this method is summarized in Table 8.2.

8.3.5 Application to two dimensional examples

The technique developed in the previous sections is extremely difficult to generalize to di-

mensions greater than three, because of the geometrical difficulties involved in constructing

the matching surfaces (shocks), or voids in a three dimensional space. This method however

was successfully applied to a few two dimensional examples (see for example [26]): the “tax

pollution example” (from Saint-Pierre [139]), the “one chance collision game” (from Isaacs

[85]) and the “proportional navigation problem” (from Leitmann [81, 98]). We now show
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D1 t ≥ 1
2(x+ 4)

D2 {t ≤ 1
2(x+ 4) ∧ t ≤ − 1

2(x+ 4)}∧
x ≤ −1} ∪ {t ≤ 1

2 log(−x)− 3
2 ∧ −1 ≤ x ≤ 0}

D3 t ≥ −1
2(x+ 4) ∧ x ≤ −1

D4 t ≥ log(−x)
2 − 3

2 ∧ t ≤ log(−x)
2 ∧ −1 ≤ x ≤ 0

D5 t ≥ 1
2 log(−x) ∧ x ≤ −1

D6 0 ≤ x ≤ 1
D7 x ≥ 1 ∧ t ≤ −1

2(x− 1)

D8 t ≥ −1
2(x− 4(2−

√
3)) ∧ x ≤ X1(t)

D9 t ≥ 1
2(x− 8) ∧ t ≥ − 1

2(x− 8) ∧ x(t) ≥ X1(t)

D10 −x−1
2 ≤ t ≤ −1

2(x− 4(2−
√
3))

D11 t ≤ x−8
2 ∧ t ≤ −x−8

2 ∧ t ≥ −x−8+4
√
3

2
D12 x ≤ X2(t) ∧ t ≥ −x−8

2
D13 x ≥ X2(t)

Table 8.1: Definition of the different domains of validity of the analytical solution obtained by the method

of characteristics. The different domains are shown in Figure 8.3, as well as the characteristics.

Di Eqn. of characteristics v(x, t)

D1
1
2(x− x0) v0(x− 2t)

D2 void v0(−4)
D3 −1

2(x− x0) v0(x+ 2t)

D4
log(−x)

2 + x0+1
2 v0(2t− log(−x)− 1)

D5
1
2 log(

x
x0
) v0(xe

−2t)
D6 −1

2 log(
x
x0
) v0(xe

2t)

D7 −x−1
2 + log x0

2 v0(e
2t+x−1)

D8 −x−x0
2 v0(2t+ x)

D9
x−x0
2 v0(x− 2t)

D10 −x−x0
2 v0(2t+ x)

D11 void v0(8)
D12 −x−x0

2 v0(x+ 2t)
D13

x−x0
2 v0(x− 2t)

Table 8.2: Analytical solution to the Mayer Problem (8.28) obtained with the method developed above.

The name of the different domains refer to Table 8.1, and is depicted in Figure 8.4. The characteristics are

shown in Figure 8.3.
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Figure 8.5: Sketch of the reachable set for the 2D aircraft problem, in the case ψr = π/2, corresponding
to Figure 8.1.

an application to the “2D aircraft problem” (from Tomlin [147], which is a specific case of

the “3D aircraft problem shown in the next chapter). We consider the following dynamics:

{

ẋr = −a+ b cosψr

ẏr = b sinψr
(8.44)

where x = [xr, yr], a ∈ A = [2, 4] and b ∈ B = [1, 5]. This system represents the relative

dynamics of two aircraft respectively cruising at speeds a and b, with a relative coordinates

xr and yr, and relative heading ψr, which is for now fixed.† The previous method can be

used to solve analytically the following HJE associated to the Mayer problem:

Dtv(x, t) +H(x,Dxv(x, t)) = 0, for t ∈ [−T, 0], x ∈ Rn;

v(x, 0) = v0(x), for x ∈ Rn;
(8.45)

where

H(x, p) = max
a∈[2,4]

min
b∈[1,5]

pT f(x, a, b). (8.46)

with v0(x) = v0((xr, yr)) = x2r − y2r − 25. This choice of v0, introduced by Tomlin [147]

corresponds to a safety disk of radius 5 nautical miles around one aircraft. Applying the

formulation (8.45) to the dynamics (8.44) thus solves the following payoff problem: “com-

pute the set of relative positions of two aircraft from which a disturbance aircraft (aircraft

†In the next chapter, ψr will be allowed to vary. An illustration of the relative dynamics is given in the
next Chapter in Figure 9.1.
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Figure 8.6: Analytical solution to the equation (8.45). At t = 0, v(xr, yr, 0) = v0(x
2
r, y

2
r) = x2r + y2r − 25:

the zero sublevel sets correspond to the safety disk in which aircraft b shall not penetrate. The solution is

shown for t = 0, −1, −2, −3, −4, −5. As can be seen for t = −5, the subzero level sets have disappeared

completely.

b) can end up in a safety disk of 5 nautical miles around the other aircraft (aircraft a), no

matter what a does”.

The method of the previous sections can be applied to this case. We show the results for

ψr =
π
2 in Figure 8.6. We see that a shock and a void appear. The shock propagates along

the xr-axis at speed 3: the equation of the shock (which is a line here) is: xr = −3(t− t0)
in the (xr, yr) plane. It originates at the xr = 0 axis. There is a void propagating along the

yr-axis, whose bounds have the following motion: yr = t− t0 and yr = 5(t− t0). The void

originates from the yr = 0 axis. The void and the shock interact. In fact, the shock goes

through the void and prolongates the discontinuity of the gradient through it.



164 CHAPTER 8. HAMILTON-JACOBI FORMULATIONS OF REACHABILITY

−10 0 10 20 30 40
−20

−10

0

10

x

y

−10 0 10 20 30 40
−20

−10

0

10

x

y
−10 0 10 20 30 40

−20

−10

0

10

x

y

−10 0 10 20 30 40
−20

−10

0

10

x

y

−10 0 10 20 30 40
−20

−10

0

10

x

y

−10 0 10 20 30 40
−20

−10

0

10

x

y

t=0 

t=−2 

t=−4 

t=−1 

t=−3 

t=−5 

Figure 8.7: Minimum over time of the two dimensional solution of the HJE (8.45). As can be seen, the

zero sublevel sets stop growing after t = 5.

Finally, we get the following solution for v:

v(xr, yr, t) = v0(xr + 4(t− t0), yr − (t− t0)) if yr ≥ t− t0 ∧ xr ≤ −3(t− t0)
v(xr, yr, t) = v0(xr + 4(t− t0), 0) if yr ∈ [5(t− t0), t− t0] ∧ xr ≤ −3(t− t0)
v(xr, yr, t) = v0(xr + 4(t− t0), yr − 5(t− t0)) if yr ≤ 5(t− t0) ∧ xr ≤ −3(t− t0)
v(xr, yr, t) = v0(xr + 2(t− t0), yr − (t− t0)) if yr ≥ t− t0 ∧ xr ≥ −3(t− t0)
v(xr, yr, t) = v0(xr + 2(t− t0), 0) if yr ∈ [5(t− t0), t− t0] ∧ xr ≥ −3(t− t0)
v(xr, yr, t) = v0(xr + 2(t− t0), yr − 5(t− t0)) if yr ≤ 5(t− t0) ∧ xr ≥ −3(t− t0).

In [151], the authors introduced a new formulation of the reachability problem, consisting

in taking the minimum over time of the solution of the Mayer problem. The result of this

technique applied to the formula above is represented in Figure 8.7. Since the zero sublevel

sets have disappeared from the solution for t > 5 (as can be seen in Figure 8.6), the zero
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Domain of victory of  b

target

5 n.m.

Domain of victory of  b

Domain of victory of  a

Figure 8.8: Viability solution to the 2D aircraft problem. In black: reachable set for (8.45), in the same
situation as for Figures 8.6 and 8.7. Computation realized on a 1024 × 1024 grid (domain of computation
is [−20, 20]× [−20, 20]), using [139, 45].

sublevel sets obtained by keeping the minimum of the solution over time are frozen as well,

as can be seen in Figure 8.7. This fact had been observed in numerical experiments in [151],

and explained by the numerical dissipation introduced by the numerical techniques used to

solve the problem. The result above, illustrated by Figures 8.6 and 8.7, shows that this

feature is present in the analytical solution itself.

The correct solution to the problem above was subsequently computed and proved in [116].

This result was confirmed later using results from viability theory: Figure 8.8 shows the

result of the computation for the same problem, using the techniques developed in [139, 45].
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Chapter 9

Application of reachability analysis

to Air Traffic Control

The previous chapter investigated the problem of proving safety of conflict avoidance pro-

tocols, in order to contribute to the automation of sector Air Traffic Controller tasks. It

provided a mathematical framework which can be used to prove safety of a pair of aircraft

from which the behavior of one aircraft is uncertain. The mathematical result was the

construction of the reachable set. This set represents the set of relative positions outside

of which the uncertain aircraft is unable to create a loss of separation (i.e. a situation in

which the two aircraft are closer than the minimum distance allowed by FAA).

The previous chapter dealt with the mathematical aspects of this proof. This chapter will

now apply this framework to real ATC scenarios. We will apply the same methodology for

conflict detection, and run a set of experiments on ETMS data to show that this method-

ology can be applied successfully to real systems.

This chapter is organized as follows. Section 9.1 states the practical problem to be solved

and links it with the framework of the previous chapter. Section 9.2 defines the reachable

set in the context of collision avoidance and displays the mathematical problem which will

be solved numerically. Section 9.3 shows the methodology used to apply the method to

real data (ETMS data). The choice of the relevant numerical parameters is explained in

Section 9.4 and 9.5. Finally, Section 9.6 presents the application of the method on real

scenarios.

167
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9.1 Problem statement

We will first cast the physical problem of conflict detection and resolution into the frame-

work of the previous chapter (in particular Theorem 6). The action of one of the aircraft

(aircraft b) is assumed to be uncertain but bounded within known bounds, and is treated as

an opposing player to the control action of the first aircraft (aircraft a). From these assump-

tions, using the framework of differential game theory, two regions may be calculated and

used to determine LOS threats∗ . These regions are: (i) the set of states from which aircraft

b can cause a LOS of separation with aircraft a, regardless of the control action of aircraft

a; (ii) the set of states from which aircraft a can find a safe escape maneuver to prevent

conflict, for all possible actions of aircraft b. This scenario could model the situation in

which one aircraft blunders, due to navigation error, human error, or communication loss,

yet ATC maintains communication and control of the second aircraft. Variations of this

framework could be used to treat other scenarios, such as the case in which communication

is lost with both aircraft, yet still only one blunders, as well as the true worst case, in which

communication is lost and the aircraft appear to coordinate to cause a collision. This third

case is extreme, yet it could be used to assess the true worst case: a tragic recent example

is the midair crash in July 2002 above Überlingen, caused by communication of erroneous

maneuvers.

In this chapter, our goal is to evaluate this tool as a possible online ATC advisory for

assessing the LOS alert level in high altitude traffic. By alert level, we mean a metric which

can be used practically to indicate when ATC should modify the aircraft’s trajectory. As a

testbed for this work, we use a set of ETMS data† for high altitude traffic in several sectors

of the Oakland Center airspace. The ETMS data file used for this work is from several

years ago. This work is to the best of our knowledge the first application of Isaacs’ Game

of two identical vehicles to ATC with real data (in the original work of Isaacs [85] and Merz

[112], specific cases are investigated, with dummy numerical parameters).

Using the classification of Kuchar and Yang [96], the state propagation of our method is worst

case, the state dimension is two (even if our system enables three dimensional conclusions,

as will appear), the definition of detection is one of the points of this work, and the conflict

∗loss of separation (LOS) has been defined in Chapter 2.
†Enhanced Traffic Management System data, see Chapter 3, Section 3.2.2 for a more precise definition.
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resolution is optimized. We attempt to answer some of the questions raised by Kuchar [96].

In particular, we show that a worst case approach does not always provide false alarms and

might be a very appropriate metric for short term conflicts, and we also discuss the issue

of the time horizon.

Finally, using the ETMS data, we demonstrate a good agreement between the decisions

advised by our tool, and the human ATC decision currently observed in the ARTCC (and

observable in ETMS data through comparison of actual trajectory with original flight plan).

Thus, we believe that the tool presented in this chapter could provide a useful advisory to

ATC.

In the current ARTCC monitoring system, human Air Traffic Controllers have a visual

display showing all airborne aircraft in their airspace (sector). Numerous information can

be superimposed on the symbol corresponding to each aircraft, such as: heading vector,

speed, altitude, filed flight plan, flight plan based anticipated positions of the aircraft in

the current sector. Based on this information, the Air Traffic Controller makes a decision

regarding which flight plans to alter to avoid potential LOS. The Air Traffic Controller

decision is based on anticipation of the positions of each pair of potentially conflicting

aircraft. The set of commands applied to the aircraft to achieve certain goals (spacing,

conflict avoidance) has been well studied [83, 19, 17]. The method presented in this chapter

aims at making this anticipation systematic and providing a guarantee on the relative

separation of the two aircraft, through the generation of an automated tool to aid the

decision-making of the Air Traffic Controller:

Problem 8. Consider a pair of aircraft (a, b) in the en route airspace, each aircraft

having known bounds on its control actions. Compute the set of relative positions

and orientations of a and b from which for all possible control action of aircraft

a (resp. b), there exists an uncertainty in the control input of aircraft b (resp a)

rendering the pair susceptible to a LOS.

This problem captures, for example, the situation in which one aircraft blunders, and ATC

maintains communication with the second aircraft. In addition, two other problems are

investigated, which are relevant for situations with communication loss. First, given an

aircraft a following its flight plan and an aircraft b, what is the set of relative configurations
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of a and b from which there exists an uncertainty in the input of b which could cause a

LOS? Second, given two aircraft a and b, what is the set of relative positions of a and b

from which the two aircraft can collaboratively (unwillingly) create a LOS?

9.2 Reachability of the collision avoidance problem

The collision avoidance scenario used for each pair of aircraft is modeled using the Game

Of Two Identical Vehicles, introduced in Isaacs [85]. This differential game was solved

analytically by Merz for a particular choice of numerical parameters [112, 114] and has

been a focus of research since [129]. The results of the previous chapter and [116] provides

a mathematical method to solve the problem (and other differential games) numerically in

the general case, based on the initial formulation of Tomlin et al. [149]. Our work uses

this formulation, extended to the case of non-identical vehicles, having different capabilities,

which we now summarize.

The two aircraft system is modeled with a commonly used, very simple kinematic system.

The state of each vehicle is represented by a location in the x − y plane and a heading ψ

relative to the x-axis. The evolution of these states is governed by the vehicle’s forward

velocity v and rotational velocity ω. For example, for vehicle a, indexing v and ω by a,

d

dt







xa

ya

ψa






=







va cosψa

va sinψa

ωa







(9.1)

and similarly for vehicle b. The linear velocity v of each aircraft is assumed fixed. The

angular velocity (turn rate) ω is allowed to vary, and is considered here the input of the

aircraft. Even if in practice the aircraft could also change their velocities, most of the

conflicts of the type investigated here are solved horizontally by modifying the heading

of one of the vehicles, which makes the assumption of constant velocity valid. Conflict

resolutions involving speed changes are also observed in practice (mostly in converging

traffic [17]), but for these cases, conflict resolution is very tightly linked with scheduling

[27] which is a fundamentally different problem and uses other mathematical resolution

techniques. The two vehicles have the same kinematics (9.1) with different values of v

and ranges of ω. Using differential game terminology [85], we denote the evader by the
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Evader
(Player I)

Pursuer
(Player II)

PSfrag replacements

ωa

ωb

d

va

vb

xr

yr

ψr

Figure 9.1: Relative coordinate system. Origin is located at the center of the evader. Notations are the

same as in Section 8.1 and 8.3

subscript a and the pursuer by the subscript b. The turn rate of each aircraft is limited by

the performance of the aircraft. We denote A = [ωa, ωa] the range of possible turn rates of

aircraft a and similarly B = [ωb, ωb] for aircraft b. The values of ωa, ωa, ωb and ωb will be

derived later.

We say that a LOS has occurred if the two vehicles come within distance d of one another.

Our goal is to determine the set of states from which the pursuer can cause a LOS to occur.

Translating into reachability terms, we define G0 as the set of all states at which the two

vehicles are within d units of one another. Denote by G(τ) the set in which the pursuer can

cause a LOS in the next τ time units despite the best efforts of the evader. As was explained

before, this set is variously referred to as the reachable set [116], victory domain [85], or

discriminating kernel [46]. We can simplify the two-aircraft system to three dimensions

by working in relative coordinates. We will denote the state vector as x ∈ R3.‡ We fix

the evader at the origin, facing along the positive xr axis (see Figure 9.1 and Table 9.1).

Then, the pursuer’s relative location and heading are described by the following dynamical

system:

ẋ =







ẋr

ẏr

ψ̇r






=







vb cosψr − va + ωayr

vb sinψr − ωaxr
ωb − ωa






= f(x, ωa, ωb) (9.2)

‡x = [xr, yr, ψr] ∈ R3 shall not be confused with xr, the relative horizontal coordinate of the two vehicles,
shown in Figure 9.1. x is the state of the system, in agreement with notations used in Sections 8.1 and 8.3.
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var. meaning

xr rel. position in direction of evader’s flight
yr rel. position perp. to direction of evader
ψr rel. heading (0 ≤ ψr < 2π)
x state vector (x = [xr, yr, ψr]

T )
ωa angular vel. and input of evader (ωa ∈ A)
ωb angular vel. and input of pursuer (ωb ∈ B)
va speed of evader
vb speed of pursuer
d minimum safe separation distance (d = 5nm)
G0 LOS set {(xr, yr, ψr)|x2r + y2r ≤ d2

Table 9.1: Variables for the two vehicles game.

where va and ωa are the velocity and turn rate of the evader, vb and ωb, of the pursuer.

The meaning of the variables above is explained in Table 9.1.

Since a collision can occur at any relative heading, the target set G0 depends only on xr

and yr and includes any state within distance d of the planar origin:

G0 = {x ∈ R3|x2r + y2r ≤ d2} (9.3)

which can be converted into a signed distance function

v0(x) =
√

x2r + y2r − d (9.4)

The set G0 is given by G0 = {x ∈ R3|v0(x) ≤ 0}. We proved in the previous chapter that

the set G(τ) is given by G(τ) = {x ∈ R3|v(x,−τ) ≤ 0}, where v(·, ·) is the viscosity solution

[59, 58] of the following modified Hamilton-Jacobi-Isaacs partial differential equation (HJI

PDE):

Dtv(x, t) + min[0, H(x,Dxv(x, t))] = 0 (9.5)

for t ∈ R−, with terminal conditions

v(x, 0) = v0(x) (9.6)

In (9.5), Dxv represents the gradient of v, and H is the Hamiltonian of the system. For

the problem defined at the beginning of this section, in which one aircraft blunders, H is
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defined as:

H(x, p) = max
ωa∈A

min
ωb∈B

h(x, p, ωa, ωb) (9.7)

with h given by: h(x, p, ωa, ωb) = pT f(x, ωa, ωb):

h(x, p, ωa, ωb) = −p1va + p1vb cosψr + p2vb sinψr

+ωa(p1yr − p2xr − p3) + ωbp3
(9.8)

In the previous formula, the costate is p := [p1, p2, p3]. The optimal input ω∗a and worst

disturbance ω∗b achieving H in (9.7) can be easily computed from (9.8):

ω∗a = (ωa + ωa)/2 + sgn(p1yr − p2xr − p3)(ωa − ωa)/2
ω∗b = (ωb + ωb)/2− sgn(p3)(ωb − ωb)/2

Equation (9.5) has to be solved from time t = 0 backwards to time t = −τ ≤ 0. The

x
r
 (nm)

Figure 9.2: Left: Set G0 in the x − y − ψ space. Center: Set G(τ) for τ = 30sec. Right: Set G(τ)
for τ = 120sec. (the set has converged). For this case, both aircraft are cruising at 500kts. A = B =
[−1.3, 1.3] ◦sec−1.

set G(τ) is shown in Figure 9.2 center and right for τ = 30sec. and τ = 120sec. The sets

G(τ) can be interpreted the following way. If the relative positions of two aircraft are such

that (xr, yr, ψr) ∈ G(τ), then the pursuer can cause a LOS in the next τ time units. If

(xr, yr, ψr) /∈ G(τ), then no matter what the pursuer does, the evader can always avoid a

LOS. As can be seen in Figure 9.2 center and right, the growth of G(τ) is not isotropic:

Figure 9.3 shows slices of the set G(τ) for various τ , obtained at ψr = 90◦. The slices extend

in the (1,−1) direction (to the bottom right on the plot): the conflict is most difficult to

avoid when the relative position of the two aircraft points in this direction (the two aircraft

are heading towards the same point). The set G(τ) converges (i.e. stops growing) after

τ = 150sec. This fact, which is proved analytically for A = B [112, 114], will have practical

significance to our implementation, in which we will demonstrate numerical convergence of
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the set even for non identical vehicles. A possible heuristic interpretation of this fact is

that a can “always” escape by turning, even if b is faster. Similar observations have been

reported by Saint-Pierre for an analogous acoustic capture problem [46, 32, 115]. Note that

the shapes of the two dimensional slices of G(τ) change as the heading changes.
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r
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Figure 9.3: Slice of G(τ) from Figure 9.2 right, for ψr = 90◦, for τ = 30, 60, 90, 120, 150 sec. The
set extends in the direction (1,−1): the conflict is most difficult to avoid when the pursuer is initially to
the bottom right of the evader on this plot (the aircraft are heading towards the same point). Numerical
convergence to a fixed point is observed for τ ≥ 150sec.: G(τ) stops growing.

9.3 Extraction of parameters from ETMS data

In the following sections, we use the method summarized above. We perform reachability

computations (i.e. computing the set G(τ) from the set G0) for given choices of va, vb, and

ranges A and B of input turning rates ωa and ωb. We now explain how to choose these

values from ETMS data (a description of ETMS data is given in Chapter 3, Section 3.2.2).

Let us consider any pair of aircraft described in this ETMS set, and arbitrarily assign

one as the evader (aircraft a) and one as the pursuer (aircraft b). From ETMS data, we

can extract the velocity va of the evader aircraft; from this, we determine the range A of

available turning rates ωa as follows. A first order approximation of the dynamics of aircraft
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Alt. (100ft) 310 350

num. of measur. 2097 2515

Min. v (kts) 414 410
Max. v (kts) 514 480
Mean v 454 441
Std. dev. 16 12

Min. ω (deg·s−1) 2.12 2.27
Max ω (deg·s−1) 2.63 2.66
Mean ω (deg·s−1) 2.41 2.47
Std. dev. 0.079 0.067

Table 9.2: Speed and extremal turning rate distribution for two altitudes of traffic (31,000ft and 35,000ft),

over a 24 hour period in the Oakland ARTCC. The number of measurements used for the computation of

these statistics is reported in the first row. Each aircraft can lead to several measurements (if an aircraft

appears more than once at the corresponding altitude).

a provides the following equations for lift L, weight W = mg, bank angle α, mass m and

turning radius Ra:

L cosα =W and L sinα = mv2a/Ra (9.9)

from which we can compute Ra:

Ra = v2a / g tanα (9.10)

The previous result provides a lower bound on Ra, given by Ra =
v2a

g tanαmax
, where αmax is

the maximal bank angle, which for this study is αmax = 45◦. The turning radius can be

related to the maximal turning rate by: ωa = va
Ra

, and symmetrically, ωa = − va
Ra

, which

provides A =
[

− va
Ra
, va
Ra

]

and similarly for B. Using this relationship, the parameters of

the relative kinematics (9.2) of the two aircraft are completely defined. In order to solve

the corresponding HJI PDE (9.5), we need to prescribe φ0: G0 is chosen to be a cylinder of

radius d = 5nm according to FAA regulations. In this chapter, we use one 24 hour subset

of ETMS data in several sectors of the Oakland airspace.
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Figure 9.4: Reachable set for the situation in which aircraft a (dash dotted flight plan) and aircraft b

(solid flight plan) have intersecting flight plans. G(τ) is shown for τ = 30, 60, 90, 120sec. Aircraft b is in

G(τ = 90)\G(τ = 60), which means that aircraft b is a potential threat to aircraft a in the next 90sec, but

aircraft a is safe for at least 60sec. The conflict would not have been detected if the time horizon of the

computation had been 60sec. For the rest of the computations, we will take a time horizon of 150sec., in

order to take into account points at the extremity of the reachable set.

9.4 Choice of the time horizon, computational time

We need to determine the time horizon τ for the computation of G(τ). This choice is

determined by the time scale of the physical problem of interest: a conflict avoidance

maneuver is on the order of several minutes; the anticipation ability of a human ATC is

also on the order of several minutes. Therefore, we choose a time horizon of τ = 3min. The

distance flown at 500kts. in 3min. is 25nm., which enables one to capture potential threats

with aircraft 50nm from each other. Even if 50nm. might seem excessive, it is necessary to

choose at least 3min., as is illustrated by the growth of the reachable set in Figure 9.3. One

can see in this figure that the shape of G(τ) changes significantly in the interval [0, 3min].

In practice, numerical convergence was observed for τ ≤ 3min for all the examples treated

here (see for example Figures 9.3 and 9.4). This confirms the relevance of our choice:

numerical convergence for τ ≤ 3min implies that the duration of a conflict avoidance

maneuver (obtained when a chooses ω∗a to be its input during the maneuver) is of that

order.

The computation of G(τ) cannot yet be performed online. It takes approximately 5 minutes

to compute G(3min) (on a standard laptop) for a case similar to Figure 9.2. It is therefore
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Figure 9.5: Growth of the reachable set G(τ) for various values of τ , for a given initial relative heading

ψr = 90◦ (left), and ψr = 180◦ (right) of the two aircraft. First column: DG setting. G(τ) is bounded, and

extends in the (1,−1) – resp. (1, 0) direction. For points in the (1,−1) – resp. (1, 0) direction outside the

reachable set, the evader can avoid the LOS by going around the pursuer on both sides. Second column:

BB setting. For the ψ = 90◦ case, G(τ) extends first in the (1,−1) direction: the pursuer can cause a

direct collision by heading towards the evader if it is below and to the right of the evader on this plot. For

t = 150s, G(τ) grows for yr > 0. The corresponding (xr, yr) are positions for which the pursuer has to

turn right by 90◦ and intercept the evader (indirect collision). For the ψ = 180◦, the situation is entirely

symmetrical. Third column: CC setting. Both aircraft collaborate to a LOS, therefore, G(τ) grows much

faster, and for the same values of τ , all initial positions in G(τ) correspond to a direct collision (both aircraft

are heading at each other). For the three cases above, the velocity of the aircraft is 500kts (and therefore,

A = B = [−1.3, 1.3] ◦sec−1).
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impossible for an online implementation of our method to perform this computation in real

time for a given pair of A and B. However, it is possible to create a library of G(3min)

for different A and B. Since this method is a horizontal conflict detection method — and

therefore applies to aircraft within 2000 ft of each other, we can use the fact that the range

of va, vb is relatively small (and therefore the same is true for the ranges of possible A and

B). Table 9.2 justifies the fact that velocities at a given altitude have a relatively small

range. The range in turning rates is accordingly small.

In computing the statistics of Table 9.2, we accounted for the fact that the speeds might

change over time. Therefore, the average quantities in Table 9.2 are computed using one

entry for each occurrence of an aircraft in the 24 hour ETMS data set which we use. For

example, if an aircraft appears 12 times at altitude 35,000ft before it changes altitude, we

will account for the 12 speed records. We used a database of G(3min) for our implementation

and believe that a similar database could be used for an online implementation.

9.5 Choice of the strategy

The differential game formulation (9.5),(9.6) enables the investigation of multiple scenar-

ios, which are all relevant for ATC. Figure 9.5 shows three possible applications of this

methodology:

1. Communication loss with a blunderer. This situation is labeled DG (differential game).

It is modeled by the differential game setting developed previously. Blunders can happen

in ATC because of navigation or human errors. This scenario models the situation in which

one aircraft blunders and ATC communicates with the other aircraft (and prescribes a

corresponding conflict resolution maneuver). This setting thus encompasses the worst case

blunderer, heading directly towards the other aircraft.

2. Communication loss with both aircraft in presence of a blunderer and a “blind aircraft”.

This situation is labeled BB (blunderer + blind). ATC loses communication with both

aircraft. In general, when there is a communication loss, aircraft are supposed to follow

their original paths until communication is reestablished. The present scenario models a

situation in which one aircraft follows its original path while the other blunders (because
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of navigation or human error, for example). The worst case for this scenario is thus: the

pursuer tries to cause LOS directly, while the evader blindly stays on its course. This is

modeled by setting A = {0} (in other words, the evader has no input, i.e. no turning

ability).

3. Collaborative collision strategy. This situation is labeled CC (collaborative collision).

Because of misunderstanding in communication with ATC or failure to follow procedures,

both aircraft might collaborate (unwillingly) to a LOS. The worst case scenario for collab-

orative collision is thus when both aircraft head directly at each other from their initial

position. It can be modeled by replacing the Hamiltonian (9.7) by

H(x, p) = min
ωa∈A

min
ωb∈B

h(z, p, ωa, ωb)

In the previous formula, the two aircraft contribute to the LOS, as can be seen in the

min-min instead of the max-min.

Conflict avoidance maneuvers typically fall into category 1 (the no blunder case is en-

compassed by the worst blunder case). However, a case such as the midair crash above

Überlingen (Germany) between a DHL Boeing 757-200 (DHX 611) and a Bashkirian Air-

lines Tupolev 154 (BTC 2937) on July 1st, 2002, was caused by the simultaneous action of

the two pilots. The DHX Boeing followed a command issued by TCAS (onboard), while the

BTC Tupolev followed the (erroneous) orders of ATC, leading to a collaborative collision

rather than conflict avoidance. It therefore could fall in categories 2 or 3, depending on how

the communication records of the accident are interpreted.

The three scenarios are of equal interest for ATC, and will obviously lead to different reach-

able sets. It is intuitive to see that the following inclusion holds: Gscenario 1 ⊆ Gscenario 2 ⊆
Gscenario 3. Figure 9.5 illustrates the growth of G(τ) with τ for the three scenarios, for two

cases where the relative headings of the pursuer and the evader are respectively ψr = 90◦

and 180◦. The fast growth of G(τ) for scenarios 2 and 3 can clearly be seen from these

figures.

For the rest of the study, we will focus on scenario 1: it is assumed that ATC can communi-

cate correctly with at least one aircraft. We use this scenario to create a metric for conflict

detection.
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Conflict detection alert method

Input: ETMS data feed.
Output: Potential LOS threats.

1 At time t, select all aircraft pairs with a relative vertical separation of within 2000ft.
This can be done manually for specific aircraft or exhaustively (automatically)

2 For a given pair, extract va, vb, compute A, B using (9.9) and (9.10).
This is done using the ETMS data extraction procedure of the previous section

3 Compute G(τ) for a desired time horizon τ .
3’ Relabel aircraft a and b. Compute new G(τ).
4 Compute xr, yr, ψr from the ETMS data at t.

For G(τ) of 3 and 3’, check if (xr, yr, ψr) ∈ G(τ).
5 If (xr, yr, ψr) ∈ G(τ) for either 3 or 3’, a potential LOS is detected with τ time units.
6 Go back to 2 until all pairs have been tested.
7 Wait until next data update and return to 1.

9.6 Alert levels in ETMS data

9.6.1 Conflict detection methodology

We apply the previous method to high altitude traffic in ATC, using prerecorded ETMS

data. Since our goal is to develop a technique which can serve as an advisory tool to ATC,

the method is designed to work in real time with information provided at a given rate. For

the present case, the update rate in the ETMS data is 3 min., but using precomputed sets,

our method works as well with higher rates, such as 15 sec., which is on the order of the

current monitoring display at a sector level in the ARTCC. Our methodology is as follows:

We now describe the steps of the method above.

1. The aircraft selection can be done manually or automatically. A manual selection

would enable ATC to directly pick out an aircraft pair and test for a LOS threat. It

is also very easy to automate the procedure, to do an exhaustive test of all aircraft

pairs and display the threats only. Technically all pairs of aircraft should be selected

iteratively. It is easy however to introduce heuristics based on separation and heading,

in order to discard a large portion of them (for example if two aircraft are separated

by more than 50 nm and are flying opposite directions). This enables one to reduce

the computational time required by the method.
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Figure 9.6: Aircraft 1 (solid), arriving from Dallas/Fort Worth Airport to Oakland (OAK); aircraft 2
(dash-dotted), arriving from Indianapolis Airport to OAK. Both aircraft are initially supposed to follow the
Madwin 3 arrival (from Coaldale and Mina respectively), entering the Oakland ARTCC (positions labeled
1) at 35,000ft. At the position labeled 6, both aircraft are in G(τ) w.r.t. the other aircraft, for τ = 3min.
An altitude change - while descending into OAK - is observed shortly after (aircraft 1 descends to 14,000ft,
while aircraft 2 descends to 24,000ft). This action of ATC keeps the aircraft separated.

2. The velocities are directly read from the ETMS data. A and B are computed using

the procedure of the previous section.

3. The computation of G(τ) is performed by solving the HJE PDI, as described in the

previous section. It is realized for an arbitrary choice of a and b, and accounts for a

possible blunder of aircraft b. At step 3’, the labels a and b are inverted, so that a

possible blunder of aircraft a is also taken into account.

4. The relative position of the two aircraft can be computed directly from the latitude

and longitude of each aircraft. We ignore earth curvature for conflicts, since the size of

the reachable sets for our computations rarely exceeds 50nm. The heading difference

ψr can be directly computed from the ETMS data as well (Figure 3.10). Using ψr, one

can slice G(τ) at ψr (Figure 9.2). This provides a 2D set. Plotting (xr, yr) on top of

the slice of G(τ) shows if the aircraft b is inside G(τ) or not, and is a potential threat

or not. All examples which follow will be displayed in this format for readability. In

practice, the test (xr, yr, ψr) ∈ G(τ) can be automated using level set methods[116].

It is instantaneous and consists of evaluating φ numerically from a grid using an

interpolation subroutine.

5. If (xr, yr, ψr) ∈ G(τ), there is a potential LOS within τ time units. Our method also
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Figure 9.7: Aircraft 1 (dash dotted), arriving from Philadelphia Airport to San Francisco Airport (SFO);
aircraft 2 (solid), en route from Ted Stevens Anchorage Airport to Los Angeles Airport. Aircraft 1 is using
the Modesto 2 arrival to SFO. Interpolation of the positions of both aircraft between the labels 2 and 3
shows that aircraft 2 is in the G(τ) for aircraft 1. ATC avoids the conflict by commanding aircraft 1 to
descend to 24,000ft (which initiates the descent into SFO).

allows one to check if (xr, yr, ψr) ∈ G(τ)\G(τ ′) where τ ′ ≤ τ . In this case, if τ ′ is

large enough to climb or descend to the next floor, a LOS can be avoided by altitude

change.

6. All pairs of aircraft have to be tested for potential threats.

7. The update rate of the ETMS data is on the order of 3 min., as appears in the

examples presented in this chapter.

9.6.2 Applications and validation of the results

Several metrics have been defined in the past to help the decision making process in ATC

[96]. The specific metric used here is time to minimum separation. It is easy to adapt

our mathematical formulation to other metrics such as predicted minimum separation or

estimated time to closest point of approach [96], using an equivalence theorem [116]. The

goal of the rest of the chapter is to show that this metric is appropriate for short term LOS

detection.
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Figure 9.8: Aircraft 1 (solid), arriving from Chicago O’Hare Airport to San Jose Airport (SJC); aircraft 2
(dash-dotted), arriving from Phoenix Sky Harbor Airport to San Francisco Airport (SFO). Aircraft 1 is on
El Nido arrival at 35,000ft entering through Coaldale; aircraft 2 is on Modesto 2 arrival, entering through
Clovis. Interpolation between positions 2 and 3 shows that aircraft 2 is in the G(τ) of aircraft 1. The action
of ATC coincides with their respective descents: aircraft 1 is commanded to descend to 24,000ft, while
aircraft 2 is commanded to descend to 11,000ft (starting from position 2 and 3 respectively).

Our method provides LOS prediction for aircraft pairs, and the corresponding horizontal

maneuvers to apply to one of the aircraft in order to avoid the LOS. It is not always realistic

however to apply the optimal heading changes provided by ω∗a directly to a real aircraft: even

though it has already been implemented in practice for UAVs [146], the technical difficulties

for communicating ω∗a from the ground ATC to an aircraft are still significant, and enhanced

by the ill-behaved nature of ω∗a [116]. However, our goal is not an implementation of the

controller provided by our method, but the use of the reachable set as a safety set for LOS

alert; the maneuver assignment is left to ATC.

In order to assess the value of our metric, we run it on an ETMS data sample, and rate its

success in the following way. We classify the scenarios encountered by the method in four

categories. Each pair of aircraft treated can be in one of the following cases:

• Detected conflicts. A conflict is detected when the method presented in the previous

section assesses a threat, and the ETMS data unambiguously shows an actual conflict

resolution by the ATC. We consider the following conflict resolution protocols unam-

biguous: (1) altitude change prior to LOS, (2) significant heading change before LOS.

Case (1) is easily detected from the altitude tag in the ETMS data. Case (2) is harder

and requires comparison with filed flight plan or current heading.
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Figure 9.9: Aircraft 1 (solid), en route from Reno/Tahoe Airport to Los Angeles Airport; aircraft 2 (dash-
dotted), en route from Sacramento Airport to San Diego Airport; both aircraft are cruising at 33,000ft when
aircraft 1 is commanded to climb to 37,000ft by the ATC, at the position labeled by 4. At position 5, both
aircraft are in the G(τ) of the other aircraft.

• Conflict detected with interpolation. Because of the sampling rate of ETMS data

(one update every 3 min.), our method might miss occurrences of (xr, yr, ψr) ∈ G(τ).
Interpolation of the flight path between the sample points might however provide a

detected conflict from the previous category. Since this was not observed directly from

the data, but from an interpolation, we call this “conflict detected with interpolation”.

An implementation in ATC systems would not suffer from such problems because the

update rate would be much faster.

• False alarms. When our method detects a threat, but no reaction from the ATC was

observed in the ETMS data, we call the situation a false alarm. It is due to the fact

that our method is conservative: one of the aircraft did not do the worst possible

action ω∗b which is accounted for in our algorithm.

• Not applicable. Any pair of aircraft for which no threat is detected. Most of the

aircraft pairs will fall into this category, because they are very far from each other.

We realized a sample study for one hour of traffic for all altitudes between floors 250 and

370 (25,000 ft and 37,000 ft respectively) for the complete Oakland ARTCC, and classified

all aircraft pairs using the categories above. The result is presented in Table 9.3. The

number of “not applicable” pairs is obviously greater than all other numbers; it illustrates

the fact that the number of conflicting pairs of aircraft is small in comparison with the total
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Figure 9.10: Aircraft 1 (solid) and aircraft 2 (dash-dotted) are both en route from Seattle-Tacoma Airport
to Los Angeles Airport, cruising at 33,000ft. Keeping aircraft on their path (Jetway 7) would lead to LOS,
predicted by our algorithm, using interpolation between 3 and 4. The maneuver chosen by ATC (aircraft 2
deviates from its path, and joins again) is not obvious from the data, but avoids LOS.

number of pairs of airborne aircraft. We see from Table 9.3 that our method only gives two

false alarms out of 33 cases, which is satisfying. Figures 9.6 to 9.10 illustrate some of the

detected conflicts and also conflicts detected with interpolation accounted in Table 9.3. We

also observe that most of the cases we found in this study were conflict avoidance scenarios

resolved by altitude changes. Very often, these altitude changes coincide with descent of

aircraft into destination airports, as in Figures 9.6, 9.7 and 9.8.

To further justify the usefulness of the method proposed, we also need to show that our

results do not saturate the airspace display with unsafe sets, i.e. that the cumulative size of

the unsafe areas does not cover too large a portion of the airspace. We determine the total

airspace area which our method computes as unsafe, at a given time (i.e. cumulating all

aircraft pairs) and plot its value divided by the area of just the protected zones G0, over a
24 hour period. The result is shown in Figure 9.11 for two flight altitudes. We see that the

results never exceed a factor of 4: the total unsafe area marked by our algorithm is never

bigger than 4 times the area enclosed by the safety disks of all aircraft. This confirms our

belief that this method is applicable to a real ATC system, in that it does not produce too

many false alarms or saturate the display with large unsafe sets.
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Floor D.C. D.C.w.I F.A. N.A T.C.P.

250 3 2 0 205 210
270 1 1 0 256 258
290 2 2 0 288 292
310 0 1 0 186 187
330 7 2 1 198 208
350 6 6 1 361 374
370 0 0 0 61 61

tot. 19 14 2 1555 1590

Table 9.3: Sample study for one hour of ETMS data for flight levels ranging from 25,000ft to 37,000ft.

All aircraft pairs are classified in one of the four categories: detected conflicts (D.C), detected conflicts with

interpolation (D.C.w.I), false alarms (F.A.), not applicable (N.A). The sum is shown in the last column as

Total Counted Pairs (T.C.P.).

Figure 9.11: Average number of aircraft per hour at a given altitude, over a 24 hours period. Ratio of the

area labeled potentially unsafe G(τ) over the sum of the protected areas (G0). This ratio does not exceed

4, which confirms that our method provides results which are compatible with current ATC displays (there

will be no saturation of the airspace display with unsafe sets).



Chapter 10

Summary, extensions and open

problems

In this very brief and final chapter, we summarize the work presented in this dissertation and

outline some future directions. Some problems are direct extensions of the work presented

here; others are more fundamental questions or open problems, which might be of interest

on their own.

10.1 Summary

After a brief presentation of the current Air Traffic Control system in the US, we presented

a new Lagrangian model of sector air traffic flow. The Lagrangian approach describes the

trajectories of each aircraft in the system. The model uses the framework of hybrid systems,

which enables us to decompose the trajectories into specific maneuvers, which we identified

as currently in use by Air Traffic Controllers. We modeled the behavior of human Air

Traffic Controllers with a cost function, incorporating the different levels of priority for the

tasks which they accomplish in controlling the air traffic flow. The model was successfully

validated against ETMS data.

A subset of this model was used to describe arrival traffic in the vicinity of large airports.

The problem of routing and sequencing the aircraft was posed as a hybrid system controller

187
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synthesis problem. It was then reduced to a MILP. Numerical experiments have shown that

using commercially available software to solve it can lead to unpredictably large computation

times, and is therefore not suitable for an online implementation.

A new polynomial time algorithm was developed for a subproblem of the general MILP.

The algorithm relies on an analytical solution which we derived for the case in which the

order of arrival of the aircraft is known a priori. Numerical experiments have confirmed

the applicability of the method for numbers of aircraft up to 100, which is an upper bound

for realistic scenarios. 3- and 5-approximation algorithms were developed for two other

subproblems of the general MILP, in which the aircraft are allowed to achieve an integer

number of holding patterns before being released back into the system. The two algorithms

minimize the sum of arrival times of all aircraft, and the arrival time of the last aircraft. To

our best knowledge, despite striking similarities with problems available in the literature,

these problems and algorithms are new.

A new Eulerian model of air traffic flow was presented. This approach models the air

traffic as the flow of a fluid in pipes. The density (of the fluid) represents the density of

aircraft. This approach is suitable for high altitude traffic scenarios, in which large numbers

of aircraft are involved, and for which the goal is to control the density of aircraft. A PDE

was derived to describe the evolution of the density over time, inspired by the Lighthill-

Whitham-Richards PDE usually introduced in the context of highway traffic. A control

paradigm was developed to control systems driven by networks of PDEs. It relies on the

computation of the adjoint of the system of coupled PDEs governing the network. It was

successfully applied to the air traffic control case of interest.

Finally, Hamilton-Jacobi formulations of reachability analysis were investigated, which can

be used to compute unsafe sets around aircraft in the NAS. First, a link between viability

theory and Hamilton-Jacobi formulations of reachability was made. Such a link had already

been made for the static HJE. It is to our best knowledge the first for the time dependent

HJE. A characteristics-based method was developed to compute analytical solutions of the

HJE, which provides a solution to the Mayer problem. Some applications of this method

have significantly clarified questions raised in the past about convergence of level set meth-

ods and disappearance of level sets in numerical computations. Finally, these formulations

were applied to ETMS data and enable us to show that the differential game setting can

be used efficiently to assess alert levels in the NAS.
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10.2 Extensions of this work

10.2.1 Modeling

Modeling is an open topic for at least two reasons. First, it might be useful to refine the

model for applications other than the ones presented in this dissertation. We will outline

some future directions below. Second, once the model is in place, validation can improve

our confidence in the model when its results confirm observations; further tests which we

also outline below might help validate additional features of our model, in particular with

respect to its predictive capabilities.

Lagrangian air traffic model

Even though aircraft dynamics could be included in the Lagrangian model, we did not do

it. We feel that the dynamics of the aircraft is relevant for the collision avoidance scenarios,

for which the precise knowledge of aircraft motion can turn out to be crucial; we do not feel

that they would bring any significant improvement to the MILP formulation of the routing

scheduling problems.

• The model of the human Air Traffic Controller could be improved to include sector

specific requirements, based on traffic flow observations made at relevant ARTCCs.

Our approach for this work was to avoid disjunctions of “if”, “then”, “else” state-

ments in favor of a more systematic optimization approach. It is, however, clear that

modeling a human with cost functions has its limits, and methods inspired by artificial

intelligence or human factors might significantly improve the fidelity with which the

simulator reproduces the flow. From an ATC perspective, there is a lot of interest in

building predictive models which could simulate how humans react under stress.

The next level of modeling which this work did not address is modeling the Traffic

Management Unit, which takes strategic decisions at the center level (ARTCC). The

modeling at this level, and its interaction with the sector level would be facilitated by

the existence of the playbooks mentioned earlier, which also implies that the model

is center dependent.
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• Validation of a model is of equal importance. A recent study [84] classified days in

the NAS into classes: “good days”, “congested days”, etc. This study could enable

one to test the predictive capabilities of the model (and extensions) under stress and

normal conditions, which would be very useful. Another achievement would be to

validate the maneuver assignment based on observations realized at any ARTCC. For

example: correlating the recorded decisions of a human Air Traffic Controller with the

simulation from ETMS data, from the same day for the same airspace, would provide

strong statements for the validity of our cost function and solution mechanism.

Eulerian air traffic model

A common problem of Eulerian networks is the treatment of the destination of the different

agents (aircraft or cars). This was not an issue for the present case, since the diverging

link was only used for control purposes. A challenging extension of this work would be

to incorporate several major destinations in the network (and not only Chicago as in the

present case). This difficulty was also noted by Menon [110] and seems to appear in highway

networks as well.

A possible extension of the Eulerian approach is to add one more dimension to the problem,

and treat the air traffic flow as a two dimensional problem. This approach was suggested by

Menon [111]. The difficulty of multiple origins and destinations becomes even more crucial

in this setting, but its advantage is the possibility to control a surface density (vs. a line

density, i.e. along a line, as in the present work).

The control methodology applied here can also be applied to other physical systems which

can be modeled by a system of coupled PDEs. We recently applied it successfully to highway

networks [23]. Another possible extension would be networks of irrigation channels, as

presented in [104].

10.2.2 Combinatorial optimization algorithms

It was recently suggested to us by one of the authors of [41] to adapt the algorithm of the

one interval case to a problem of dimension two, sometimes referred to as the square packing

problem.
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The square packing problem consists of placing N squares of width ∆ into N boxes (which

can overlap), such that the squares do not overlap. In mathematical terms, consider a

given set of li ∈ R2, and ui ∈ R2, where i ∈ {1, · · · , N}. In the two dimensional plane,

ui represents the upper right corner of box i, and li the lower left corner of box i. Given

∆ > 0, the square packing problem consists of finding a set of xi, i ∈ {1, · · · , N} satisfying

li ¹ xi ¹ ui

with the constraint ||xi−xj ||∞ ≥ ∆ for all i 6= j (i.e. either |xi1−xj1| ≥ ∆ or |xi2−xj2| ≥ ∆),

with usual notations of [41]. Using a modification of the analytical solution found for the

aircraft case, it is clear that solving this feasibility problem leads directly to the computation

of the largest possible ∆. An open problem is to see how the feasibility algorithm used for

the aircraft case can be extended to this two dimensional problem.

An extension of the approximation algorithms presented in Chapter 5 is to use other objec-

tive functions (for example, total number of holding patterns, or total number of aircraft

put on a holding pattern). It would be of great interest to extend this algorithm to the case

in which the payoff is the sum of the delays (and not the arrival times). Minimizing the sum

of arrival times or minimizing the sum of the delays is the same. Of course, the approxi-

mation ratio is different. Finding the approximation ratio for this new objective function

would be of interest in order to relate the output of the algorithm to metrics currently in

use in Air Traffic Control.

10.3 Open problems

Some fundamental questions remain open. Solving them would constitute a significant

scientific contribution. We list them below.

• Prove that the combinatorial optimization problems of Chapters 4 and 5, with more

than one interval of feasible arrival times, are NP-complete with respect to the number

of aircraft and/or the number of intervals.
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• Prove that the analytically constructed solution of the Mayer problem is the viscosity

solution of the HJE. The only guarantee provided by the method is that the solution

is continuous. In cases in which it is not continuously differentiable, it is at best a

weak solution. It is possible to prove a posteriori that a constructed solution is the

viscosity solution (for example using definitions from [74, 57]). However, proving that

this is true in general (i.e. for any such solution constructed with our method) is an

open problem. Very few analytical expressions of viscosity solutions of the HJE are

known (a few simple examples are provided in [14]). It would also be interesting to

relate this work to the theory of generalized characteristics [109] which itself is related

to the concept of the viscosity solution.

• Prove that Theorem 6 follows directly from the definition of the discriminating ker-

nel [46]. This involves generalizing the proof of Theorem 6 in Section 8.2.3 to the case

of differential games.



Appendix A

Overapproximation algorithms for

the reachable set

This appendix provides an overapproximation algorithm to compute the reachable set.

In [16], we sketched several proofs to show that this algorithm is overapproximative, which

means that its result will enclose the true reachable set, an important property if the reach-

able set represents unsafe regions, as in Chapters 8 and 9.

A.1 Overapproximation method for constrained viability

A crucial underlying assumption made in Chapters 8 and 9 is that the problem is uncon-

strained, i.e. that the state can take any value within Rn. Most of the known PDE-based

techniques, such as the HJE methods presented above, rely on this assumption. If the do-

main is bounded, i.e. the state space is not Rn, but a subset K ⊂ Rn, the previous result

becomes invalid. An intuitive reason for this fact is that for a given dynamics and a given

target G0 ⊂ K, it might not be possible to reach G0 while staying in the constraint set K.

This fact is illustrated in Figure A.1.

The difficulty of incorporating constraints into a reachability problem was one of the major

motivating factors in the emergence of viability theory [6]. The subsequent viability results,

including optimal control, Lyapunov theory, differential games and finally hybrid systems [8,

193
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Figure A.1: Left: Diagram of the isolines of the unconstrained minimum time-to-reach function T(x). Ω
is the set in which this function is finite (and therefore, there exist a trajectory leading into the target). For
example there exists a trajectory leading from x1 to the target, but there does not exist a trajectory leading
from x2 to the target. Right: If in addition, the trajectories are constrained to remain in a set K ⊂ Rn, K
might be divided into several subsets: in Ra the points are such that any trajectory emanating from them
stays in K forever or reaches G0 in finite time (for example x1 or x2); in Rb some of the trajectories exit
K; in Rc, it is not possible to reach G0 without exiting K. Despite the fact that T(x3) <∞, the minimum
time-to-reach the target from x3 while staying in K is infinite.

44, 60, 61] enabled a systematic mathematical treatment of constraints. In the rest of this

chapter, we will use these results to show how to incorporate constraints into a reachability

problem.

A.1.1 Constrained reachability using minimum time-to-reach functions

We use the formalism developed in Section 8.1 and consider a dynamical system with control

input a:
{

ẋ(t) = f(x(t), a(t)), t > 0

x(0) = x
(A.1)

where a(·) ∈ A(t) as defined in Assumption 1; f is continuous in a and Lipschitz-continuous

in x. We rewrite (A.1) in set valued form as a differential inclusion:

{

ẋ(t) ∈ F (x(t)) := {f(x, a)}a∈A
x(0) = x

(A.2)

The set of solutions of (A.2) (equivalently of (A.1)) is denoted SF (x). Since (A.1) and

(A.2) are strictly equivalent [10], we will use them interchangeably. In order to adopt the
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traditional notations of viability theory, we change the notations slightly with respect to

the previous sections. Let K ⊂ Rn be a constraint set and C be a closed set in K (C was

formerly called G0). A generic element of SF (x) will be denoted x(·) (and was formerly

denoted ζF (·;x)). Consider the following problem: find the set of initial conditions x for

which there exists a trajectory starting at x remaining in K and reaching C in finite time.

In mathematical terms, we seek

WK
C = {x ∈ K : ∃x(·) ∈ SF (x), ∃t ≥ 0, x(t) ∈ C ∧ (∀s < t, x(s) ∈ K)} (A.3)

We define the constrained minimum time-to-reach function accordingly:

θKC (x) = inf
x(·)∈SF (x)

inf{t ∈ R+ : x(t) ∈ C ∧ (∀s < t, x(s) ∈ K)} (A.4)

and note that T(x) = θKC (x) when K = Rn, where T(·) was defined in Section 8.1. Note

that θKC (x) = +∞ if all the trajectories originating at x leave K before reaching the target,

or stay in K forever without reaching C.

Fact 2. WK
C may be computed using the minimum time-to-reach function:

WK
C = Dom

(
θKC
)
:= {x ∈ K : θKC (x) < +∞} (A.5)

where Dom(·) denotes the domain of definition of the function θKC , or the set of points at

which it is defined (here that is the set of points at which it is finite).

The following can be found in [46] and is the same as (8.21) in the case with constraints:

Proposition 4. Assume that in (A.2), F is uppersemicontinuous∗ with compact convex

nonempty values and that K and C are closed. Then

Epi(θKC ) = ViabΦ
(
K × R+

)
(A.6)

where Epi(θKC ) := {(x, y) ∈ K × R+ : y ≥ θKC (x)} denotes the epigraph of the function θCK ,

∗A set valued map F : X ; X with compact values is uppersemicontinuous iff ∀x0 ∈ X, and ∀ε > 0,
∃η > 0 such that ∀x ∈ x0 + ηB, F (x) ⊂ F (x0) + εB.
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i.e. the set of points above its graph, and where

Φ(x) =

{

F (x)× {−1} if x /∈ C
ch{F (x)× {−1}, {0, 0}} if x ∈ C.

(A.7)

In (A.7), ch denotes the closure of the convex hull ch of the set between brackets (i.e.

the closure of the smallest convex set containing it). Proposition 4 states that the set of

points above the graph of the minimum time-to-reach function is the set of initial states

(x, y) ∈ K × R+ such that the trajectories (x(·), y(·)) ∈ SΦ((x, y)) reach C × R+ in finite

time. Even if we do not make direct use of (8.15),(A.6),(A.7) in the present work, they

have proved crucial in the development of the techniques used here. Indeed, Proposition 4

links the minimum time-to-reach function to the viability kernel and therefore enables the

use of the viability kernel algorithm (Frankowska and Quincampoix [75]) whose numerical

implementation (Saint-Pierre [139]) provides a guaranteed overapproximation of Epi
(
θKC
)
.

In subsequent work, Cardaliaguet et al. [44] tailored the viability kernel algorithm to

the computation of the minimum time-to-reach function. In [141], Saint-Pierre proposes a

further simplification this algorithm. In the next section, we present our numerical algorithm

inspired by [141].

A.1.2 Approximation Algorithm

We present an algorithm to underapproximate the minimum time-to-reach function under

state constraints, θKC , adapted from [46, 141] for our design. The proof of this algorithm has

been sketched in [16]. The inclusion of state constraints will allow us to ignore the problem of

boundary conditions. It gives good insight into the approximation procedure: the algorithm

computes the exact minimum time-to-reach function for a discrete time dynamics defined

on a discrete state space. Hence, we begin by showing how we can define a fully discrete

dynamics whose trajectories are good approximations of the trajectories of system (A.2)

(good will be defined later).
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Numerical Approximation of Continuous Dynamics

We endow X := RN with the Euclidean norm ‖·‖, and we denote by B the unit ball under

this norm. For h > 0, we set Xh =
(

hN/
√
N
)N

, where N is the set of natural numbers.

Then ∀x ∈ X, ∃xh in the ball x + hB. Hence, Xh is a discrete approximation of the state

space X. The following claims defines approximations of SF (x) of the system (A.2) by the

set of trajectories SΓ(xh) of discrete dynamics Γ : Xh ; Xh.
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Figure A.2: Left: Discretization of space Xh = hN2 and the domain : Kh = (K + hB) ∪ Xh. Right:

discretization of the target: Cρ,h = (C + (Mρ+ h)B) ∪Xh.

Claim 1 (Relationship between continuous and discrete trajectories). Assume

that F : X ; X is upper semicontinuous with nonempty convex compact values and

is l-Lipschitz. Assume moreover that there exists M > 0 such that for all x ∈ K,

supy∈F (x) ‖y‖ ≤ M . For a mesh h > 0 and a time step ρ > 0, we define discrete dynamics

on Xh:

xn+1
h ∈ Γρ,h(x

n
h) := [xnh + ρ ( F (xnh) + r(ρ, h)B )] ∩Xh, (A.8)

where r(ρ, h) = lh + Mlρ + 2h
ρ
, and we define the set of trajectories of this system as

SΓρ,h(xh). Then a trajectory x(·) of system (A.2) defines trajectories of system (A.8) in the

following way:

∀{xnh} ∈ {{ynh} : ∀n ∈ N, ynh ∈ (x(nρ) + hB )} , {xnh} ∈ SΓρ,h(xh), (A.9)

and a trajectory {xnh} ∈ SΓρ,h(xh) is close to a trajectory x(·) ∈ SF (xh) in the following
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sense: ∀t ≥ 0

‖x(t)− x̂(t)‖ ≤







(

(M + r(ρ, h) ) ρ + r(ρ,h)
l

)

(elt − 1) if l > 0

2 h
ρ
t if l = 0

(A.10)

where x̂(t) = xnh+
xn+1
h

−xnh
ρ

(t−nρ), for n ∈ N and t ∈ [nρ, (n+1)ρ], represents a continuous

trajectory interpolating points in {xnh}.

This claim states that for all ρ and h, the dynamics (A.8) is an overapproximation of

dynamics (A.2) in the following sense: all trajectories of system (A.2), when discretized

with time step ρ and projected on Xh, are trajectories of (A.8); and all the trajectories of

(A.8), when interpolated as in x̂(t) above, are approximations of trajectories of (A.2), with

an upper bound on the error given by an increasing function of η(ρ, h) (with η(ρ, h) = 2h/ρ

if l = 0) and of time. Therefore, the smaller the η(ρ, h), the better the approximation.

Moreover, η(ρ, h) tends to 0 if and only if ρ, h and h/ρ tend to 0. This will be used in the

approximation algorithm for the minimum time-to-reach function.
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Figure A.3: The set valued dynamics F is discretized as shown in (A.8)

Approximation of the minimum time-to-reach function.

We will now define a fully discrete target problem which approximates the target problem

defined for continuous time and state space, and will show relationships between the discrete

minimum time-to-reach function and the continuous one. We shall use Θ to denote the
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discrete approximation of θKC , its sub/superscripts will depend on context (and will always

correspond to the sub/superscripts of θ).

We begin by defining a discrete approximation, and the sense in which discrete functions

can converge to continuous functions.

Definition 2. We say that a discrete function Ψh : Xh → R is an underapproximation of

a function θ : X → R if

∀xh ∈ Xh, ∀x ∈ (xh + hB), Ψh(xh) ≤ θ(x),

and for a family (or a sequence) indexed by the set Ξ (containing elements called ξ) denoted

{Ψh,ξ}, we write lim(h,ξ)→(0+,ξ0)Ψh,ξ = θ if

∀x ∈ X, lim
(h,ξ)→(0+,ξ0)

sup
xh∈(x+hB)∩Xh

Ψh,ξ(xh) = θ(x).

If moreover {Ψh,ξ} is a underapproximation of θ for all h > 0 and all ξ ∈ Ξ, we say that it

defines a converging underapproximation scheme of θ.

Claim 2 (Discrete function is converging underapproximation of continuous). Let

K ⊂ X be a closed set of constraints and C ⊂ X be a closed target. Under the assumptions

and notations of Claim 1 and for ρ > 0 and h > 0, we denote Cρ,h = (C+(Mρ+h)B)∩Xh

and Kh = (K + hB) ∩Xh, and we define the discrete minimum time-to-reach function:

ΘKh

Cρ,h
(xh) = inf

{xn
h
}∈SΓρ,h (xh)

inf{n ∈ N : xnh ∈ Cρ,h ∧ ∀m < n, xmh ∈ Kh} (A.11)

Then
{

ΘKh

Cρ,h

}

defines a converging underapproximation scheme of θKC .

Corollary 3. The minimum time-to-reach function θKC can be underapproximated with use

of a discrete function Θn, using the following algorithm:

Θ0(xh) =

{

0 if xh ∈ Kh,

+∞ else
(A.12)

Θn+1(xh) =

{

ρ+ infyh∈Γ(xh)Θ
n(yh) if xh /∈ Cρ,h,

Θn(xh) else
(A.13)

Indeed, ΘKh

Cρ,h
(xh) = limn→+∞Θn(xh).
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Figure A.4: Left: Numerical underapproximation of the value function of the double integrator problem
(A.14), obtained by the the scheme presented in this paper. Computation realized on a 400 × 400 grid on
[−5, 5] × [−5, 5], converged in 56 iterations, ρ = 0.09. Right: Numerical underapproximation of the value
function of the wall pursuit evasion game (A.15). Computation realized on a 200 × 200 grid on [−5, 0]×[0, 5],
converged in 36 iterations, ρ = 0.09. In both cases, three points out of four omitted in the plot for clarity.
The numerical underapproximation of (A.15) is more accurate than that of (A.14). This is due to the zero
Lipschitz constant of the dynamics of (A.15).

The choice of the two parameters ρ and h is a matter of trial and error. However, when

one of them is fixed, an interesting hint for setting the other is to minimize either r(ρ, h)

or η(ρ, h) which appear in Claim 1 and are indicators of the accuracy of the approximation

by Γρ,h.

A.1.3 Numerical validation

The claims of the previous section do not provide direct information about the rate of

convergence of the algorithm, as other numerical techniques do (see for example Mitchell

and al. [116]). Furthermore, the bounds shown in (A.10) are very large (therefore bad

for numerical purposes), and do not give any indication how the solution behaves within

them. We want to be able to quantify how close the underapproximation we provide is

from the viscosity solution of the constrained Hamilton-Jacobi equation corresponding to

the problem (see for example [14, 8]). We now show computations realized on two textbook-

style examples for which we are able to compute analytically the viscosity solution.
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Figure A.5: Steering problem, after Bryson [43]. The switching curve determines the optimal control to

reach (0, 0) in minimum time.

Steering Problem (after Bryson [43]). The dynamical system for this problem is:

(ẋ, ẏ) = (y, b) where b ∈ [−1, 1], (x, y) ∈ R2. The viscosity solution θR2
(0,0) of the correspond-

ing static HJI PDE for this dynamics is given by:

{

θR2
(0,0)(x, y) = −y +

√

2y2 − 4x if x+ 1
2y|y| ≤ 0

θR2
(0,0)(x, y) = +y +

√

2y2 + 4x if x+ 1
2y|y| ≥ 0

(A.14)

The numerical results obtained from the underapproximation algorithm are compared to

the viscosity solution θR2
(0,0) in Figure A.4 (left). Clearly, the numerical result is below the

analytical. The error is due to the Lipschitz constant of this example as related back to

(A.10). We note here that Saint-Pierre [139] has developed powerful techniques to alleviate

this problem.We did not implement them: they are computationally expensive and our goal

here is fast overapproximations.

Wall pursuit evasion game (after Isaacs [85]). We treat this problem as a control

problem by forcing the evader to run in one direction and reducing the space to one quadrant.

In this context: (ẋ, ẏ) = (−w cos d, sign(y) − w sin d = 1 − w sin d) with (x, y) ∈ R− × R+:

The pursuer has speed w > 1 and can move any direction d. Isaacs’ retrograde path equations

method enables reducing this problem to solving (l+wθ(x, y))2 = x2+(y+θ(x, y))2, which

provides the viscosity solution (A.15) of the corresponding static HJI PDE, shown in Figure

A.4 (right), as well as its numerical underapproximation obtained with our algorithm.

θR−×R
B(0,l)∩R−×R(x, y) =

1

w2 − 1

[

−(lw − |y|) +
√

(|y|w − l)2 + (w2 − 1)x2
]

(A.15)
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Figure A.6: Relative dynamics in the wall pursuit evasion game of Isaacs [85].

A.2 Conflict detection in merging traffic using underapprox-

imations of the minimum time-to-reach function

We are now interested in performing fast computations of safety zones of aircraft for Air

Traffic Management systems. Guaranteed underapproximation of those sets is crucial: cer-

tification of a conflict resolution protocol always requires a proof of its safety. We will here

show the application of our technique to aircraft conflict resolution problems very frequently

encountered in the Sector 33 airspace of the Oakland ARTCC.

Sector 33 is one of the busiest high altitude sectors in the US. It is at the junction of jetways

coming from and going to Los Angeles, San Francisco, Oakland, San Jose, Las Vegas and

is a collector of traffic from the east coast. At waypoint COALDALE in this sector, aircraft

coming from Las Vegas may frequently conflict with aircraft going to the east coast at the

same flight level.

We consider the following subproblem (the notations refer to Figure A.9 and 3.1). Let the

local flight plan of aircraft 1 be jetway 92 towards COALDALE and then jetway 58 towards

San Francisco, while the flight plan of aircraft 2 is jetway 58 through COALDALE . If the

aircraft are in danger of a LOS, meaning coming closer than 5 nautical miles horizontally

and 1000ft vertically to each other, the Air Traffic Controller will either reroute horizontally
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Figure A.7: Hybrid model of aircraft climb, corresponding to (A.17).

or climb one of the aircraft (i.e. will provide only one discrete action). The goal here is to

develop advisories for Air Traffic Controllers, so that aircraft do not lose separation.

Let x ∈ R2 be the planar relative coordinate of the aircraft 1 w.r.t. aircraft 2, v92 ∈ R2 the

velocity vector of aircraft 1 along jetway 92, and v58 ∈ R2 the velocity vector of aircraft 2

along jetway 58. We allow uncertainty in speed (due to winds, gusts, inaccuracy of sensors),

with uncertainty bound of Mach M = 0.05.

ẋ = v58 − (v92 + 0.05 · c · B) Mode 1 (A.16)

where c is the speed of sound and B is the unit ball in R2. We can now apply the results

of Section A.1. Let us consider aircraft 1 as the evader and compute the safe set of its

allowed positions (i.e. for which no loss of separation can occur). The unsafe set is the set

of points which can eventually enter a disk target C around aircraft 2 of radius 5 nautical

miles. Let us denote θmode 1 the minimal time-to-reach function for target C (there are no

state constraints here). Then the safe set is R2 \Dom
(
θmode 1

)
.
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Conflict resolution via heading change (hybrid model).

A possible Air Traffic Controller choice is to make aircraft 1 “cut” between jetway 92 and

jetway 58. This avoids the conflict and shortens the path of aircraft 1, and is the preferred

option of Air Traffic Controllers in general. This can be modeled as a second mode of

aircraft 1, now rotated by an angle ψ to the west:

ẋ = v58 −Rψ · (v92 + 0.05 · c · B) Mode 2 (A.17)

where Rψ is the standard R2 rotation matrix of angle ψ. Let us denote θmode 2 the minimal

time function to reach C in this dynamics. An illustration is given in Figure A.7.

The Air Traffic Controller’s policy is the following: if aircraft 1 is safe in mode 1, stay in

mode 1; else if it is safe in mode 2, switch to mode 2; if both modes are unsafe, switching

can be used to increase the time during which the distance between the two aircraft is

guaranteed to be greater than 5 nautical miles.

Denote by θhybrid the function representing the minimum guaranteed time before loss of

separation, and by F1 and F2 the set valued dynamics associated to the two modes, and

by SF1,F2(x, T ) the set of trajectories originating at x for which switching from mode 1 to

mode 2 occurs once. Then, at time T , we have:

∀x ∈ X, θhybrid(x) = sup
T>0

inf
x(·)∈SF1,F2 (x,T )

inf{t > 0 : x(t) ∈ C} (A.18)

with safe set R2\Dom
(
θhybrid

)
. By definition, Dom

(
θhybrid

)
= Dom

(
θmode 1

)
∩Dom

(
θmode 2

)

and ∀x ∈ R2, θhybrid(x) ≥ max{θmode 1, θmode 2}. An algorithm for underapproximating

θhybrid is presented in the next section.

Conflict resolution via floor climbing (reset model).

The second possible choice of the Air Traffic Controller is to climb aircraft 1. It takes about

3 minutes to climb an aircraft from one floor to the next floor. If there are no aircraft on

the next floor and there is enough time to climb the aircraft, then the problem is solved.

Let us investigate the case in which there is another aircraft on the next floor (aircraft 3).

Let aircraft 1 be on floor 350 (35,000 ft) on jetway 92 towards COALDALE , aircraft 2 be on

floor 350 on jetway 58 towards COALDALE and aircraft 3 on floor 370 (37,000) on jetway 58



A.2. CONFLICT DETECTION IN MERGING TRAFFIC 205
PSfrag replacements

r(x)

2000 ft separation

aircraft 1

aircraft 2
aircraft 3

distance(1,2)
distance(1’,3)
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Figure A.8: Reset model of aircraft climb, corresponding to (A.19).

towards COALDALE (see Figure A.10). Given the positions of aircraft 2 and 3 on jetway 58 at

their respective altitudes, we want to find the set of locations at which both collision cannot

be avoided, and collision can be avoided by either climbing or staying at the same level. We

assume that aircraft 2 and 3 are separated horizontally by a vector δ (regardless of their

altitude) and fly at the same speed (which is usually the case on high altitude jetways). If

it takes Tclimb seconds to climb from floor 350 to floor 370 and the horizontal speed during

climbing is unchanged, let r be the following reset function:†

r(~x) = ~x+ ~δ + Tclimb~v92 (A.19)

Then climbing aircraft 1 from floor 350 to floor 370 is equivalent to a reset. Let us call

x the relative position of aircraft 1 w.r.t. aircraft 2: if θ(x) < Tclimb, there is not enough

time to climb aircraft 1 without causing loss of separation with aircraft 2: the situation is

unsafe. Otherwise, the aircraft can be climbed, and the algorithm in the next section will

take this reset into account. Intuitively, the reset reinitializes the parameters by translating

them by δ plus Tclimbv92, which is the ground distance needed to climb. As in the hybrid

case, we will define θreset as the new minimal time-to-reach function which incorporates the

possible reset within the execution of the automaton, and we will compute the set of points

which are still unsafe when climbing is allowed, either because there is not enough time to

climb, or the aircraft climbs to an unsafe zone on the next floor. An illustration is given in

Figure A.8.

If we denote by SF1,r(x, T ) the set of trajectories originating at x for which resetting occurs

†It is assumed that the reset function has no fixed point. This prevents the system from “jumping
indefinitely”. It is easy to check that the function (A.19) satisfies this assumption for realistic values of ~δ,
Tclimb and ~v92.
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Figure A.9: Result of the conflict avoidance protocol with hybrid switching enabled. Computation
realized on a 350 × 350 grid. Left: Reachability computation for the next 7 minutes for both modes
(superimposed). Isolines are in increments of one minute in relative coordinates (which is why the distance
between the isolines seems bigger than the one minute achievable distance of one aircraft at Mach M = 0.85
in absolute coordinates). If the intruder is in the intersection of the two unsafe sets, it cannot avoid loss of
separation with the set of two maneuvers. If it is in one of the unsafe sets, switching avoids loss of separation.
Otherwise, any of the two modes is safe. Right: Same as left with switching enabled. Position of first and
third intruder are safe relative to these two dynamics. The second intruder cannot avoid loss of separation
with only these two maneuvers.

at time T , we have

∀x ∈ X, θreset(x) = sup
T>0

inf
x(·)∈SF1,r(x,T )

inf{t > 0 : x(t) ∈ C} (A.20)

and the safe set is R2\Dom
(
θreset

)
. An algorithm for underapproximating θreset is presented

in the next section.

Computing Safe Sets for Hybrid and Reset Systems

The algorithm presented below stems from Corollary 3 and provides an underapproximation

of θhybrid. It is based on the fact that, given that the system starts in mode 1 and may switch

to mode 2 at any time, θhybrid(x) = θmode 2(x) if θmode 2(x) ≥ θmode 1(x) because mode 2

guarantees safety longer than mode 1, otherwise θhybrid(x) ≥ θmode 1(x) since mode 1 is safer

now, and switching to mode 2 later may increase the time for which the system is safe.

Claim 3 (Approximation of the hybrid minimum time-to-reach function). Let

C ⊂ X be a closed target. We assume that F1 and F2 satisfy the assumptions of Claim 1.

For ρ > 0, h > 0 and i ∈ {1, 2}, we define the fully discrete dynamics Γiρ,h and the discrete
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minimum time-to-reach functions Θmode i
ρ,h as in Claims 1 and 2. Let Sρ,h := {xh ∈ Xh :

Θmode 1
ρ,h (xh) ≤ Θmode 2

ρ,h (xh)}. Then a converging underapproximation scheme for θhybrid is

given by Θhybrid
ρ,h (xh) = limn→+∞Θn

ρ,h(xh), where







Θ0
ρ,h(xh) = sup{Θmode 1

ρ,h (xh),Θ
mode 2
ρ,h (xh)}

Θn+1
ρ,h (xh) =







ρ+ infyh∈Γ1ρ,h(xh)Θ
n
ρ,h(yh) if xh /∈ Sρ,h

Θn
ρ,h(xh) else

(A.21)

In the case of the reset model, the reasoning is similar to the hybrid case. Indeed, if a

trajectory starts at x0 with a reset at time T to x1, we know that it cannot reach the target

before T + Tclimb + θmode 1(x1). In order to avoid loss of separation during climbing, we set

θR(x) =

{

Tclimb + θmode 1(r(x)) if θmode 1(x) ≥ Tclimb

0 else
(A.22)

Then θR(x) plays the same role as θmode 2 in the hybrid model.

Claim 4 (Approximation of the reset minimum time-to-reach function). Let C ⊂
X be a closed target. We assume that F satisfies the assumptions of Claim 1 and that the

reset function r : X → X is λ-Lipschitz continuous. For ρ > 0, h > 0, we define Γρ,h and

the discrete minimum time-to-reach function Θρ,h(xh) as in Claim 1. We also define the

discrete reset function

Rh(xh) := ( r(xh) + (1 + λ)hB ) ∩Xh

Then a converging underapproximation scheme for θR is given by

ΘR
ρ,h(xh) :=

{

infyh∈Rh(xh)Θ
mode 1
ρ,h (yh) +

Tclimb

ρ
if Θmode 1

ρ,h (xh) ≥ Tclimb

ρ
,

0 else
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Figure A.10: Results of the conflict avoidance maneuver with reset enabled. Computation realized on a
350 × 350 grid with Tclimb = 3min. Aircraft 2 and aircraft 1 are on floor 350. Aircraft 3 is on floor 370
approximately 35 miles ahead of (behind) aircraft 2. The different domains of the diagram have the following
interpretation: if aircraft 1 is in Domain 1, there is no way conflict can be avoided by either climbing to 370
or staying on 350. If it is in Domain 2, it should stay there, for climbing will generate a conflict. In Domain
3, there is not enough time to climb, so conflict will occur on floor 350. In Domain 4, conflict can be avoided
by climbing. Outside of these four domains, any altitude is safe. Each isoline represents a 30 sec. increment
in the time-to-reach function w.r.t. the target (in relative dynamics).

Furthermore, if Sh := {xh ∈ Xh : Θρ,h(xh) < ΘR
ρ,h(xh)}, then a converging underapprox-

imation for θreset is given by Θρ,h(xh) = limn→+∞Θn(xh), with

Θ0
ρ,h(xh) = sup{Θρ,h(xh),Θ

R
ρ,h(xh)} (A.23)

Θn+1
ρ,h (xh) =

{

ρ+ infyh∈Γρ,h(xh)Θ
n
ρ,h(yh) if xh /∈ Sh,

Θn
ρ,h(xh) else

(A.24)

Results obtained for both the hybrid and the reset case are shown in Figures A.9 and A.10.



Appendix B

Single interval scheduling

algorithms

The first part of this appendix presents a proof of Carlier’s algorithm, adapted from Carlier’s

original article [49]. It also tries to recreate the numerical experiment in this article. The

second part of the appendix presents the proof of the modified Baptiste algorithm used in

Chapter 5, Section 5.2.6. This proof is an adaptation of the original proof of Baptiste [12].

B.1 The Carlier algorithm

This Appendix presents a modified version of Carlier’s algorithm [49, 51] for solving the

feasibility of the optimization program (5.2) for a given ∆, when ni = 1. We were not

able to reprove Carlier’s original algorithm (we think that the proposed example in the

paper has a minor error), thus, the algorithm presented here includes a modification by us.

We present this complete algorithm and our proof (which is a slightly modified version of

Carlier’s) here, as the original algorithm is published in French and may not be accessible

to some.

We reproduce the work of Carlier [49, 51] as much as possible, using the original notation

of the author, and modifying it when necessary. When not defined, the notation refer to

Chapter 5. The problem solved by Carlier is the following.

209
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Let I be a set of jobs. We want to find an ordering∗ T = (ti)i∈I such that

1. ti ≥ ai, job i cannot start before time ai.

2. ti +D ≤ bi, job i cannot end after time bi.

3. ti < tj =⇒ tj ≥ ti +D: two jobs cannot be executed simultaneously.

A few definitions and some notation need to be given and will be used in the algorithm

below. The algorithm recursively builds an ordering T x satisfying the conditions above,

where the recursion is run on x which represents time (therefore, x will be proceed from

mini ai to maxj bj).

• Kx = {i|ai +D ≤ x} is the set of jobs which can be finished before time x.

• Let T x be an ordering of the jobs constructed by the algorithm; we call Ux the set of

jobs ordered by T x: Ux = {i|i ordered by T x}.

• H = Kx−Ux−D is the set of jobs which can be finished before time x (i.e. from Kx),

which have not been ordered by T x−D (i.e. not in Ux−D).

• m is the most urgent job of H: m = argminh∈H bh.

• The delay of an ordering T (with corresponding set of indices U) is: y = maxu∈U (tu+

D). The delay of T is the time this ordering takes to complete.

• An ordering T (with corresponding set of indices U) is said to be active iff there does

not exist a job w in the complement U of U such that maxu∈U (tu +D) > bw −D. In

other words, there does not exist a job w in the complement of U which cannot be

processed before its deadline bw because w cannot start before the completion time

(delay) of the jobs in U . Mathematically, it equivalently reads: maxu∈U (tu + D) ≤
minu∈U bw −D.

• An ordering T (with corresponding set of indices U) is said to be x-active iff it is

active and has a delay less than x.

∗In French: “ordonnancement”
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• {T x−D+m} is the ordering obtained by adding the most urgent job m to the ordering

T x−D, ifm is executed as soon as possible. As soon as possible means the jobm should

start at tm = max{am, y}, where y = maxu in T x−D(tu+D) is the delay of the ordering

T x−D.

• T (x) is the set of orderings which are active and which have a delay less than x.

Definition 3. (Carlier) The operator “preferable to” º is defined the following way: for

two sets U and V of elements of I, U º V if:

1. p = |U | ≥ r = |V |

2. bu1 ≤ bv1 , · · · , bur ≤ bvr if bu1 ≤ bu2 · · · ≤ bup and bv1 ≤ bv2 · · · ≤ bvr .

Theorem 9 (after Carlier [49, 51]). ∀x ∈ {mini∈I ai, · · · ,maxi∈I bi}, the set T x con-

structed by the algorithm below is x-active and is preferable to any other x-active ordering.

Algorithm Carlier

Input: N jobs, with release times ai and deadlines bi.
Output: An ordering (i.e. schedule) with optimal makespan.

1 ∀x ∈ {mini∈I ai, · · · ,mini∈I ai +D − 1}, T x := ∅, Ux := ∅
2 for x = mini∈I ai +D : maxi∈I bi
3 Kx := {i|ai +D ≤ x}, H = Kx − Ux−D

if H = ∅
4 T x = T x−D

else
5 m = argminh∈H bh

if {T x−D +m} is active
6 T x = {T x−D +m}

else
7 T x = T x−1

end
end

end
8 if Ux 6= I no solution else return T x end
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Proof — The proof is done by induction on x. Obviously, ∀x ∈ {mini∈I ai, · · · ,mini∈I ai+

D − 1}, the property is true, since T x := ∅ and Ux := ∅.

Suppose the property is true for all z ≤ x − 1. We want to show that it is true for T x.
There are two cases:

Case 1: H = ∅.

We know that Kx ⊆ Ux−D because Kx − Ux−D = ∅. Since the set of jobs ordered at time

x−D is at most the number of jobs that can be ordered at time x−D, Ux−D ⊆ Kx−D ⊆ Kx,

because Kx is monotonically increasing. Combining the above inclusions, we have Kx =

Ux−D. This means that all jobs executable before time x are ordered by Ux−D (i.e. by

T x−D). Also, T x−D ∈ T (x−D) ⊆ T (x), therefore T x−D ∈ T (x). This implies that T x−D

is a maximal element of T (x) for the preorder º.

Case 2: H 6= ∅.

H contains at least one element which can be finished before x not ordered by Ux−D. Let

T ′ = {T x−D +m}; let T be any ordering in T (x), and call l the last job which was ordered

by T , and T − {l} the ordering obtained by withdrawing job l from T , U the set of jobs

ordered by T .

• We first show that if T ′ is active, then T ′ º T . We use Carlier’s [49, 51] lemma on

the preorder º:

Lemma: (Carlier [49, 51]) Let C and E be two sets such that C º E. Let u /∈ C
and v /∈ E. Suppose that ∀w ∈ C, bu ≤ bw. Then {u} ∪ C º {v} ∪ E. ¤.

We can apply the previous lemma to the present problem: take I = Kx, C = Ux−D,

E = U−{l}, u = m, v = l. In the following, the complement of a set K ⊆ I is defined

as K = I\K. Clearly, u /∈ C, v /∈ E, ∀w ∈ C, bu ≤ bw because by construction,

m = u is the most urgent job. Finally Ux−D º U − {l} by the induction assumption.

Therefore T ′ º T , that is, T ′ is preferable to any element of T (x). Since T ′ is active,
it must also be x-active. To see this, we need to prove that the delay of T ′ is less than
x. Calling y the delay of T x−D, we have y ≤ x −D. Since y ≤ min

w∈T x−D bw −D,

because T x−D is x−D active and m ∈ T x−D ∩Kx, m can be executed before x, i.e.

tm +D ≤ x. In conclusion, T ′ is x-active and preferable to all elements of T (x).
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• Second, we show that if T ′ is not active, then T x = T x−1. We want to show that

∀T ∈ T (x), T x−1 º T .

– If maxu∈T (tu +D) ≤ x− 1, this result is immediate by induction.

– Otherwise maxu∈T (tu + D) = x. We call l the last job ordered by T (see

Figure B.1). By induction, we know that T x−D º T − {l}. This implies †

T − {l} º T x−D.
Because {T x−D +m} is not active, ∃w ∈ {T x−D +m} such that bw − D < x.

We have w ∈ T since otherwise w can only start after x (the delay of T ) or

bw−D ≥ x, which is a contradiction. Thus, w must have been processed before x

and w ∈ Kx. Sincem was the most urgent task added to T x−D, bm ≤ bw < x+D

(that is, both m and w are in Kx when m is added).

Now we have: m ∈ T x−D and w ∈ T x−D. Since T − {l} º T x−D, T − {l}
contains at least two jobs i and j, indexed by the order bi ≤ bj , such that

bi ≤ bm < x + D and bi ≤ bw < x + D. Furthermore, since both i and j are

in T − {l}, one of them must be scheduled after l, say job j, with completion

time at least x + D. This implies bj ≥ x + D, which contradicts the previous

inequality. Therefore there cannot be T ∈ T (x) of exact delay x.

We have proved that regardless of how T x was constructed, it is always x-active, and orders

more jobs than any other x-active ordering T . If a solution to the original problem exists

(i.e. the problem is feasible), we know that the algorithm will find it, because for any x, it

finds one x-active ordering with the maximal number of jobs. It suffices to march x until

maxi∈I bi. ¤

PSfrag replacements
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T − {l}
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l
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bwbw −D
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Figure B.1: Case 2 from the proof of Theorem 9, with {T x−D +m} not active. Orderings T of delay x
exactly and {T x−D +m} at iteration x. The last job l of T is such that tl +D = x.

†Carlier also shows A º B ⇒ B º A.
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Theorem 10. 1. The computational complexity of calculating T x at each step is O(N).

2. It is possible to modify the algorithm such that the overall computational complexity is

O(N3).

Proof —

1. In step 3, the computational complexity of calculating Kx, for all x from mini∈I ai+D

to maxi∈I bi is O(N) (since it requires stepping through all ai). Therefore, in the for

loop of step 2, it is O(1). The computation of H is at most O(N), if the two sets Kx

and Ux−D are constructed with increasing indices (i.e. the sets are indexed such that

performing Kx − Ux−D only requires checking the upper indices of Kx and Ux−D).

All other operations are O(1) except computing m = argminh∈H bh. The cost of

computing T x is thus O(N).

2. It suffices to compute the T x for x = ai + kD, with i ∈ I = {1, . . . , N} and k ∈ I =

{0, . . . , N − 1}. The total number of x is N 2, which gives the algorithm a complexity

of O(N3).

¤

Remark:

• An upper bound on the number of T x is maxi∈I bi −mini∈I ai.

• The complexity can be reduced to O(N 2min(N,D)) with an additional test on Ux.

At each iteration, we add the test Ux = Kx. If this is true, x := mini∈I−Kx ai. The

number of such jumps is at most N . Between two jumps, a number νi of jobs is

scheduled, for a duration D each.
∑N

i=1 νi = N , thus the number of x to step through

for these jobs is at most ND. The total number of x to step through is thus N +ND.

The complexity of the algorithm is thus O(N 2min{N,D}). In another article [50],

Carlier shows that it is even possible to reduce the complexity of the algorithm to

O(N log(N)min(N,D)).
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We run Carlier’s numerical example on the present algorithm, as an illustration of the

algorithm. Consider six jobs, with following release times: a1 = 0, a2 = 2, a3 = 7, a4 = 9,

a5 = 10, a6 = 24, and the following deadlines: b1 = 32, b2 = 35, b3 = 22, b4 = 20, b5 = 23,

b6 = 30. The processing time of each job is D = 5. The following array now shows the

results obtained on this example, with the algorithm above. For x = 19, {T14+3} = {1, 4, 3}
is not active, according to the definition of active: the delay of this ordering is 19. This

does not enable the later scheduling of job number 5: b5 = 23 < 19 +D = 24. Therefore,

T19 = T18. Similarly, for x = 20, U15 = {1, 2, 4}, m = 3, but {1, 2, 4 + 3} is not active,

because its delay is 20, and b5 = 23 < 20 + D = 25. {T15 + m} is not active, therefore

T20 = T19. The same is true for T21. For x = 22, it becomes active again, and the jobs can

be added properly until a full ordering is produced for x = 32 (see Figure B.2).

B.2 Proof of the modified Baptiste algorithm

We now provide a proof of Proposition 2 (Chapter 5).

Case 1: rk /∈ [s, e)

We have Jk /∈ Uk(s, e) by definition of Uk(s, e). We know that Uk(s, e) ⊆ Uk−1(s, e) + {Jk}.
Since Jk /∈ Uk(s, e), this implies Uk(s, e) ⊆ Uk−1(s, e). The reverse inclusion Uk−1(s, e) ⊆
Uk(s, e) holds by definition of Uk(s, e), and we therefore have Uk(s, e) = Uk−1(s, e). By

definition of Ck(s, e, l), this implies that Ck(s, e, l) = Ck−1(s, e, l).

Case 2: rk ∈ [s, e)

We have Jk ∈ Uk(s, e). We call

C′ = min { Ck−1(s, e, l) , min

s′ ∈ Θ

1 ≤ q ≤ l − 1

max(rk, s+∆) ≤ s′ ≤ min(dk, e)−∆

(
Ck−1(s, s

′, l − q) + s′ + Ck−1(s
′, e, q − 1)

)
}

We want to prove that C ′ = Ck(s, e, l). We do it in two steps.

Step 1: C ′ ≥ Ck(s, e, l).

• If C ′ = Ck−1(s, e, l), the inclusion Uk−1(s, e) ⊆ Uk(s, e) implies C ′ = Ck−1(s, e, l) ≥
Ck(s, e, l)
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• If C ′ = Ck−1(s, s′, l − q) + s′ + Ck−1(s′, e, q − 1) for some s′ and q achieving the min,

we separate the jobs into three subsets: X, the l− q first jobs; job Jk; and Y , the set

of q − 1 jobs after s′. We first show that X ∪ Y ∪ {Jk} ⊆ Uk(s, e).

1. ∀j ∈ X, Jj ∈ Uk−1(s, s′) ⊆ Uk(s, s′) ⊆ Uk(s, e).

2. ∀j ∈ Y , Jj ∈ Uk−1(s′, e) ⊆ Uk(s′, e) ⊆ Uk(s, e).

3. Jk ∈ Uk(s, e) by assumption.

Therefore, X ∪ Y ∪ {Jk} ⊆ Uk(s, e), and |X|+ |Y |+ 1 = l − 1 + q − 1 + 1 = l. From

this, we see that X ∪Y ∪{Jk} is a particular element of the set among which the min

is taken in the definition of C ′ above. Therefore, C ′ ≥ Ck(s, e, l) which is the min

among all elements of this set.

Step 2: C ′ ≤ Ck(s, e, l) Call B the instantiation of the l jobs which realizes Ck(s, e, l).

• If Jk /∈ B, then B ⊆ Uk(s, e)\{Jk} ⊆ Uk−1(s, e), and |B| = l. B is also an instantia-

tion of Ck−1(s, e, l), therefore Ck(s, e, l) ≥ Ck−1(s, e, l). By definition of C ′, we have

Ck−1(s, e, l) ≥ C ′. Therefore Ck(s, e, l) ≥ C ′.

• If Jk ∈ B, we first show that ∀j ∈ Y , rj > s′, where s′ is the starting time of job Jk.

Let j be in Y. Assume rj ≤ s′. We know that rk ≤ s′ by construction. We know that

j ≤ k, because Jj ∈ Y (and Y ⊆ B ⊆ Uk(s, e); in Uk(s, e), all jobs have index less

than k). By assumption, the deadlines have been indexed chronologically, therefore,

dj ≤ dk. Call z the completion time of job j. We have dj ≥ z. Summarizing all

information above, this means that both Jj and Jk can start at s′ and finish at z.

Therefore switching Jj and Jk is possible and will not change the sum of the starting

times of all jobs. The conclusion of this paragraph is that any job of Y with release

time less than s′ can be put in X without change of cost. We can therefore assume

that all jobs Jj of Y have a starting time rj > s′

Let Jj be in Y . Because Jj ∈ Uk(s, e), j ≤ k. Since Jj ∈ Y , Jj is scheduled after Jk by

the previous paragraph. Therefore, j ≤ k−1. This implies Jj ∈ Uk−1(s′, e). Therefore
Y ⊆ Uk−1(s′, e). Let us call C(Y ) the cost of scheduling all jobs of Y (C(Y ) is the sum

of their starting times). C(Y ) ≥ Ck−1(s′, e, |Y |) by definition of C·(, ·, ·, ·). For X,

similarly, Jj ∈ X ⊆ B ⊆ Uk(s, e) implies rj ≥ s. Also, rj < s′ (because rj ≤ s′ −∆).
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j 6= k because Jj ∈ X, therefore j ≤ k − 1. From this we deduce X ⊆ Uk−1(s, s′).

This implies C(X) ≥ Ck−1(s, s′, |X|) where C(X) is the cost of scheduling the jobs of

X.

C(X) ≥ Ck−1(s, s′, |X|)
C(Y ) ≥ Ck−1(s′, e, |Y |)

Therefore, writing explicitly the contributions of the different terms in B, we have:

Ck(s, e, l) = C(X) + s′ + C(Y ) ≥ Ck−1(s, s′, |X|) + s′ + Ck−1(s
′, e, |Y |) ≥ C ′

The last inequality results from the min in the definition of C ′.
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x K H m {Tx−D +m} Ux Tx
active

5 1 1 1 yes 1 0

6 1 1 1 yes 1 0

7 1 2 1 2 1 yes 1 0

8 1 2 1 2 1 yes 1 0

9 1 2 1 2 1 yes 1 0

10 1 2 2 2 yes 1 2 0 5

11 1 2 2 2 yes 1 2 0 5

12 1 2 3 2 3 3 yes 1 3 0 7

13 1 2 3 2 3 3 yes 1 3 0 7

14 1 2 3 4 2 3 4 4 yes 1 4 0 9

15 1 2 3 4 5 3 4 5 4 yes 1 2 4 0 5 10

16 1 2 3 4 5 3 4 5 4 yes 1 2 4 0 5 10

17 1 2 3 4 5 2 4 5 4 yes 1 3 4 0 7 12

18 1 2 3 4 5 2 4 5 4 yes 1 3 0 7 12

19 1 2 3 4 5 2 3 5 3 no 1 3 4 0 7 12

20 1 2 3 4 5 3 5 3 no 1 3 4 0 7 12

21 1 2 3 4 5 3 5 3 no 1 3 4 0 7 12

22 1 2 3 4 5 2 5 5 yes 1 3 4 5 0 7 12 17

23 1 2 3 4 5 2 5 5 yes 1 3 4 5 0 7 12 17

24 1 2 3 4 5 2 5 5 yes 1 3 4 5 0 7 12 17

25 1 2 3 4 5 2 5 5 yes 1 3 4 5 0 7 12 17

26 1 2 3 4 5 2 5 5 yes 1 3 4 5 0 7 12 17

27 1 2 3 4 5 2 2 no 1 3 4 5 0 7 12 17

28 1 2 3 4 5 2 2 no 1 3 4 5 0 7 12 17

29 1 2 3 4 5 6 2 6 6 yes 1 3 4 5 6 0 7 12 17 24

30 1 2 3 4 5 6 2 6 6 yes 1 3 4 5 6 0 7 12 17 24

31 1 2 3 4 5 6 2 6 6 yes 1 3 4 5 6 0 7 12 17 24

32 1 2 3 4 5 6 2 6 6 yes 1 3 4 5 6 0 7 12 17 24

33 1 2 3 4 5 6 2 6 6 yes 1 3 4 5 6 0 7 12 17 24

34 1 2 3 4 5 6 2 2 yes 1 3 4 5 6 2 0 7 12 17 24 29

Table B.1: Numerical experiment for the example of Carlier. The result is shown in Figure B.2.
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result
job 10 32
job 22 35
job 37 22
job 49 20
job 510 23
job 624 30x = 5

0
result

job 10 32
job 22 35
job 37 22
job 49 20
job 510 23
job 624 30x = 6

0
result

job 10 32
job 22 35
job 37 22
job 49 20
job 510 23
job 624 30x = 7

0

result
job 10 32
job 22 35
job 37 22
job 49 20
job 510 23
job 624 30x = 8

0
result

job 10 32
job 22 35
job 37 22
job 49 20
job 510 23
job 624 30x = 9

0
result

job 10 32
job 22 35
job 37 22
job 49 20
job 510 23
job 624 30x = 10

0 5

result
job 10 32
job 22 35
job 37 22
job 49 20
job 510 23
job 624 30x = 11

0 5
result

job 10 32
job 22 35
job 37 22
job 49 20
job 510 23
job 624 30x = 12

0 7
result

job 10 32
job 22 35
job 37 22
job 49 20
job 510 23
job 624 30x = 13

0 7

result
job 10 32
job 22 35
job 37 22
job 49 20
job 510 23
job 624 30x = 14

0 9
result

job 10 32
job 22 35
job 37 22
job 49 20
job 510 23
job 624 30x = 15

0 5 10
result

job 10 32
job 22 35
job 37 22
job 49 20
job 510 23
job 624 30x = 16

0 5 10

result
job 10 32
job 22 35
job 37 22
job 49 20
job 510 23
job 624 30x = 17

0 7 12
result

job 10 32
job 22 35
job 37 22
job 49 20
job 510 23
job 624 30x = 18

0 7 12
result

job 10 32
job 22 35
job 37 22
job 49 20
job 510 23
job 624 30x = 19

0 7 12

result
job 10 32
job 22 35
job 37 22
job 49 20
job 510 23
job 624 30x = 20

0 7 12
result

job 10 32
job 22 35
job 37 22
job 49 20
job 510 23
job 624 30x = 21

0 7 12
result

job 10 32
job 22 35
job 37 22
job 49 20
job 510 23
job 624 30x = 22

0 7 12 17

result
job 10 32
job 22 35
job 37 22
job 49 20
job 510 23
job 624 30x = 23

0 7 12 17
result

job 10 32
job 22 35
job 37 22
job 49 20
job 510 23
job 624 30x = 24

0 7 12 17
result

job 10 32
job 22 35
job 37 22
job 49 20
job 510 23
job 624 30x = 25

0 7 12 17

result
job 10 32
job 22 35
job 37 22
job 49 20
job 510 23
job 624 30x = 26

0 7 12 17
result

job 10 32
job 22 35
job 37 22
job 49 20
job 510 23
job 624 30x = 27

0 7 12 17
result

job 10 32
job 22 35
job 37 22
job 49 20
job 510 23
job 624 30x = 28

0 7 12 17

result
job 10 32
job 22 35
job 37 22
job 49 20
job 510 23
job 624 30x = 29

0 7 12 17 24
result

job 10 32
job 22 35
job 37 22
job 49 20
job 510 23
job 624 30x = 30

0 7 12 17 24
result

job 10 32
job 22 35
job 37 22
job 49 20
job 510 23
job 624 30x = 31

0 7 12 17 24

result
job 10 32
job 22 35
job 37 22
job 49 20
job 510 23
job 624 30x = 32

0 7 12 17 24
result

job 10 32
job 22 35
job 37 22
job 49 20
job 510 23
job 624 30x = 33

0 7 12 17 24
result

job 10 32
job 22 35
job 37 22
job 49 20
job 510 23
job 624 30x = 34

0 7 12 17 24 29

Figure B.2: Successive orderings obtained with the modified Carlier algorithm. A strip on row i means
that job i has been scheduled at the time corresponding to the beginning of the strip. Row 0 shows the set
of all ordered jobs. At x = 19, {T 14+m} is not active according to our new definition, therefore, U19 = U18.
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