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Abstract—The feasibility of drifter studies in complex and tidally forced
water networks has been greatly expanded by the introduction of motorized
floating sensors. This paper presents a method for such motorized sensors
to accomplish obstacle avoidance and path selection using the solutions to
Hamilton–Jacobi–Bellman–Isaacs (HJBI) equations. The method is then
validated experimentally.

Index Terms—Remote sensing, robot control.

I. INTRODUCTION

For several years, the floating sensor network (FSN) project at the
University of California at Berkeley (UC Berkeley) [1]–[3] has been
deploying floating sensor units, called drifters, into various California
waterways. The latest generation of such drifters, dubbed Generation
3 [4], has been enhanced by a buoyancy control and dual motor system
for autonomous actuation. Each drifter contains a global positioning
system (GPS) receiver and global system for mobile communications
cell-phone modem, allowing telemetry readings to be reported to an
Internet server in real time. The readings are interpreted as a remote
indication of local flow velocity and are integrated with existing forward
mathematical models to improve upon flow estimations in real time.
Ultimately, it is hoped that this system can be used to populate a
map of water conditions to provide interested parties with up-to-date
information on tidal conditions or the spread of a contaminant in a
region being monitored.

Aquatic drifters, i.e., electromechanical units whose trajectory is in-
tended to match the surrounding water, have been developed since the
1950s for oceanographic research. These have been quite successful
in the ocean where fixed infrastructure can be impractical to install
in the deep sea, and where actuated gliders add dynamic measurement
capabilities [5]. Although there has certainly been research into drifters
in the river environment [6], [7], drifters have yet to be adopted widely
nor used for much more than feasibility studies. River and estuarial
environments present extensive obstacles, including underwater veg-
etation, channel banks, and man-made structures, that are essentially
absent from the ocean environment. Applying drifter technology to
inland environments, therefore, requires addressing the obstacle chal-
lenge directly. Typically, passive drifters are supervised by personnel

Manuscript received September 18, 2013; revised March 15, 2014; accepted
May 20, 2014. This paper was recommended for publication by Associate
Editor K. Kyriakopoulos and Editor G. Oriolo upon evaluation of this reviewer’s
comments.

K. Weekly, A. Tinka, and A. M. Bayen are with the Department of Elec-
trical Engineering and Computer Sciences, University of California, Berke-
ley, CA 94720 USA (e-mail: kweekly@eecs.berkeley.edu; tinka@berkeley.edu;
bayen@berkeley.edu).

L. Anderson is with the Department of Civil and Environmental En-
gineering, University of California, Berkeley, CA 94720 USA (e-mail:
leah_anderson@berkeley.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TRO.2014.2327288

in boats, who retrieve the drifters when they get snagged on obstacles.
Adding limited propulsion and autonomous obstacle avoidance to the
floating drifters is an approach that sets the FSN project apart from other
river drifter research. The FSN project is the first to design motorized
drifters to be low-cost and manufacturable, allowing us to produce a
fleet of 40 and demonstrate their success in a field experiment.

In this paper, we address the problem of obstacle avoidance and
path selection in an environmental setting. The obstacle avoidance
task is the ability of the drifters to avoid becoming stuck on hazards.
To comprehensively understand water conditions, it is also necessary
for a drifter fleet to distribute itself among multiple paths throughout
the water system, which we refer to as the path-selection task.

Controlling in the presence of obstacles is linked to path planning
problems [8]–[10], which sometimes rely on the Hamilton–Jacobi and
optimal control theory, such as [11]. Recently, Lolla et al. [12] demon-
strated in simulation a path planning algorithm using nearly the same
theory as described in [13] and this paper. Two features of our problem
distinguish it from the traditional path planning problem.
1) The drifter is an underactuated system. That is, the unit is in the

presence of a river current which is more powerful than the propul-
sion of the unit. Thus, a successful algorithm must account for the
river current and act preemptively to avoid being pushed into an
obstacle.

2) Our goal is not to reach a single target waypoint; rather, the goal of
the drifter is to not run into obstacles.

Several approaches can be used to solve these types of problems.
Viability-based approaches compute regions of the state space such
as “all points guaranteed to be safe” [14], [15]. Another approach is
to use the level and sublevel sets of solutions to Hamilton–Jacobi–
Bellman–Isaacs (HJBI) equations [16]–[20]. We chose to use the HJBI
framework, which can be used to compute the same sets, in order to
use an existing mathematical toolbox [21] to solve these equations
numerically.

We show that the solution to an HJBI equation can be used to
construct a minimum-time-to-reach (MTTR) function to a given target
region. Two such MTTR functions, i.e., Vcenter and Vshore , are used
to determine the transitions of the ON–OFF controller. With the proper
MTTR function, it is also possible to find the optimal control policy, i.e.,
the direction in which to travel in order to reach a target the quickest. It is
well known that because the HJBI equation is derived by application of
dynamic programming (DP) techniques [18], synthesizing these MTTR
functions suffers the same curse of dimensionality as other DP methods
[22]. Fortunately, for low-dimensional systems, such as described in
this paper, the problem is tractable.

The drifter unit’s measured velocity matches the local water velocity
only while the drifter is not under actuation. Thus, we seek to maximize
the amount of time the motors are turned completely OFF. ON–OFF

control is, therefore, a natural choice, since it specifies using maximum
actuation or none at all. It then remains to determine the on-state policy
and thresholds of the ON–OFF controller.

We presented and demonstrated via field testing a practical solution
to the obstacle avoidance challenge in [13]. This paper extends this by
showing that an intuitive change to the inputs of the algorithm accom-
plishes the path-selection task. We also demonstrate the path-selection
task with a field test at a fork in the Sacramento river. We also pro-
vide a more detailed description of the platform. The rest of this paper
is organized as follows. Section II discusses the method behind the
obstacle avoidance and path planning algorithms. Section III provides
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practical implementation details and simulation results. Section IV
presents results from our field operational tests, and finally, we con-
clude this paper in Section V.

II. HAMILTON–JACOBI–BELLMAN–ISAACS-BASED

OPTIMAL CONTROL

A. Model and Problem Statement

We model the system dynamics of a single drifter as a 2-D single
integrator:

ẋ = f (x, a, b) = w(x) + a(t) + b(t) (1)

‖a(t)‖2 ≤ ā

‖b(t)‖2 ≤ b̄

where x ∈ R2 is a 2-D state vector representing the position of the
drifter in meters, a(t) is the control input, and b(t) is the disturbance
input. Note the absence of a yaw state variable, which is intentionally
omitted to reduce the computational burden. We believe the term to
be largely irrelevant for longer time scales as the vehicle is highly
maneuverable around its vertical axis, owing to the differential drive
configuration.

An estimate of the river current, w(x), is given by a forward simula-
tion of the region without integration of drifter-collected data. Note that
although the purpose of the FSN project as a whole is to provide more
accurate estimates of the river currents using the drifters, nevertheless,
a less-accurate simulation can be used for the purposes of control. As
the river current estimates improve by integrating the drifter-collected
data, then the control will also benefit for future experiments by having
a more accurately specified w(x).

We also define the following sets of functions and parameters: ā and
b̄:

A � {a(·) : ‖a(t)‖2 ≤ ā ∀t}

B �
{
b(·) : ‖b(t)‖2 ≤ b̄ ∀t

}

and parameterize the trajectory of the system in terms of time, initial
condition, and the a(·) and b(·) inputs

x = x(t; x0 , a(·), b(·)).

With these functions, we will set up a differential game [17], [23]
in which the inputs a(·) and b(·) work against each other to either
satisfy or attempt to violate a safety condition, respectively. As we
will see later, b(·) will always act in the opposite direction of a(·) with
magnitude b̄. Therefore, in this case, running this differential game with
input constraints (ā, b̄) is equivalent to running a single-player game
with input constraints (ā − b̄, 0), although this is not true for general
differential games [23].

To set up this game, we are given a set of undesirable positions,
Tshore ⊂ R2 corresponding to collisions with obstacles. Conversely,
the complement of this set, i.e., S � T C

shore , gives the positions for
which the system is safe.

Our goal is to find a control input a(·) such that

∀ t > 0, ∀ x0 ∈ S, ∀b(·) ∈ B, x(t; x0 , a(·), b(·)) ∈ S. (2)

Ideally, a(·) also minimizes the time of actuation

tact =
∫ ∞

0
aon (t)dt

aon (t) =

{
1, a(t) �= 0

0, otherwise.

However, the proposed algorithm does not necessarily produce an op-
timal a(·) in this respect.

B. Mathematical Solutions

In this section, we describe the meaning of an MTTR in the context
of HJBI equations. In the next section, we describe several MTTR
functions used in an algorithm to satisfy (2). We begin with a target
set, T ⊂ Rn , giving a set of states we are trying to reach. Consider the
construction of a static cost function, V (x0 ):

V (x0 ) =

inf
a ( ·)∈A

sup
b ( ·)∈bf B

{∫ t�

0
l (x(t; x0 , a(·), b(·)), a(·), b(·)) dt

}

(3)

t� (x0 , a(·), b(·)) = inf {t : x(t; x0 , a(·), b(·)) ∈ T } (4)

where l(·, ·, ·) (Rn , Rn i ) 	→ R is a Lagrangian cost functional associ-
ating a cost for the system to be in a certain state and taking a certain
action.

Thus, the interpretation of (4) is that it designates the first time the
trajectory x(·; a(·), b(·)) enters T .

Suppose we take l(·, ·, ·) ≡ 1, representing a constant accrual of cost
until the target set is reached. Substituting into (3)

V (x0 ) = inf
a ( ·)∈A

sup
b ( ·)∈B

{∫ t�

0
1 · dt

}

= inf
a ( ·)∈A

sup
b ( ·)∈B

t� (x0 , a(·), b(·)) (5)

or more concisely

V (x0 ) = t� (x0 , a
� (·), b� (·)) (6)

a� (·) = arg inf
a ( ·)∈A

t�

b� (·) = arg sup
b ( ·)∈B

t� (7)

where a� (·) is called the optimal control for this particular cost function
as it minimizes the accrued cost, and b� (·) is the worst-case disturbance.

In this case, (6) simply gives the minimum time to reach the target
set T from x0 ; therefore, we call V an MTTR function for this system.
Note that V (x0 ) = +∞ in the case in which the target set is not
reachable from the initial condition x0 .

We are interested in finding the optimal control, or disturbance,
which satisfies (7) and achieves a minimum-time trajectory to, or from,
T . Both can be computed explicitly as a function of the gradient of the
MTTR function by the following relations:

a� (x) = −ā
∇V (x)

‖∇V (x)‖2
, b� (x) = b̄

∇V (x)
‖∇V (x)‖2

. (8)

In general, V is difficult to compute especially for systems such as (1)
which have an arbitrary forcing term, w, and an arbitrary target set, T .
We elect to extend the technique found in [21] for finding the MTTR
function of a holonomic system: A time-dependent HJBI equation, for
which there are known methods to solve [24], is constructed as follows:

0 = φt + min
[
0, Ḡ(x,∇φ)

]
, 0 < t < h (9)

Ḡ(x, p) � max
‖a‖2 ≤ā

min
‖b‖2 ≤b̄

{
pT · f (x, a, b)

}

φ(x, 0) =

{
−1, x ∈ T
1, otherwise

(10)
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Fig. 1. Example flow field estimate from REALM forward simulation model
of the Walnut Grove experimental region near the river split (see Fig. 4).

noting that although φ is, by definition, discontinuous at t = 0, by
using the Lax–Friedrichs numerical method, this discontinuity is be
dissipated and the solution is stable [18], [21].

As shown in [17], T can be reached in h time or less from the set of
points

G(h) = {x : φ(x, h) ≤ 0} .

The frontier of this set of points as it evolves through time is also the
set of points from which T can be reached in exactly h time. The set is
related to V by

∂G(h) = {x : φ(x, h) = 0} .

Consider a contour {x : V (x) = h} of the MTTR function, de-
scribing a set of points reachable in exactly h time units.
Comparing this contour with ∂G(h), we find that, for a given x, V (x)
is given by the first temporal zero crossing of φ(x, t). If such a zero
crossing does not exist, this means the system cannot navigate from
x to T ; therefore, V (x) = +∞. This zero crossing can be calculated
numerically as in [21].

III. IMPLEMENTATION

A. Flow Field Modeling

We use flow field estimates from REALM, which is a forward nu-
merical model of the Sacramento–San Joaquin Delta [25], for the values
of w(x) required for computation. An example of a flow field produced
from this simulation is shown in Fig. 1. Due to the tidal nature of the
flows in the area, multiple flow field estimates are taken, corresponding
to different times of day. The on-board controller will automatically
cycle through the policies throughout the course of the day to account
for varying water currents.

B. Computation of Control Feedback

The on-board controller requires three 2-D arrays to be computed
offline and loaded before the experiment:
1) The MTTR function toward the shore of the river is designated

Vshore . The Vshore MTTR satisfies (5), where ā > 0 is the maximum
current speed which could push the drifter to the shore, no other
force disturbs the drift (b̄ = 0), and T = Tshore , the left binary
image from Fig. 2. The function, therefore, describes how much
time the vehicle would move, pushed at speed ā, before crashing
on the shore.

2) The MTTR function toward the center of the river is designated as
Vcenter . This function also satisfies (5), where ā > 0 is the maximal
propulsion of the drifter, b̄ is the maximal disturbance, and T =
Tcenter is the right binary image from Fig. 2.

Fig. 2. (Left) Tshore , the constraint set which we want the drifter to avoid.
(Right) Tcenter , target set which the drifter needs to reach after touching the
dangerous set.

Fig. 3. Optimal bearing to center of the river, ∠� (x). A particularly complex
region is zoomed in.

3) The optimal bearing toward the center of the river, which is denoted
by ∠� (x), and plotted by Fig. 3, is the angle component of the
optimal control given in (8), where V in this relation is Vcenter .

These three arrays are combined into a policy file which is loaded
onto the drifter prior to the experiment. If we repeat this process for
different values of w or T , we could generate several such policy files.
The drifter is able to select which policy file is used in the on-board
controller. For example, the on-board controller could automatically
change the policy file over the course of the day to account for periodic
tidal flows.

C. Path Selection

To accomplish path selection, we calculated two policy files for the
region shown in Fig. 4, which also illustrates the sets {R1 , . . . , R6}.
The first policy file is loaded on drifters which should go down the west
path and is generated with the inputs

Tshore ← R1 ∪ R4 ∪ R5

Tcenter ← R6 ∪ R3

and the second policy file is loaded on drifters which should go down
the east path and generated with the inputs

Tshore ← R1 ∪ R2 ∪ R3

Tcenter ← R6 ∪ R5 .
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Fig. 4. Source files for lane-splitting algorithm superimposed and color-coded
and map showing geographic location. Each color represents a set of points and
is labeled for reference.

Fig. 5. On-board controller hybrid automaton diagram.

For each case, we are treating the unselected path as an obstacle and
the selected path as the only viable option for the drifter to be directed.

D. On-Board Controller

Within this framework, our on-board ON–OFF control system can
be encoded by a hybrid automaton H = (Q, X, R, f, Σ,U) [26], [27].
Q is the set of the two modes {qdrift, qactuate}, which the drifter alter-
nates between during its mission. X is the domain of the drifter’s
location R2 . Σ is the set of discrete events which can trigger a
transition between modes, and in our case, Σ = {x ∈ L, x ∈ D}.
R : (Q, Σ, X) 	→ (Q, X) is the transition function, encoded by Fig. 5.
fq : X 	→ X are the dynamics experienced while in each mode, also
shown in Fig. 5. Finally, U is the set of inputs afforded to the drifter
U = A = {a(·) : ∀t ‖a(t)‖2 ≤ ā}.

The target region L and danger region D are defined as follows:

L � {x : Vcenter (x) ≤ 8 s} ∩ C

D � {x : Vshore (x) ≤ 300 s} \ L.

Thus, when the position of the drifter is in danger, i.e., x ∈ D, the
controller turns on the motors and seeks the optimal trajectory back
to safety. When the drifter reaches safety, i.e., x ∈ L, the controller
turns the motors OFF and resumes passive drifting. Throughout the
experiment, we record the state of the controller alongside the GPS
measurements in order to later discard measurements taken while the

Fig. 6. Drifter GPS trajectory during northward tidal flow. The red line is a
contour of Vshore and denotes the edge of the danger region. The green line is
a contour of Vcenter and defines the target region. Along the drifter trajectory,
dotted lines indicate unactuated motion. See Fig. 1 for the simulated flow in the
region during the experiment.

drifter was actuating. This ensures that only data corresponding to
passive drifting are used for later estimation (assuming, as in our case,
that the estimator does not need a continuous trajectory but only point
velocity measurements).

IV. FIELD OPERATIONAL TESTS

A. Obstacle Avoidance

A field operational test was carried out targeting the Sacramento–
San Joaquin River Delta in California (approximately Latitude 38.03 N,
Longitude 121.58 W). The controller described in Section III was tested
for approximately 5 h in the river. Two boat teams were responsible
for monitoring the drifters and retrieving trapped units if necessary.
Retrieved drifters were placed back in the river at safe locations to
continue their mission. One goal of the experiment was to determine if
the controller presented in this paper effectively prevented the drifters
from heading into dangerous areas, therefore reducing the number of
necessary retrievals.

Fig. 6 shows data from the field deployment that was gathered by
one of the units. The trajectory of the unit has been reconstructed from
GPS positions recorded on-board and plotted by the solid magenta and
dotted blue lines, where the magenta lines and dotted blue lines indicate
when the controller was in qactuate and qdrift, respectively.

This result demonstrates behavior similar to that predicted by pre-
viously simulated results. During deployment, an easterly wind threat-
ened to beach the drifters. Here, this drifter floats north with the river
current, but is also being pushed toward the eastern shoreline. Upon
crossing the Vshore threshold (red contour), it begins to maneuver back
to safety. Once it reaches the Vcenter threshold (green contour), it tran-
sitions back to drifting without actuation. The current implementation
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Fig. 7. GPS trajectories of two drifters performing the path-selection algo-
rithm during a field test in Walnut Grove, CA. One of the drifters, shown by
the blue trace, is tasked with proceeding down the Sacramento River, while
the other drifter, in magenta, is tasked with proceeding down the Georgiana
Slough. Along the trajectory, the faded segments indicate passive motion where
the motors are OFF.

appears to be sufficient for preventing collisions with the shoreline, but
more advanced obstacle avoidance has yet to be proven in the field.

B. Path Selection

In our second experiment, we operated at an interesting fork in
the Sacramento river near Walnut Grove, CA, USA (approximately
Latitude 38.24 N, Longitude 121.52 W; see Fig. 4). Here, the Georgiana
Slough meets the Sacramento river and diverts some quantity of water
from it to be used in the delta. The large majority of the water, however,
continues down the Sacramento river, taking any nonactuated drifters
with it. Hence, our actuated drifters are needed to ensure some part of
the fleet ends up traveling down the Georgiana Slough to measure that
environment.

The primary goal of this experiment was to divert 10 out of 30
actuated drifters down the Georgiana slough, with the remaining 20
actively remaining in the Sacramento. By designing the proper obstacle
map, Tshore , we formed two parallel lanes for the drifters to split and
stay within, before the actual split happened. This caused the group
of drifters to clearly split into two groups and allows us to retrieve
any malfunctioning units before they are in danger. In practice, the
algorithm does not require that these lanes are drawn, only that an
obstacle be drawn across unselected paths.

Fig. 7 shows a plot of the trajectories of two drifters, one from
each group. The data represent a GPS location taken every 2 s by
each drifter and passed through a two-element moving average filter to
remove sensor noise from the GPS system. Note that, unlike Fig. 6, the
drifters clearly enter the danger region; however, this does not indicate
a failure to satisfy (2), since the drifter remained within S. The figure
demonstrates that the drifters have successfully actuated in a manner
placing them in the correct lane and simultaneously avoiding obstacles.

V. CONCLUSION

In this paper, we have described a successful technique for con-
trolling our autonomous floating sensor platforms so that they avoid
obstacles and the shoreline during a mission. We showed the efficacy
of the algorithm for the scenarios in which the unit must actively avoid

running against the bank of a river and in which the unit must drive
itself down a particular fork of the river. We are the first to demon-
strate using the solutions of HJBI equations for active duty field work.
We also seek to reduce the computational burden of the technique and
move toward an online integrated solution.
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