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a b s t r a c t

This article presents a method to estimate flow variables for an open channel network governed by the
linearized Saint-Venant equations and subject to periodic forcing. The discharge at the upstream end of
the system and the stage at the downstream end of the system are defined as the model inputs; the flow
properties at selected internal locations, as well as the other external boundary conditions, are defined as
the outputs. Both inputs and outputs are affected by noise and we use the model to improve the data
quality. A spatially dependent transfer matrix in the frequency domain is constructed to relate the model
input and output using modal decomposition. A data reconciliation technique is used to incorporate the
error in the measured data and results in a set of reconciliated external boundary conditions; subse-
quently, the flow properties at any location in the system can be accurately estimated from the input
measurements. The applicability and effectiveness of the method is demonstrated with a case study of
the river flow subject to tidal forcing in the Sacramento-San Joaquin Delta, in California. We used existing
USGS sensors in place in the Delta as measurement points, and deployed our own sensors at selected
locations to produce data used for the validation. The proposed method gives an accurate estimation
of the flow properties at intermediate locations within the channel network.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In hydraulic systems, numerous factors could lead to measure-
ment errors, for example broken gauges, process leaks, sensor
drifts, improper use of measuring devices and other random
sources [1]. Data reconciliation, is an effective method to tune-up
the measurement data [21,5,10,2], which has been applied in sev-
eral engineering fields [11,3,20,25]. The objective of data reconcil-
iation is to use information redundancy to handle errors in real-
time measurements.

In the field of process control, data reconciliation is a part of the
general state estimation or reconstruction process for dynamical
systems, using Kalman filtering [8]. However, in certain cases,
and for given time intervals, dynamic effects can sometimes be ne-
glected which leads to simplified versions of the general approach,
applicable to static models.

This article presents theoretical results applicable to data recon-
ciliation for tidally forced networks of open channels. Using modal
decomposition techniques, we are able to transform dynamic con-
straints into static constraints in the frequency domain, and subse-
quently obtain a static data reconciliation problem, which is easier
to resolve and can lead to accurate results. Generally, this static
ll rights reserved.
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data reconciliation problem is to minimize the measurement
errors while satisfying the static constraints of the proposed
model.

The proposed linear network model is constructed on the basis
of analytical solutions to the Linearized Saint-Venant equations
(LSVE) in the frequency domain [9,12,4]. With the assumption of
a backwater curve model [22], a more realistic transfer matrix
function has been introduced [16], which we use in the present
article.

This article extends the general transfer matrix function ap-
proach to a channel network. A spatially dependent transfer matrix
is constructed, relating a selected set of model inputs to the output
variables. The transfer matrix is a function of channel width,
channel length, bed slope, mean discharge, mean stage and
Manning coefficient. This set of parameters needs to be chosen
carefully to characterize the geometry of the channels, as the
uncertainty of the parameters would contribute to the errors in
the model output.

With this linear model in the frequency domain, the static data
reconciliation problem is shown to be equivalent to a quadratic
problem. The objective function used in the present study is a
weighted L2-norm of the difference between the measured and
reconciliated data. The linear network model constructed serves
as the constraints in the optimization problem. A closed-form opti-
mal solution is obtained, resulting in a set of reconciliated bound-
ary data consistent with both the linear network model and the
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statistical assumptions on measurement errors. Subsequently, we
apply the reconstructed boundary conditions to the linear network
model to obtain an accurate forward simulation of the flow within
of the network domain.

This article is organized as follows: Section 2 introduces the
general framework of linear models, i.e., LSVE in the frequency do-
main, the spatially dependent transfer matrix. A channel network
model featuring one-dimensional non-uniform flow is subse-
quently described, and the solution of the data reconciliation prob-
lem in the static case is addressed. Section 3 applies the linear
model to a channel network in the Sacramento-San Joaquin Delta
in California. Static data reconciliation is applied to handle the er-
rors in the measurements. The effectiveness of the method is as-
sessed by correlating the model estimations with field data at
three intermediate locations in the network, which serve as valida-
tion points. Section 4 summarizes the study and presents the scope
of our future work.
2. Proposed method

2.1. General considerations

The general class of hydraulic system studied in the present
article is a distributed network of channels subject to quasi-peri-
odic tidal forcing. Sensing on this hydraulic system is done using
fixed Eulerian US Geological Survey (USGS) sensors, subject to mea-
surement errors. The motivation of the work is to derive the ‘‘most
likely” flow conditions from the measured data available in a given
period of time (at least a few weeks to catch the tidal period), and
forecast the future flow variables. The goal of the method is thus
not real time estimation, as traditionally done in data assimilation
[23], but forecast based on measured forcing.

The flow variables are related to each other by a mathematical
model. Therefore, if the measurement data was error free, it would
satisfy the model. Because the number of points at which the vari-
ables are measured is usually larger than needed to fully prescribe
the model, there is ‘‘information redundancy” in the system. Once
information redundancy exists, data reconciliation can be imple-
mented to account for measurement error.

The ultimate goal of data reconciliation is to use such informa-
tion redundancy in a system to have the data self-corrected using
the model. An effective data reconciliation method allows the
detection of any inconsistent or biased measurements, and
furthermore provides corrected values (namely estimated
measurements).

It should be noted that any information redundancy is model-
specific. We therefore need to first construct a ‘‘good” hydraulic
model to characterize the flow system, as described in the follow-
ing section.
2.2. Linear channel network model

2.2.1. Transfer matrix representation of Saint-Venant model
The Linearized Saint-Venant Equations (LSVE) have been widely

used in the open-channel hydraulic systems literature
[7,15,17,14]. They describe the perturbed discharge qðx; tÞ and
stage yðx; tÞ with two coupled partial differential equations (PDEs).
For a rectangular cross-section, these equations are given by
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with j0 ¼ 7=3� 8Y0=ð3ð2Y0 þ TÞÞ; T0 is denoted as a uniform width
at the free surface, C0 ¼

ffiffiffiffiffiffiffiffi
gY0

p
is the wave celerity, F0 ¼ V0=C0 is the

Froude number, V0 ¼ Q0=A0 is the steady state velocity, Q0 is the
average discharge along the channel and Y0ðXÞ is the average stage
at the downstream point of the channel, X is the river reach length
(m), Sb is the bed slope (m/km).

The upstream and downstream boundary conditions are the up-
stream discharge perturbation qð0; tÞ and the downstream stage
perturbation yðX; tÞ, respectively. The initial conditions are given
by yðx;0Þ ¼ 0 and qðx; 0Þ ¼ 0 for all x 2 ½0;X�.

To facilitate the mathematical analysis, we rewrite the linear-
ized Saint-Venant equations as follows:
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The application of Laplace transform to the linear PDE system (6)
leads to the following ordinary differential equations (ODEs) in the
variable x, with a complex parameter s:

d
dx

qðx; sÞ
yðx; sÞ

� �
¼A�1ðxÞ½BðxÞ � sI2�

qðx; sÞ
yðx; sÞ

� �
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Following the method developed in [22], and further modified in
[16], a transfer matrix Gðx;X; sÞ ¼ ðgijðx;X; sÞÞ for the non-uniform
channel relates the boundary conditions and intermediate flow
variables, and is defined by the following equation

qðx; sÞ
yðx; sÞ

� �
¼ Gðx;X; sÞ

qð0; sÞ
yðX; sÞ

� �
ð9Þ

Gðx;X; sÞ is a function of channel length X, average discharge Q0,
average downstream depth YX , average width T0, bed slope Sb and
Manning coefficient n of the channel. The upstream and down-
stream boundary conditions are the upstream discharge perturba-
tion qð0; sÞ and the downstream stage perturbation yðX; sÞ,
respectively. Because of the distributed nature of the system, this
transfer function also depends on the coordinate x in the channel,
since it relates inputs qð0; sÞ and yðX; sÞ to the state of the system
qðx; sÞ and yðx; sÞ at any x in the channel. Please refer to the appendix
for the details about the transfer matrix.

2.2.2. Transfer matrix model for channel networks
The model (9) can be readily applied to tidally driven channel

networks. The problem of interest can be stated as follows, and
is illustrated in Fig. 1. Given a set of ‘‘external” boundary conditions
of a network, at which we have measurements, reconstruct flow
conditions at ‘‘internal” locations (also referred to as boundary
conditions). This type of problem appears in our data assimilation
work, in which we need estimates of boundary conditions at loca-
tions where fixed sensors are not available. The fundamental ap-
proach to build a network model is as follows:

� Step 1: Decompose the channel network into individual channel
reaches, and apply the linear model (9) to each branch. For each
of the river reach indexed by i, the flow variables qiðx; sÞ, yiðx; sÞ
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Fig. 1. Representation the system of interest for estimating internal boundary
conditions (Internal BC) using data reconciliation on external boundary conditions
(External BC): data is given at the three external conditions of channel 1–3; the
state of the system is computed at three internal locations of the system labeled 1–
3.
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denote the perturbed discharge and stage in the frequency
domain, respectively, Xi denote the length of the channel. The
junction of the river reach is defined as the node of the channel
network.

� Step 2: Impose the internal boundary conditions at every junc-
tion to ensure flow compatibility. Considering a simple river
junction illustrated in Fig. 1: for each channel i, we will have
the upstream boundary condition yið0; sÞ, qið0; sÞ, and down-
stream boundary condition yiðXi; sÞ, qiðXi; sÞ. If these boundary
conditions are at the inside nodes of the channel network, they
are called internal boundary conditions, otherwise they are
labeled as external boundary conditions. The linear relationships
of hydraulic internal boundary conditions at a junction are spec-
ified by equations of mass and energy conservation. Assuming
no change in storage volume within the junction, the continuity
equation can be expressed by

q1ðX1; sÞ ¼ q2ð0; sÞ þ q3ð0; sÞ

When the flows in all the branches meeting at a junction are
subcritical, the equation for energy conservation can be approx-
imated by a kinematic compatibility condition as

y1ðX1; sÞ ¼ y2ð0; sÞ ¼ y3ð0; sÞ

where Xi is the downstream point of each channel i, and 0 is the
upstream point of each channel i.

� Step 3: Assemble the equations for each individual channel and
interior junctions together to model the entire network. The
flow variables at the boundary of each channel are represented
by a linear relationship:

MðsÞZðsÞ ¼ 0 ð10Þ

where ZðsÞ is the concatenated vector of all ½qið0; sÞ; qiðXi; sÞ;
yið0; sÞ; yiðXi; sÞ�T , i ¼ 1; . . . ;N, ZðsÞ is thus the vector comprising
the discharge and stage variables at the upstream and down-
stream ends of all channels; MðsÞ is a matrix of appropriate
dimension encoding the previous constraints.

� Step 4: Evaluate the unmeasured flow variables inside the chan-
nel network:
(a) Specify the interior boundaries. In a channel network sys-

tem, we define a subjective subset of boundary conditions
ðZgiven BC � ZÞ, which leads to a unique solution of model
(10). This subset should satisfy: dimðZgiven BCÞ ¼ dimðZÞ�
RankðMÞ. All the other unknown boundary variables (inte-
rior and external), denoted as Zother BC ¼ Z n Zgiven BC , are
therefore estimated with model (10). Model (10) now has
the form:
Zother BC ¼ RðsÞZgiven BC ð11Þ

where RðsÞ is a matrix of appropriate size. Given

Z ¼ Zgiven BC

Zother BC

� �
, MðsÞ ¼ ½RðsÞj � I�.
(b) Estimation of the perturbed discharge and stage along the
channel. It is achieved by a simple application of transfer
function analysis:� �  !� �
qiðx; sÞ
yiðx; sÞ

¼
gi;11ðx;Xi; sÞ gi;12ðx;Xi; sÞ
gi;21ðx;Xi; sÞ gi;22ðx;Xi; sÞ

qið0; sÞ
yiðXi; sÞ

;

i ¼ 1; . . . ;N ð12Þ

where Giðx;Xi; sÞ ¼ ðgi;jkðx;Xi; sÞÞ is the distributed transfer
matrix based on the information of channel i.
2.3. Data reconciliation

In practice, the measured data called Ym is normally a superset
of the data required to uniquely define the system. i.e.,
Zgiven BC � Ym # Z. When this is the case, we can use the information
redundancy and apply data reconciliation to detect and handle the
measurement errors. Data reconciliation requires a process model
and statistical characteristics of the measurements.

Using modal decomposition, we are able to convert the dynamic
model (6) to a ‘‘static” model, in which the measurable variables
are linked by an algebraic relationship in the frequency domain:

PðsÞYðsÞ ¼ 0 ð13Þ

where YðsÞ ¼ ½Y1; Y2;Y3; . . .�# ZðsÞ is a vector of noise free measure-
ments, and PðsÞ is a sub-matrix of MðsÞ with the appropriate
dimension.

It is assumed that the measurements are independent and sub-
ject to an additive noise. The measured data Ym is composed of the
‘‘ideal” measurements vector Y and a noise vector �:

Ym ¼ Y þ � ð14Þ

This noise vector � is assumed to follow a Gaussian distribution
with zero mean and weight matrix W ¼ diagðr2

1;r2
2; . . . ;r2

nÞ. Here
ri represents the noise standard deviation for each measurement.
Note that the matrix W is chosen (positive definite), and that its
components are picked to minimize the error, in the present case
a weighted L2 norm.

The objective of data reconciliation is to obtain estimated val-
ues bY close to the measurements Ym while satisfying the ‘‘static”
linear model (13). This can be formulated as an optimization
problem with linear constraints. The cost function to minimize
is the weighted quadratic error between the measurements Ym

and the reconciliated data bY . The constraints are given by the
model (13). The reconciliation problem in the spectral domain
now becomes a least square problem with linear constraints. It
reads:

min f ¼ ðbY � YmÞT W�1ðbY � YmÞ
s:t: PbY ¼ 0

ð15Þ

We hereby use the method suggested by Heyen et al. [13] to solve
the above data reconciliation problem. The constrained optimiza-
tion problem is transformed into a corresponding unconstrained
problem [6], using the Lagrange multiplier vector m. The Lagrangian
of the problem reads:

LðbY ; mÞ ¼ ðbY � YmÞT W�1ðbY � YmÞ þ 2mT PbY ð16Þ

In order to obtain the unknown variables, take partial derivatives
and set them to zero:
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oL
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oL
om
¼ 2PbY ¼ 0

ð17Þ

Rewrite the above equations as

W�1 PT

P 0dimðmÞ�dimðmÞ

 ! bY
m

 !
¼ W�1Ym

0dimðmÞ�1

 !
ð18Þ

Thus,

bY ¼ IdimðYmÞ 0dimðYmÞ�dimðmÞ
� � W�1 PT

P 0dimðmÞ�dimðmÞ

 !�1
W�1Ym

0dimðmÞ�1

 !
ð19Þ

where matrices I and 0 are Identity Matrix and Zero Matrix of
appropriate size. Note that this problem can be solved numerically
easily, with standard optimization software such as CPLEX, MATLAB
and CVX [6].

The reconciliated measurements bY , can then be used to obtain
the desired internal boundary conditions using Eqs. (10)–(12).

Remark 1. The proposed approach thus consists in assuming high
confidence in the model, and finding the ‘‘best” estimation, i.e. the
estimation which minimizes measurement error. This is a standard
procedure in data reconciliation.
3. Application to the Sacramento River

3.1. Description of the system and assumption

The Sacramento-San Joaquin Delta in California is a valuable re-
source and an integral part of California’s water system. This com-
plex network covers 738,000 acres interlaced with over 1150 km of
tidally influenced channels and sloughs. This network is monitored
by a static sensor infrastructure subject to usual problems of inac-
curacy and measurement errors for interested sensing systems.
The area of interest for our experiment is located around the junc-
tion of the Sacramento River and the Georgiana Slough, as shown
in Fig. 2. Most of the time, the direction of mean river flow is from
north to south, as indicated with arrows. During the tidal inversion,
the water flows in the opposite way. For experimental purposes,
we need the boundary conditions at the three locations labeled
A–C, but only get the measurements at SDC, DLC, GSS and GES.
The method described in the previous section enables us to do that.
SDC

GSS

GES

A

B

C

Fig. 2. Test area in the Sacramento R
Four USGS stations, named SDC, DLC, GES and GSS, are located
at the external boundaries of this deployment field. The stations
are marked as squares in Fig. 2. Both discharge and stage are col-
lected every 900 s at these stations. Note that in the USGS mea-
surement system, only the stage are measured directly, the
discharge data is estimated by a rating curve, which is a relation
between stream stage and streamflow. The relation of stream stage
to streamflow is always changing, and need to be calibrated fre-
quently. It will introduce errors if the rating curve has not been val-
idated in time. More detailed information can be found at http://
ga.water.usgs.gov/edu/measureflow.html.

The field data was collected between 10/23/2007 and 11/13/
2007. The raw field data is noisy, and the measurement errors
are assumed to follow a normal Gaussian distribution. In addition,
the following simplifications for the flow model have been made in
this study:

� The flow can be represented by a one-dimensional model.
� The channel geometry is fixed, as the effects of sediment depo-

sition and scour are negligible during the experiment period.
� The channel geometry can be modeled by a rectangular cross-

section.
� The lateral and vertical accelerations are negligible.
� The pressure distribution is hydrostatic.
� There is no significant jump along the bathymetry of the chan-

nel, and the bed slope is smooth and small.
� The water surface across any cross-section is horizontal.

These assumptions have been verified in practice during exper-
imental field deployments performed by our lab. The model
parameters are the average free surface width T0i, the average bot-
tom slope Sbi, the average Manning’s coefficient n, the average dis-
charge Qi, and the average downstream stage YXi for each channel i
ði ¼ 1; . . . ;5Þ. These parameters are known to us experimentally.
Based on measurements available to us at the SDC, DLC, GSS and
GES, the field data at three intermediate locations in the channel
network are chosen to assess the accuracy of the method (at loca-
tions marked in triangles).
3.2. Modal decomposition of the measured data

Since both the discharge and stage are measured at the four
USGS stations (SDC, DLC, GSS and GES), the measured flow variable
vector YmðtÞ is
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YmðtÞ ¼ ½qm
1 ð0; tÞ; ym

1 ð0; tÞ; qm
2 ðX2; tÞ; ym

2 ðX2; tÞ; qm
4 ðX4; tÞ;

ym
4 ðX4; tÞ; qm

5 ðX5; tÞ; ym
5 ðX5; tÞ�T ð20Þ

where m stands for measured. The fundamental idea is to decom-
pose the measured variables Ym into a finite sum of N dominant
oscillatory modes. In the case of a channel network influenced by
the ocean at the downstream end, these modes are essentially the
dominant modes produced by tidal forcing. The measured variables
are therefore expressed using modal decomposition:

YmðtÞ ¼
XN

k¼0

½Dkejxkt þ Dke�jxkt � ð21Þ

where

Dk ¼ dð1;1;0Þk ;dð1;2;0Þk ; dð2;1;X2Þ
k ;dð2;2;X2Þ

k ;dð4;1;X4Þ
k ; dð4;2;X4Þ

k ;dð5;1;X5Þ
k ; dð5;2;X5Þ

k

h iT

ð22Þ

Dk ¼ ½dða;b;cÞk �T are the Fourier coefficients of the spectral decomposi-
tion of Ym, where a, b, c represent the channel number, discharge/
stage variable, location of each channel reach, respectively. xk’s
are the set of frequencies used for modal decomposition.

Fig. 3 shows the spectral analysis for the discharge data at sta-
tion SDC: There are three dominant tidal frequencies in the system:
x1 ¼ 2:31� 10�5 s�1 (or period 12.4 h tide, corresponding to the
M2 tide generated by the moon), x2 ¼ 1:16� 10�5 s�1 (or period
24 h tide, corresponding to the K1 tide generated by the sun) and
a x3 ¼ 1:11� 10�5 s�1 (or period 25 h tide). The power spectrum
is cut-off at 70 ft3

=s2 to determine the 30 dominant frequencies.
The second plot in Figs. 3 and 4 indicates that 30 modes are suffi-
cient to capture the signal. The amplitude at 0 Hz is essentially the
nominal stage. Similar arguments hold for the other
measurements.

3.3. Hydraulic model of Sacramento River and Georgiana Slough

The open-channel network system in this study consists of five
individual channels, as shown in Fig. 2. For each channel, the dis-
charge and stage at upstream and downstream are related by a
non-uniform transfer matrix:
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The linear relationships between internal boundary conditions at
the two junctions are:

y1ðX1; sÞ ¼ y2ð0; sÞ
y2ð0; sÞ ¼ y3ð0; sÞ
q1ðX1; sÞ ¼ q2ð0; sÞ þ q3ð0; sÞ
y3ðX3; sÞ ¼ y4ð0; sÞ
y4ð0; sÞ ¼ y5ð0; sÞ
q3ðX3; sÞ ¼ q4ð0; sÞ þ q5ð0; sÞ

ð24Þ

A total of 20 flow variables qiðx; sÞ, yiðx; sÞ (for x ¼ 0 or Xi,
i ¼ 1;2; . . . ;5) are included in the system (23) and (24). These flow
variables are related in a linear model MðsÞZðsÞ ¼ 0 Eq. (10), with

ZðsÞ ¼ ½q1ð0; sÞ; y1ð0; sÞ; q1ðX1; sÞ; y1ðX1; sÞ; q2ð0; sÞ;
y2ð0; sÞ; q2ðX2; sÞ; y2ðX2; sÞ; q3ð0; sÞ; y3ð0; sÞ; q3ðX3; sÞ;
y3ðX3; sÞ; q4ð0; sÞ; y4ð0; sÞ; q4ðX4; sÞ; y4ðX4; sÞ; q5ð0; sÞ;
y5ð0; sÞ; q5ðX5; sÞ; y5ðX5; sÞ�T

Here, MðsÞ is a 16 by 20 matrix, which encodes the 16 equations
comprised of (23) (five channels), and (24) (internal boundary
conditions).

Since rankðMðsÞÞ ¼ 16, given four boundary flow variables
Zgiven BC � Z, all the other sixteen boundary flow variables
Zother BC ¼ Z n Zgiven BC can be uniquely determined by the 16 equa-
tions set (23) and (24).

Let us assume that the four known external boundary condi-
tions of the network are: the discharge at SDC: q1ð0; sÞ, the stage
at DLC: y2ðX2; sÞ, the stage at GSS: y4ðX4; sÞ and the stage at GES:
y5ðX5; sÞ. All the other boundary flow variables can be solved by
Eq. (11). More specifically,

Zgiven BC ¼ ½q1ð0; sÞ; y2ðX2; sÞ; y4ðX4; sÞ; y5ðX5; sÞ�T

Zother BC ¼ ½y1ð0; sÞ; q1ðX1; sÞ; y1ðX1; sÞ; q2ð0; sÞ; y2ð0; sÞ;
q2ðX2; sÞ; q3ð0; sÞ; y3ð0; sÞ; q3ðX3; sÞ; y3ðX3; sÞ; q4ð0; sÞ;
y4ð0; sÞ; q4ðX4; sÞ; q5ð0; sÞ; y5ð0; sÞ; q5ðX5; sÞ�T

RðsÞ ¼ R1ðsÞ�1R2ðsÞT



R1ðsÞ ¼

0 1 �g1;12ðsÞ 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 �g1;22ðsÞ 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 �g2;11ðsÞ 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 �g2;21ðsÞ 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 g3;11ðsÞ 0 �1 g3;12ðsÞ 0 0 0 0 0 0

0 0 0 0 0 0 g3;21ðsÞ 0 �1 g3;22ðsÞ 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 �g4;11ðsÞ 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 �g4;21ðsÞ 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 �g5;11ðsÞ 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 �g5;21ðsÞ 1 0

0 0 1 0 �1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 �1 0 0 0 0 0 0 0 0 0

0 �1 0 1 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 �1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 �1 0

0 0 0 0 0 0 0 0 1 0 �1 0 0 �1 0 0

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

R2ðsÞ ¼

g1;11ðsÞ g1;21ðsÞ 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 g2;12ðsÞ g2;22ðsÞ 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 g4;12ðsÞ g4;22ðsÞ 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 g5;12ðsÞ g5;22ðsÞ 0 0 0 0 0 0

0BBB@
1CCCA
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The parameters of the model are listed in Table 1. The mean dis-
charge ðQ0iÞ of the channels 1, 2, 4, 5 are computed using the mea-
sured discharge at SDC, DLC, GSS, GES, respectively. It is clear that
the measurement data are inconsistent, since Q 01–Q02 þ
Q04 þ Q05. To partially compensate for the measurement error, the
mean discharge at channel 3 is set to be: Q03 ¼ ½ðQ01 � Q02Þþ
ðQ04 þ Q05Þ�=2.

3.4. Data reconciliation

Let us assume that the measured variables Ym are independent
and subject to a Gaussian distributed noise. Based on the static
model (11), the measurable variables are linked by a static rela-
tionship of the following form:

PðsÞYðsÞ ¼ 0 ð25Þ

where

PðsÞ ¼

RðsÞ1;1 RðsÞ1;2 RðsÞ1;3 RðsÞ1;4 �1 0 0 0

RðsÞ6;1 RðsÞ6;2 RðsÞ6;3 RðsÞ6;4 0 �1 0 0

RðsÞ13;1 RðsÞ13;2 RðsÞ13;3 RðsÞ13;4 0 0 �1 0

RðsÞ16;1 RðsÞ16;2 RðsÞ16;3 RðsÞ16;4 0 0 0 �1

266664
377775
Table 1
Parameters for the Sacramento River and the Georgiana Slough.

Channel Q0i (m3 s�1) YXi (m) T0i (m) Sbi (m/k

i ¼ 1 186.7 5.6 115 �0.04
i ¼ 2 83.9 4.1 110 �0.09
i ¼ 3 113.1 7.7 110 �0.04
i ¼ 4 58.1 4.0 56 �0.19
i ¼ 5 65.2 5.3 89 �0.04
given YðsÞ n Zgiven BC is the first, sixth, thirteenth and sixteenth ele-
ment of Zother BC . Now, combining the solution of the data reconcili-
ation problem (19) with the static model (25), reconciliated
measurements bY can be calculated. Assume that bY is in the form:

bY ðtÞ ¼XN

k¼0

½Bkejxkt þ Bke�jxkt� ð26Þ

where Bk ¼ ½bða;b;cÞk �T is the Fourier coefficients vector of the spectral
decomposition of bY , and a, b, c represent the channel number, dis-
charge/stage variable, location of each channel reach, respectively,

Bk ¼ ½bð1;1;0Þk ; bð1;2;0Þk ; bð2;1;X2Þ
k ; bð2;2;X2Þ

k ; bð4;1;X4Þ
k ; bð4;2;X4Þ

k ; bð5;1;X5Þ
k ; bð5;2;X5Þ

k �T

ð27Þ

For specific dominant xk, k ¼ 1; . . . ;N, the coefficient vector Bk in
Eq. (26) is calculated by Eq. (19):

Bk ¼ I8;8 08;4ð Þ W�1 PðsÞT

PðsÞ 04;4

 !�1
W�1Dk

04;1

 !
ð28Þ

The reconciliated boundary condition data is shown and compared
to measured data in Figs. 5 and 6. For clarity, the mean flow has
been subtracted from the plots in the interest of magnifying the dis-
play scale. From the figures, the reconciliated data is very close to
m) n (m�1/3 s) Xi (m) C0 (m/s) Xi=C0 (s)

0.0323 2800 7.42 377.4
0.0323 2000 6.30 317.5
0.0323 1300 8.71 149.3
0.0323 600 3.40 176.5
0.0323 1600 7.19 222.5
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Fig. 5. Reconciliated boundary condition data vs. measured data.
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the measurements. The difference between the reconciliated data
and measurements is further evaluated in Table 2. Three primary
evaluation measures are analyzed here:
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Fig. 6. The difference between reconc
� The maximum value is the maximum difference between the
reconciliated and measured data at the same time steps.

� The coefficient of efficiency E is defined as [18]:
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Table 2
Max-value, q-value and E-value for reconciliated data and measured data.

Variable USGS station Max-value E-value q-value

Discharge SDC 23.66 m3/s 0.9930 0.9975
DLC 28.23 m3/s 0.9368 0.9883
GES 13.00 m3/s 0.9968 0.9985
GSS 18.41 m3/s 0.9368 0.8369

Stage SDC 0.05 m 0.9889 0.9947
DLC 0.12 m 0.9504 0.9759
GES 0.07 m 0.9847 0.9935
GSS 0.05 m 0.9938 0.9989

Fig. 7. (Left) USGS sensor station at GSS, used as a measurement sensor. (Right)
Deployable ADCP sensor, used in Section 3.5 for gathering the validation data (three
of them were deployed between 11/01/2007 and 11/12/2007 in order to gather the
data for this study).

Table 3
q-Value and E-value for model validation without reconciliation (Section 3.5.1).

Location A A B C
Variables Discharge Stage Stage Stage
E 0.7219 0.9820 0.9796 0.9807
q 0.8555 0.9922 0.9916 0.9927
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E ¼ 1�
PN

i¼1ðûi � uiÞ2PN
i¼1ðui � uiÞ2

" #
ð29Þ

where ui is the flow variable of interest (for example qi or yi in this
study), ûi is the reconciliated/modeled flow variable, ui is the mean
of ui, for i ¼ 1;2; . . . ;N measurement events. If the measured data is
perfect, E ¼ 1. If E < 0, the corresponding measurement is not
reasonable and must be excluded from the modeling procedure.
� The last statistic evaluation of the analysis is the correlation

coefficient q, given by

q ¼
PN

1 ðui � uiÞðûi � ûiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
1 ðui � uiÞ2

PN
1 ðûi � ûiÞ2

q ð30Þ

where ûi represents the mean of reconciliated flow for i ¼ 1;2; . . . ;N
measurement events.

3.5. Method validation

We used existing USGS sensors in place in the Delta as measure-
ment points, and deploy our own sensors at selected locations to
produce data used for the validation. We validate the method by
using existing and deployable monitoring infrastructure: USGS
fixed sensor stations (see Fig. 7) are used as measurement points
(see exact location in Fig. 2); deployable UC Berkeley sensors (see
Fig. 7) are placed at locations A–C on the map of Fig. 2. The mea-
surements were collected between 11/01/2007 and 11/12/2007,
and serve as a validation data set for this method.

Location A is downstream of the junction of Sacramento River
and Delta Cross channel; Location B is downstream of GSS branch;
Location C is downstream of Sacramento Branch. Without loss of
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Fig. 8. Validation of the model output with m
generality, the discharge at Location A, along with the stage data
at three locations, are used to test the model.

3.5.1. Model validation with measured boundary conditions
Following the steps described in Section 2, the flow variables at

the boundaries of each branch Zother BC are calculated using Eq. (11).
Here, the measured discharge at SDC, stage at DLC, GES, GSS are
used as Zgiven BC . The flow variables along each branch are estimated
using the non-uniform transfer matrix (Eq. (12)). The simulation
results are shown in Fig. 8.

Model calibration and validation are further evaluated using E-
value and q-value. Table 3 summarizes the values of q and E in the
validation sets of our channel flow model.

From Fig. 8 and Table 3, it is clear that Location A is the location
where the discharge is estimated with the least precision, as the
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easurement using USGS measurements.
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Fig. 9. Validation of the model output with measurement using reconciliated BC.
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characteristics of either the phase or the amplitude suffer a signif-
icant offset. Although we have a precise stage estimation at Loca-
tions A–C, the model does not provide enough information to
characterize the flow in the experiment area.

3.5.2. Modal validation with reconciliated boundary conditions based
on all the measurements

We will use reconciliated data shown in Fig. 5 as Zgiven BC . The
flow variables Zother BC , qiðs; xÞ, yiðx; sÞ are calculated using Eqs.
(11) and (12). The simulation results are shown in Fig. 9.

The values of q and E are listed in Table 4. Both q-values and E-
values are close to unity. Table 4 and Fig. 9 thus indicate that the
proposed model reconciliation approach provides a higher accu-
racy in the flow estimation.
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Fig. 10. Error distribution between the reconciliated data and USGS measurem

Table 4
q-Value and E-value for model validation after reconciliation (Section 3.5.2).

Location A A B C
Variables Discharge Stage Stage Stage
E 0.9775 0.9643 0.9768 0.9612
q 0.9895 0.9876 0.9897 0.9875
3.5.3. Exclusion of erroneous sensors
The data reconciliation method enables us to detect and exclude

sensors with erroneous measurements and further assess the
boundary conditions using the remaining properly working sen-
sors. Based on known results in data reconciliation, when the rec-
onciliated data is close to the ‘‘true” data, the difference between
the reconciliated and measured data must follow a Gaussian distri-
bution with a zero mean. If this condition is not satisfied, the sen-
sor is deemed to be malfunctioning and not suitable for
measurements.

In order to test the performance of our method, we first inten-
tionally add a large (10 times in magnitude) perturbation to the
discharge data measured at DLC, and conduct the standard data
reconciliation procedure described in preceding sections. The
probability density function of the difference between the reconcil-
iated data and measured data ðbY � YmÞ is calculated and compared
in Fig. 10. A Pearson’s chi-square ðv2Þ test is further applied to as-
sess whether this probability distribution differs from a theoretical
Gaussian distribution [19,3]. The Pearson’s v2 statistic is calculated
as

v2 ¼
Xn

i¼1

ðOi � EiÞ2

Ei
ð31Þ
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ents (perturbation discharge at DLC is added on purpose in the data set).
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Fig. 11. Error distribution between reconciliated and measured data (discharge at DLC is removed from the data reconciliation process).
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where v2 is the test statistic that asymptotically approaches a v2

distribution; Oi an observed frequency; Ei an theoretical (Gaussian)
frequency; n is the number of possible outcomes of each event.

From the data (see in particular subfigure in Fig. 10), it is obvi-
ous that the difference between the measured and reconciliated
discharge at station DLC does not follow the Gaussian distribution,
implying that the sensor is malfunctioning and should be excluded
from the data sets.

We then remove the discharge at DLC from the measurement
data, and repeat the data reconciliation procedure. The probability
density functions are showed in Fig. 11. The difference between the
reconciliated data and USGS measurements is then more likely to
follow a standard Gaussian distribution.

In summary, the v2 values are evaluated and assembled in Table
5. Note that a small v2-value indicates that the observation data
distribution is likely to follow a normal distribution.

Furthermore, we use the same three locations (A–C) in the
experiment domain to validate the reconciliated data. Table 6 com-
pares the q-value and E-value for the two cases: with the errone-
ous sensor and without the erroneous sensor.
Table 5
v2 value for different cases.

Variables With wrong DLC discharge data Without DLC discharge data

Discharge at SDC 695.55 157.80
Stage at SDC 180.20 226.03
Discharge at DLC 1200.64 N/A
Stage at DLC 369.80 234.73
Discharge at GSS 171.36 256.62
Stage at GSS 106.60 105.22
Discharge at GES 675.58 219.09
Stage at GES 159.71 144.54

Table 6
q-Value and E-value for modal validation (with and without discharge at DLC).

Location A A B C
Variables Discharge Stage Stage Stage
E (with wrong sensor) 0.9777 0.9599 0.9762 0.9567
E (without wrong sensor) 0.9676 0.9651 0.9788 0.9611
q (with wrong sensor) 0.9889 0.9867 0.9894 0.9867
q (without wrong sensor) 0.9893 0.9892 0.9908 0.9891
It is rather interesting to note that modal output is not affected
by the intentionally perturbed sensor data, meaning that the data
reconciliation method is robust enough to provide satisfactory
boundary conditions even if one of the sensors is malfunctioning.
4. Conclusions

This article proposes a new method to estimate the flow vari-
ables in a channel network system subject to periodic forcing. A
spatially dependent channel network model is constructed in the
frequency domain using LSWE transfer matrix for the non-uniform
steady state case. Modal decomposition allows the output response
to be expressed in terms of the spectral coefficients of the input
variables and the transfer matrix coefficients evaluated at appro-
priate locations. Data reconciliation in this case is reduced to a sta-
tic least-square minimization problem in the frequency domain,
and enables an efficient reconstruction of noisy boundary mea-
surements. Subsequently, the flow properties at any location in
the system can be readily predicted. The approach proposed in this
study has been applied to a channel network in the Sacramento-
San Joaquin Delta, using four USGS fixed sensors as measurement
points. The flow prediction was successfully validated at three
intermediate locations of the channel system, using deployed
sensors from UC Berkeley.

This method is now used for short-term forecast of internal
condition in the Georgiana Slough and Sacramento River, which
we use for our experimental drifter and submarine deployments.
This information is particularly useful for our ongoing data assim-
ilation and inverse modeling studies currently underway, using
Lagrangian sensors.
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Fig. 12. Backwater curve approximation.
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Appendix A. Transfer matrix representation of linearized Saint-
Venant model

The application of Laplace transform to the linear PDE system
(6) leads to the ordinary differential equations (ODEs) in the variable
x, with a complex parameter s

qðx; sÞ
yðx; sÞ

� �
x

¼ GsðxÞ
qðx; sÞ
yðx; sÞ

� �
ðA:1Þ

In the case of designing and analyzing small-scale flood manage-
ment systems, such as storm sewers and highway drainage, Uniform
Flow is a good simplified model which assume the channel invert
slope and the energy grade line slope are equal ðSb ¼ Sf Þ. However,
in real-world situation, this assumption is rarely represented, and
backwater approximation is introduced to simulate the Non-uni-
form Flow.

� Transfer matrix for uniform flow

Remark 2 (Uniform flow). In the case of uniform flow, the flow
variables are constant along the length of the channel, i.e., the
discharge Q0ðxÞ ¼ Q0 ¼ QX and the stage Y0ðxÞ ¼ Yn (normal
depth).

A closed-form solution of the linearized Saint-Venant equations in
the uniform flow case can be obtained, relating the flow variables
at any point x of the river reach qðx; sÞ, yðx; sÞ to the boundary con-
ditions qð0; sÞ and yðX; sÞ (referring to Litrico and Fromion [15] for
details):

qðx; sÞ
yðx; sÞ

� �
¼

gu
11ðx;X; sÞ gu

12ðx;X; sÞ
gu

21ðx;X; sÞ gu
22ðx;X; sÞ

� �
qð0; sÞ
yðX; sÞ

� �
ðA:2Þ

where

gu
11ðx;X; sÞ ¼

k2ek1xþk2X � k1ek2xþk1X

k2ek2X � k1ek1X

gu
12ðx;X; sÞ ¼ T0s

ek1x � ek2x

k2ek2X � k1ek1X

gu
21ðx;X; sÞ ¼

k1k2

T0s
ek2xþk1X � ek1xþk2X

k2ek2X � k1ek1X

gu
22ðx;X; sÞ ¼

k2ek2x � k1ek1x

k2ek2X � k1ek1X

Here, k1 and k2 are the eigenvalues of the ODE system (A.1), and are
given by

kiðsÞ ¼
2T0V0sþ c0

2a0
þ ð�1Þi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4C2

0T2
0s2 þ 4T0ðV0c0 � a0b0Þsþ c2

0

q
2a0

ðA:3Þ

In the following sections, the transfer matrix for the uniform case is
denoted as Guðx;X; sÞ ¼ ðgu

ijðx;X; sÞÞ.
� Transfer matrix for non-uniform flowTo solve a hydraulic problem

in realistic cases, the backwater approximation is assumed to
study flow regimes, in which the water elevation is not constant
along the reach [22]. Following the method in [22], and further
modified in [16], the backwater curve defined by Eq. (A.5) is
approximated by two straight lines, as shown in Fig. 12:

dQ0ðxÞ
dx

¼ 0 ðA:4Þ

dY0ðxÞ
dx

¼ Sb � Sf 0

1� F0ðxÞ2
ðA:5Þ

The river reach is then decomposed into two parts: a uniform
part and a backwater part. The intersection of the two parts is
denoted by x1. Let xu denote the location in the uniform part,
xb ¼ x� x1 denote the location in the backwater part, Xu ¼ x1 de-
note the length of the uniform part, and Xb ¼ X � x1 denote the
length of the backwater part. Let Guðxu;Xu; sÞ and Gbðxb;Xb; sÞ de-
note the transfer matrices for the uniform and backwater parts,
respectively; while Gbðxb;Xb; sÞ has the same form as the transfer
matrix Guðxu;Xu; sÞ. The transfer matrix for the non-uniform
channel Gnðx;X; sÞ ¼ ðgn

ijðx;X; sÞÞ compromises Guðxu;Xu; sÞ and
Gbðxb;Xb; sÞ with:

qðx; sÞ
yðx; sÞ

� �
¼

gn
11ðx;X; sÞ gn

12ðx;X; sÞ
gn

21ðx;X; sÞ gn
22ðx;X; sÞ

� �
qð0; sÞ
yðX; sÞ

� �
ðA:6Þ

The detail of entries of the transfer matrix for the non-uniform
case Gnðx;X; sÞ ¼ ðgn

ijðx;X; sÞÞ is listed in [24].
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