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Assessment of Uncertainty Propagation in the Dynamic
Response of Single-Degree-of-Freedom Structures Using
Reachability Analysis

Annalisa Scacchioli'; Alexandre M. Bayen?; and Bozidar Stojadinovi¢®

Abstract: A novel method to compute the bounds of the response of structures to dynamic loads, including earthquakes, is presented. This
method, based on reachability analysis, deterministically predicts the sets of states an elastic structural system can reach under uncertain dy-
namic excitation starting from uncertain initial conditions, where deterministic uncertainty ranges describe uncertainties. Ellipsoidal approx-
imations of these reachable sets for three canonical dynamic problems are presented to demonstrate the applicability of this method to single-
degree-of-freedom (SDOF) systems. The principle of superposition is formulated as a concatenation of ellipsoidal reachable sets using their
semigroup properties. Using this extension, computation of the external (worst-case) ellipsoidal approximation of reachable sets for a SDOF
system under earthquake excitation is presented. Possible applications of this method for software validation and hybrid simulation are dis-

cussed. DOI: 10.1061/(ASCE)EM.1943-7889.0000676. © 2014 American Society of Civil Engineers.

Author keywords: Dynamics of structures; Reachability analysis; Ellipsoidal approximation.

Introduction

A structure dynamically responding to a time-varying excitation is
considered a real-time continuous dynamic system. The design
parameters of this system (mass, strength damping, and stiffness) are
assumed to be known with high certainty, whereas the initial con-
ditions and excitation of the structure are not known with certainty
due to measurement errors. The aim of this paper is to evaluate
worst-case scenario bounds to assess, for example, the maximum
possible displacements a structure might experience when affected
by a plausible but uncertain excitation. To do this, the process of
dynamic system verification that consists of computing the sets of
states (displacements and velocities of the structure’s masses at a
point in time) of a dynamic system excited by an admissible but
uncertain excitation that can be reached starting from an uncertain
initial state will be used. Such sets of dynamic system states are
called reachable sets.

Although the verification of discrete state systems is a relatively
well-explored field for which efficient tools have been successfully
developed (Bryant 1986; Hu et al. 1993; Chutinan and Krogh 2003;
Asarin et al. 2003; Henzinger et al. 1998), algorithms for verification
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of continuous-state systems have only been developed relatively
recently (Mitchell et al. 2005; Lygeros 2004; Tomlin et al. 2000).
Verifying an uncountable (infinite) set of states represented by
continuous variables requires a numerical treatment that is both
theoretically more challenging than that for discrete systems and
harder to implement in practice. A possible approach is to use the
Hamilton-Jacobi (HJ) partial differential equation (PDE). The ben-
efit of this approach, sometimes called reachability analysis, is that it
provides a proof for the utilized mathematical models of the system
that the system state trajectory will remain inside an envelope and
reach the target. This is in contrast with Monte-Carlo methods,
which do not provide any guarantee for trajectories that are not part
of the simulation, and the random vibration analysis method, which
provides probabilistic characterizations of the likelihood that sys-
tems will follow a given state trajectory. Both the Monte Carlo and
random vibration analysis methods have historically been used to
explore possible trajectories a system might follow from uncertain
initial conditions under uncertain dynamic excitation, but neither is
capable of producing deterministic trajectory bounds.

The validity of proof at the basis of reachability analysis goes
back to the discovery of the viscosity solution (Crandall and Lions
1983; Crandall et al. 1984) of HJ PDE. Prior to this, methods based
on differential games (Isaacs 1965) (or optimal control for only one
player) provided, at best, certificates that specific trajectories of the
system stayed inside the envelope but did not provide guarantees on
sets. The advent of level set methods (Osher and Sethian 1988;
Sethian 1999; Osher and Fedkiw 2002) enabled numerical com-
putations of the viscosity solution, with a theoretical proof of
convergence of the numerical result to the viscosity solution. In
parallel, the viability theory (Aubin 1991) provided engineers with
an equivalent approach to solve the same problems, leading to a new
suite of numerical schemes (Saint-Pierre 1994) developed to solve
differential game problems (Cardaliaguet et al. 1999). These nu-
merical schemes have also been proven to converge to the viscosity
solution of HJ PDE, providing similar guarantees as level set
methods. These methods have now been extended to treat hybrid
systems, which combine continuous state and discrete state dy-
namics (Tomlin et al. 2000, 2003; Bayen et al. 2002; Mitchell 2000).
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When actual implementations of these methods became opera-
tional in the late 1990s, the available computational power limited
such computations to two-dimensional systems (Tomlin et al. 2000;
Saint-Pierre 1994). Algorithmic improvements and the increase in
computing power now enable calculations for systems with a con-
tinuous state dimension of up to four or more, depending on the
mathematical characteristics of the considered dynamics. This is
a major technological breakthrough that allows treatment of prob-
lems involving realistic models of physical systems. However, such
computations are extremely expensive. Because of the high com-
putational cost of solving reachability problems with converging
methods (i.e., which attempt to compute the exact solution nu-
merically), numerous approaches use approximate methods, such as
ellipsoidal methods, which compute only approximations of the
solution (under specific assumptions) at a lower cost.

This paper presents an application of an ellipsoidal reachability
analysis to compute the bounds of response of an elastic single-degree-
of-freedom (SDOF) structure to uncertain dynamic loads, including
earthquakes, starting from uncertain initial conditions. Uncertainties
are described by deterministic uncertainty ranges centered at the state
of the system acquired by measurements, and simulate measurement
noise. Ellipsoidal approximations of the reachable sets of a SDOF
system under three canonical dynamic excitations, including pulse
loading, are presented to demonstrate the applicability of this method.
The principle of response superposition for the linear systems and
the convolution method for linear system response computation are
formulated as a concatenation of ellipsoidal reachable sets using their
semigroup properties. Using such an extension, computation of the
outside (worst-case) ellipsoidal approximation of reachable sets for
a SDOF system under earthquake excitation is presented. Possible
applications of this method to gauge the quality of numerical model
calibration to experimental data and control error propagation in
experimental methods, such as hybrid simulation, are discussed. A
follow-up article presents an extension of the proposed method to
multiple-degree-of-freedom systems.

Linear Time-Invariant Model of a Structural System
and Reachability Theory

It is assumed that a structural system can be modeled as a linear
elastic viscous-damped system of masses with N degrees of free-
dom. The equation of motion (dynamic equilibrium) governing the
displacements y(¢) = [y; (1), y2(1), - .., yn(1)]" of such a structural
system starting from an initial state [y(fy), 3(#)]" subject to an ex-
ternal dynamic force p(1) = [p1 (), p2(2), .. ..pn()]" is

my(1) + ey(1) + ky(r) = p(1) (1)

where m, ¢, and k = mass matrix, damping coefficient matrix, and
elastic stiffness constant matrix of the structure, respectively, and all
are N X N. Using a state-space description for dynamical systems,
knowing that m is invertible and denoting the state vector x(r)
= [y(1),y(r)]", Eq. (1) can be restated in the state-space form for
a linear time-invariant (LTI) dynamical system as

x(r) = Ax(¢) + Bu(t), t=1 )

A:<_W?_1k —mI—1c>’ B:<m(11), u(t) =p(t) 3
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It is customary to designate x(f) € R as the state of the system;
u(r) € R? as the control input equal to the external dynamic ex-
citation in this study; AeR™" a5 the dynamics matrix; and
B € R a5 the input matrix. Dimensions of state-space formu-
lation matrices are related to the number of degrees of freedom of
the structural system as follows: # =2N and ¢ = N. The state-
matrix transition is defined by the following equations:

%CD(t, 1) =AD(t, 1), t=1
(I)(t(),l‘()) =1

“)

The solution of the system of Eq. (2), the state trajectory of the
system, is given by
t
x[t, 1o, x0, u(+)] = P(t,10)x0 + JCD(I, T)Bu(t)dr, t=1 (5
)

where ®(z, ) = A 7%0),

Definition: Initial State and Inputs

The variable X, is called the set of initial states and I{ is the set of
control inputs. It is assumed that Xy C R" and Uy C RY are compact
sets. Furthermore, it is assumed that the control input u(z) and the
initial condition x(f) are restricted to the following sets: u(t) €U
and x(t()) e Xo.

Definition: Input Functions

The space of control input functions U(¢) is given by U(z) = {n:
[f0, 1] = RY|n(0) €UV € [ty, t] and n is measurable}. The function
u( ) is denoted a generic control input function and is assumed to
be restricted to the functional space u( -) € u(z).

Definition: Reachable Set

The reachable set X[z, fo, Xo, U(t)] at time ¢ > #y from an initial set
Xy is the set of all states x(r) reachable at time ¢ by the system
[Eg. (2)] from at least one initial state xo € Xy through at least one
control input u( - ) € U(¢). The reachable set X[z, 1y, X, U(t)] can be
expressed by X(1) = X[t, ty, Xo, U(t)] = {x[t, 10, x0, u( - )]|x0 € Xo
and u(-) e U(r)}.

Definition: Reachable Tube

The reachable tube 7 [t, ty, Xo, U(¢)] at time ¢ > £y from an initial
set X is the union of all reachable sets Xt 7, Xo, U(f)] in the
time interval [#,f], as illustrated in Fig. 1. The reachable tube
Tt,to, Xo, U(t)] can be expressed by

Tt 10, X0, U(1)] = U {7} x X[r,10, X0, U(7)]

7€ [to,1]
Fig. 1 illustrates the preceding definitions.

Ellipsoidal Approximations of Reachable Sets

Using definitions from ellipsoidal calculus (Kurzhanski and Valyi
1997), an ellipsoidal reachability method is formulated for analysis
of the response of structural systems to dynamic excitation using
ellipsoidal approximations of reachable sets. Ellipsoidal tech-
niques for the reachability analysis of LTI systems, introduced by
Kurzhanski and Varaiya (2002), parametrize families of external
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Fig. 1.Reachable set X[z, 79, Xy, U(t)] from the set X at time #y; union
of the sets X[t 19, Xy, U()] for all times ¢ is called the reachable tube
T[l, 1o, X(), U(l‘)]

and internal ellipsoidal approximations of reachable sets by con-
structing them such that they are tangent to actual reachable sets
at every point of their boundary at any instant in time. These ap-
proximations, described through ordinary differential equations,
are implemented in MATLAB 7.5.0.342 (R2007b) using the ellip-
soidal toolbox (ET) (Kurzhanskiy and Varaiya 2006).

Definition: Ellipsoid

A generic ellipsoid £(z,Z) C R" is defined as £(z,Z) = {u: {(u — z),
Z '(u—z)) =1}, where z € R" is the center of the ellipsoid and
Z € R is a positive definite matrix.

Definition: Affine Transformation of an Ellipsoid

An affine transformation AE(g, Q) + b of an ellipsoid (g, Q) is an
ellipsoid

AE(q,0) +b=E(Ag+b,AQAT), AcR™ peR" (6)

where A = nonsingular matrix.

Definition: Geometric (Minkowski) Sum of k Ellipsoids

The geometric sum () of k ellipsoids is defined by

k
wu="3"ejle;€&(qi, 0i)

i=1
@)

O =E(q1,01)® - DE(qr, Ok) =

Definition: External Ellipsoidal Approximation of
a Geometric Sum of k Ellipsoids

Given a vector / € R", an external ellipsoid approximation £ (9.0/")
of a geometric sum of k ellipsoids £(g;, Q;), where i =1, ...k,
satisfies O C E(q, O} ), where the centeris g=¢q; + g2 + -+ + g
and the shape matrix Q; is

0/ = (L' +

1
g <<l Tk

(o))

o l>‘/2Qk>
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Definition: Internal Ellipsoidal Approximation of
a Geometric Sum of k Ellipsoids

Given a vector / € R”, an internal ellipsoidal approximation £(q, Q;")
of a geometric sum of k ellipsoids £(g;, Q;), where i=1, ...k,
satisfies £(¢q, 0; ) €, where the centerisg =¢; + g + - -+ + g
and the shape matrix Q; is

1/2 1/2

o = (o
% (0} +5:0}

+ 50! S Q‘/Z)

2. 4g QI/Z)

with onhogonal matrlces S,, where | = 2 .k (S:ST =1) and such
that vectors Q1 ’l, S2Q2 Sk Qk lare parallel

The geometric sum of k elhpsmd% E(qi, Qi), where i =1, ...k,
is in general not an ellipsoid but can be approximated by families
of external £(g, Q") and internal £(q, Q; ) ellipsoids parametrized
by vector / € R". Varying vector [ yields exact external and internal
approximations

U €@.0) =€@.0)e - a0 = ) €a.9)
=1

(Lh=1

In the present work, the external approximation £(g, O} ) of a geo-
metric sum of k ellipsoids &(g;, Q;), where i =1, ...k, is con-
sidered because this represents a conservative approximation of
the bounds of system trajectories in its state space.

Definition: Support Function of a Set

Let K be a nonempty subset of a finite dimensional space R". The
support function p of the set K with r € R” is the function py:
R? - R U {+x} defined by

pi(r): = p(K,r): = sup {r.x) €R U {oo)

The support function p of the ellipsoid £(g, Q) with any vector [ € R"
is given by

Pty () = pIE(q.Q).1 = (Lg) + (1.ON'/?

The system [Eq. (2)] in which the initial condition x(fy) and the
control input u(r) are restricted to the following sets, x(f) € Xy
and u(r) € P(t), is considered, where X, = E(xo, Xo) and P(¢)
= E[p(t), p(t)] are ellipsoidal sets. The following notions are defined.

Definition: Reachable Set by Ellipsoidal Technique

Let P(r) = E[ p(1), p(t)] C R? be the ellipsoidal set of control inputs
and I1(z) = {&: 1y, 1] > R?|€(0) € P(6) V 0 € [ty, 7] and £ is meas-
urable} be the space of control input functions. Given a set of initial
positions Xo = E(xo, Xp), the ellipsoidal reachable set Xz, 19, Xo,
I1(z)] at time ¢ = 1y from the set Xy is the set of all states
x[t, to, xo, u(+)] reachable at time ¢ by the system [Eq. (2)] with
x(fp) = xo € X through all possible controls u(-) € Il(z). The ellip-
soidal reachable set X[z, fp, Xo, I1(#)] can be expressed by Xt, 1,
Xo, I(2)] = {x[t, 10, x0, u(-)]|x0 € Xo and u(-) € I1(z)}.

Definition: Reachable Tube by Ellipsoidal Technique
LetP(1) = &[p(t), p(r)] € R? be the ellipsoidal set of control inputs, and
II(r) = {¢: [to, 1] > RI|Z(0) € P(6) V 6 € [to, t] and { is measurable}
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the space of control input functions. Given a set of initial positions
Xo = E(xo, Xo), the ellipsoidal reachable tube 7 [z, 1y, Xo, I1(z)] at
time ¢ > ¢y from an initial set Xy is the union of all ellipsoidal
reachable sets Xt 1y, Xo,I1(¢)] in the time interval [#o, ¢]. The
ellipsoidal reachable tube T [t, to, Xo, I1(f)] can be expressed by

Tt10. X0, (1)) = | {7} x X[r, 10, Xo, TI(7)]

7€ [to,1]

Although the initial set Xy = E(xp, Xp) and the control set P(r)
=&[p(z),p(t)] are ellipsoidal sets, the ellipsoidal reachable set
X[z, to, E(x0, Xo), I1(¢)] will in general not be an ellipsoid. The
ellipsoidal reachable set X[t, to, £(xo0, Xo0), I1(¢)] may be approx-
imated both externally and internally by ellipsoidal sets.

Definition: External Ellipsoidal Approximation of
a Reachable Set

Anexternal ellipsoidal approximation £* of an ellipsoidal reachable
set X1, to, Xo, 11(#)] satisfies X[t, t9, Xo, IL(1)] CE™. Tt is tight if a
vector /€ R" satisfying the adjoint equation i = —A”l, VI, € R"
exists, such that p(E7, =1) = p{X[t, 19, X0, [1(¢)], =1}, where p is
the support function defined earlier.

Remark

From the preceding definition, notation / means [(r) with Iy = I(1).
Note that VI, € R", +/ will be the directions in which the corre-
sponding ellipsoidal approximation will be tight if the adjoint equa-
tion is satisfied.

Definition: External Ellipsoidal Approximation of
a Reachable Tube

An external ellipsoidal approximation 7 * of an ellipsoidal reach-
able tube 71, ty, X, [1(1)] satisfies 7 [t, to, Xo, II(¢)] €7 . In this
work, only the external ellipsoidal approximations £ and 7 are
considered because they represent conservative approximations of
the exact reachable set and the exact reachable tube, respectively, by
accounting for all possible worst-case perturbations in the allowed
set of perturbations.

Semigroup Property of an Ellipsoidal Reachable Set

Given compact sets of control inputs Py (t) = & [p(¢), p(t)] C R and
Pa(t) = & p(t), p(r)] C R, the spaces of control input functions are
defined as 11, (to, 7) = {&,: [to, 7| > RI|&,(0) € P1(0) V 0 € [t, 7] and
£, is measurable} and I, (7, 1) = {&,: [, 1] > RY|&,(0) € P,(6) V 0
€ [r,f]and &, is measurable}. Let II(r) be the concatenation
ML(-, - )OAL(-, )](#) of II;(-, -) and ILx(-, -) at time T
given by

() = [ (-, ) Orlla(-, -)(2) = & [0, 1] > R?[£(6) € P1(6)
Vo € [f, 7]

£(0) eP,y(0) VO €< (T, t]and £is measurable

Given a set of initial positions X, the ellipsoidal reachable set
X7, 19, Xo, 11} (19, )] at time 7= 19, from the set X, is the ellip-
soidal reachable set X[, to, Xo, I1(t, 7)] = {x[, to, x0, u(:)]|x0 € X
andu(-) €Iy (t,7)} The ellipsoidal reachable set Xz, 9, Xo, I1(1)]
at time ¢ = 7, from the ellipsoidal reachable set X[, ty, Xo, [1; (f9, T)],
satisfies the semigroup property (Fig. 2)
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(7, to, Xo, (2o, 7)) (t,to, X0, I1(1))
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A(t, 0, Xo, I1(t)) = X(¢t, 7, X(7, ta, X, L1 (fo, 7)), [a(7, 2))

Fig. 2. Tlustration of the semigroup property of an ellipsoidal reach-
able set

X[t, 10, Xo, I1(2)] = X{t, 7, X[1, 10, X0, 11 (10, 7)]. [Ia(7, 1)},

fh=T=t

Model of Uncertainty

Uncertainty in the response of structural systems under dynamic ex-
citation is assumed to originate with measurements of forces, accel-
erations, velocities, and displacements used to describe the excitation
and states of a system. In this work, a deterministic model of uncer-
tainty that simulates measurement noise is adopted. A range of pos-
sible values of system state variables and the excitation (control input)
centered on the state or excitation value acquired by measurements
is specified. Mechanical and geometric (stiffness, strength, damping,
and mass) properties of the structural system are assumed to be known
and certain.

The geometric characteristics of an ellipsoid (Boyd 2008) are
used to formulate a model of uncertainty in the excitation (control
inputs) and initial conditions for the LTI model of a structural
system. The shape of a generic ellipsoid £(z,Z) = {u: ((u — z),
Z '(u—z)) =1} CR" is characterized by the eigenvectors of its
shape matrix Z. Eigenvectors define the principal directions of el-
lipsoid radii, and eigenvalues define the corresponding radii lengths.

Definition: Uncertainty of Initial State Set

Given an initial state set Xo = &€(x0, Xo), the amount of uncertainty
around the initial state xo is defined as w, = (K, 1> 25 - - - s Myo)»
where w, ; and i =1, ..., h are eigenvalues of the shape matrix Xp.

Definition: Uncertainty of Control Inputs Set

Given a control input (excitation) function set P(¢) = €[ p(z), p(¢)],
the amount of uncertainty around p(z), the center of the ellipsoid
E[p(2),p(1)], is defined as ) = {max,[,up([)l],max,[,u.,p([)z], ces
max, [, (),]}> Where max,[w, ] and i=1,...,q are eigenvalues
of the shape matrix p(¢). The uncertainty of the initial state set
Xo = E(x0,Xo) of a structural system is modeled by selecting
eigenvalues of its shape matrix X,. Because the initial state of
a structural system is described by the displacements (positions) and
velocities of its masses, eigenvalues of the shape matrix X represent
deterministic bounds of displacement and velocity measurement
errors at the time when system response begins. Because initial state
uncertainty occurs at the start of the response, uncertainty in this
initial state remains constant throughout the response time of the
system (Fig. 3). Analogously, uncertainty of the control input (ex-
citation) functions set P(t) = [ p(t), p(t)] is modeled by choosing
appropriate eigenvalues of its shape matrix p(r). The control input for
structural system models can be specified in terms of displacements,
accelerations, or forces. The eigenvalues of the shape matrix p(¢)
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Fig. 3. Uncertainty models for structural system initial state and control
input (excitation) for ellipsoidal reachability analysis

represent corresponding deterministic bounds of control input mea-
surement errors. These bounds may vary with time during the system
response, but in this work, the uncertainty in any control input is
assumed to be constant (Fig. 3) and equal to the largest measurement
error that occurred during dynamic excitation of the system.

Reachable Sets Computation for a SDOF System

In this section, ellipsoidal external approximations are used to com-
pute conservative estimates of reachable tubes for trajectories of
SDOF linear elastic structural systems excited by a finite force
pulse. The state evolution equation for a SDOF system is

[’:“‘]z Ok P {’”]+ | ®)

X2

where x; and x, = displacement and velocity of mass m. In these
examples, m = 1kg and k = 39.47N/m, giving the SDOF system
a natural vibration frequency w, = y/k/m = 6.28rad/s and a nat-
ural period T, = 27 /w, = 1 s. The responses of two SDOF systems,
an undamped system (damping ratio £ =0) and underdamped
system (¢ = 0.02), were analyzed. The initial condition of the SDOF
systems at = 0 is zero displacement and zero velocity. The finite
pulse excitation is a unit force pulse P(r) with a duration or ¢, = 0.4 s
specified as

Pi(t) =0kN for teT) = [to,t;] = [0,3]s
2(t) = LkN  for t€Th = [t1, 1] = [3,3.4]s 9)
3(1‘) =0kN forteTs = [12,13] = [3.4, 10]8

P(t)y=< P
P

To compute ellipsoidal approximations of reachable sets, the semi-
group property of reachable sets and concatenate responses of the
SDOF system in three pulse subintervals is used. The caption of
Fig. 4 describes the initial conditions and excitation used in the finite
pulse reachability analysis. The amount of uncertainty is set by
selecting eigenvectors and eigenvalues of the uncertainty ellipsoid
shape matrices. The length of the initial state vector for a SDOF
system is 2, making the size of the initial state shape matrix Xy 2 X 2.
The initial state displacement uncertainty w, and velocity uncer-
tainty p;, aresetat5- 10~ 4 for the undamped system and 5 - 1072 for
the underdamped system, respectively, using appropriate units. The
length of the control input vector for a SDOF system is 1. In this
example, the uncertainty of the control input is assumed to be es-
sentially zero; thus, the maximum Ho(r) is set to 5- 10710, which is
machine zero in appropriate units.

The reachability analysis was conducted using MATLAB and
ET (Kurzhanskiy and Varaiya 2006). Setting an input u( - ) € P(¢)
in Eq. (8) and given the time interval T = [ty, t] = [0, 10] s, the set
of initial conditions Xy = &(xp, Xp) and the control input (excita-
tion) u(t) € P(r) = E[p(1), p(t)], the external ellipsoidal reachable
tube approximation 7 C T [t, ty, Xo, I1(¢)] of the reachable tube

© ASCE
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T ¢, to, Xo,I1(#)] of the system [Eq. (8)] under finite pulse input
was computed. Fig. 4 shows the computed responses of the un-
damped and underdamped SDOF systems. These graphs show the
state-space trajectories of SDOF systems computed by numerically
integrating their equations of motion [Eq. (8)] without any un-
certainty and reachable tubes computed using ellipsoidal reach-
ability analysis for the first 10 s (10 natural periods) of response time
history. Also shown are reachable sets (cross sections of reachable
tubes) at t =4s.

The SDOF system is at rest during the first 3 s of finite pulse
excitation. However, because of the uncertainty in at-rest initial
conditions, a reachable tube exists. The reachable tube contains the
system trajectory computed without uncertainties showing that the
ellipsoidal reachability analysis produces valid response bounds.
The size of the reachable tube depends on the size of the uncertainty
of the initial system state. In this example, the uncertainty is one
order of magnitude smaller in the undamped case than in the
underdamped case. In both the undamped and underdamped cases,
the size of the reachable tube is roughly two orders of magnitude
larger than the size of the magnitude of the initial state of uncertainty.
The size of the reachable tube remains constant for the undamped
SDOF system, whereas the size of the reachable tube decreases as
the response of the underdamped SDOF system is damped out. The
duration of the pulse is short enough (40% of the natural vibration
period of SDOF systems) for the response to resemble that due to
initial velocity obtained by momentum transfer, both with respect to
the trajectories and sizes of the reachable tubes after the force pulse
(t > 3.4s). The cross sections of the reachable tubes at r = 4 s for the
undamped and the underdamped SDOF systems show that the
reachable sets enclose the exact solution. The sizes of the reachable
set ellipsoid radii are typical, whereas the shape appears elongated
because of the scale of the plot axes. Finally, this example dem-
onstrates that the method of computing a reachable tube by con-
catenation using the semigroup property of reachable sets works.

SDOF System Response Reachability Analysis for
Earthquake Excitation

This section applies the ellipsoidal reachability method for analysis
of earthquake ground motion response of linear elastic SDOF sys-
tems. The earthquake ground motion acceleration record is repre-
sented as a sequence of finite pulses, and the reachable set semigroup
property is applied to compute the reachable tube using concate-
nation. In this example, the 1940 El Centro earthquake ground
motion acceleration record obtained from the Pacific Earthquake
Engineering Research (PEER) strong motion database (PEER Center
2008) is used and treated as the control input x(#) acting on the system
[Eq. (8)]. The duration of the ground acceleration record T = [fy, ] is
divided into n subintervals, where n is the number of samples of
recorded earthquake excitation u(r) such that

T = U T;, Ti:[l‘,’_l,t,‘], i=1,...,n

i=1,.,n

where f, = . Then, in each subinterval T;, earthquake excitation
is represented as a finite-duration constant-intensity pulse p;(f)
= —m-a,;, where the value of the ith pulse acceleration is the ith
sample of the recorded ground motion acceleration data array and m
is the mass of the SDOF system.

To introduce uncertainty into earthquake excitation as it is
measured by accelerometers, each p;(¢) is defined as p;(¢) € Pi(¢)
= E[pi(1)P;(t)]. To introduce uncertainty into the state of the SDOF
system as it is measured by displacement and velocity instruments,
the initial state is defined at the beginning of each subinterval, and the
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Fig. 4. (a) and (b) Reachable tubes and (c) and (d) reachable sets at r =4 s for finite pulse response of an (a) and (c) undamped and (b) and

0

Xo

(d) underdamped SDOF system computed using the initial state set Xy = € ([O 0", {'U“ v 0 } > and the control input sets Py (1) = E{[0], [w, ]}

fort€ Ty = [to,11] = [0,3] s, Pa(t) = E{[1], [m,y]} fort € Tr = [, 12] = [3,3.4] s,and P3 (1) = E{[0], [,y ]} fort € T3 = [ta, 3] = [3.4, 10] s, with p,, ;)
=5.10716, My = Mgy =35 10~* for undamped SDOF, and Moy = My =3 1073 for underdamped SDOF

reachable state obtained at the end of the previous subinterval is de-
fined with initial conditions at time #, specified as Xy = £(xp, Xo). The
magnitude of uncertainty is specified by prescribing the magnitude of
the uncertainty ellipsoid shape matrix eigenvectors. Then, the exter-
nal ellipsoidal reachable tube approximation 7;” 2 7 ;[t, to, X0, I1(¢)],
where i =1, ..., n for the SDOF system [Eq. (8)] for each of the n
subintervals T; is computed by computing reachable sets X;(¢) V¢ € T;,
where i =1, ...,n for each of the n subintervals. External el-
lipsoidal reachable tube approximation 7 * of the reachable tube
T t, to, Xo, I1(z)] for the SDOF system under an earthquake exci-
tation is then the union (in time) of the external ellipsoidal reachable

tube approximations T? 27(t), wherei=1,...,n
7= 72 U o= U | U {8 xx0
i=1,...n i=1,...,n i=1,...,n l€[li—|,li]
= Tt, to, Xo, I1(2)]

where X,’(l‘) = X[l‘, ti—1, Xi—1 (l‘,*f]), H,’(l,;], t,')], wherei=1,...,n
is the reachable set at time #; = £;_; from the initial state X;—; (#,—1)
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through any arbitrary control p;(-) € I1;(t;-1, 1), where I1(f;,—1, #;)
={¢;: [ti-1, 1] > RYL(0) € Pi(O)VO € 11, 1] and ¢; is measur-
able}, with P;(r) = E[qi(1), Qi(t)].t€T;, and i=1, ...,n. Sub-
interval external ellipsoidal reachable tube approximation is
computed sequentially in chronological order of subintervals.

This algorithm is applied to investigate how uncertainty in a
measured state and uncertainty in an excitation affect the earth-
quake response of a SDOF system. Fig. 5 shows the 1940 El Centro
earthquake response trajectories of an undamped and underdamped
(2% damping ratio) SDOF system computed by numerically solving
state-space equations of motion [Eq. (8)] and using the time-history
response analysis tool Bispec (Hachem 2010).

Uncertainty of an excitation is defined by setting the magnitude
of uncertainty ellipsoid radii to ;) = 2.9 - 1073 g. This magnitude
was chosen assuming that the measurement error of a typical modern
accelerometer is less than 0.1% of the maximum value of the
measured acceleration (equal to 0.29¢ in this case). The same nu-
merical value of uncertainty for the initial at-rest state of the system
My = My, = 2.9+ 1073g is adopted. Figs. 6-8 depict the El Centro
ground motion response reachable tubes and reachable sets for the
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Fig. 5. Response of an (a) undamped and (b) underdamped SDOF system to 1940 El Centro earthquake ground motion record

undamped and underdamped SDOF systems computed using the

initial state set
Ky O
Xo=¢& ooT{ 0 D
<[ Pl M,

with w, = py, =2.9- 1073g, and the control input set P(t)=&
{E@] [y} with ) =2.9- 1073 g. Reachable sets (cross sec-
tions of the reachable tube) are shown at midpoints of the selected
time intervals. The system trajectory remains within the computed re-
achable tube but not necessarily close to the origin of the reachable
set ellipsoid. For example, at r=4.5s, the system state is relatively
close to the reachable set ellipsoidal boundary. This shows that
conservatism inherent to an external ellipsoidal reachable tube
approximation is reasonable. Reachable tube size grows very rapidly
during the initial 1-s-long time interval, even though the excitation
itself, and therefore the response of the system, is quite small. At
t=0.5s, eigenvalues of reachable set ellipsoids are two orders of
magnitude larger than magnitudes of eigenvalues of the initial
uncertainty state. The size of the reachable tube for an undamped
SDOF system continues to grow during response analysis; con-
versely, the size of the reachable tube for an underdamped SDOF
system remains similar to that attained at the time when maximum
displacement response was reached during the [4, 5] s time interval.
This observation indicates that the accumulation of uncertainty
during the duration of an entire earthquake ground motion excitation
is likely to lead to extremely conservative reachable tube estimates.
Fig. 9 shows that state trajectories for both undamped and under-
damped SDOF systems are contained within the reachable set
computed at the instant when the two SDOF systems attain maxi-
mum displacement during their response to the 1940 El Centro
ground motion record. This points to a promising way to compute
reasonably conservative deterministic state trajectory bounds for
linear elastic SDOF systems under earthquake excitation.

Applications of Ellipsoidal Reachability Analysis

Theorem: External Ellipsoidal Approximation of
a Reachable Set for an LTI System

Given an uncertain initial state set X = £(xp, Xo) and an uncertain
control input (excitation) function set P(t) = &[p(t), P(t)], the
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ellipsoidal reachable set for a LTI system [Eq. (2)] at time # =t is
given by

X[t 1o, E(x0, Xo), [1(1)] = B(1,10)x0 + P(2,20)E(0, Xo)

t

+ J(I)(t, $)B(s)p(s)ds

Iy
t

+ J(I)(t, 5)E[0, B(s)P(s)B" (s)]ds  (10)

Iy

where ®(z, 1)) = A1),

Proof

The proof follows trivially from the LTI system state trajectory
[Eq. (5)] and affine and semigroup properties of reachable sets.
Eq. (10) shows that the ellipsoidal reachable set of an LTI system is
an ellipsoid that encloses the state of the system at time # computed
using Eq. (5) with axes defined by a transformation of the initial state
and control input uncertainty ellipsoids through the dynamics of the
LTI system.

The following examples compute how reachable tubes and
reachable sets grow for an undamped SDOF system with a natural
vibration period, 7,, = 1 s, responding in free vibration, given dif-
ferent values of uncertainty in the initial state and in the control input,
as reported in the caption of Fig. 10. The reachable sets are computed
at t =2s. The reachable sets in Figs. 10(a and b) show that the
uncertainty in the initial state has a transient and relatively small
effect on their size. Conversely, continuously present uncertainty in
control input has a significant effect on the size of the reachable sets,
shown in Figs. 10(c and d), with their size being roughly pro-
portional to the magnitude of control input uncertainty. To in-
vestigate the effect of the SDOF system damping ratio on the size of
the reachable tube, the reachable set is computed at = 2 s for two
underdamped 7,, = 1 s SDOF systems, with damping ratios equal to
0.02 and 0.05 in free vibration. The initial conditions and uncer-
tainties used in this analysis are reported in the caption of Fig. 10,
whereas the reachable sets shown in Figs. 10(e and f) indicate that
damping reduces the size of a reachable set of ellipsoids, diminishing
the effect of both transient and continuously present uncertainties.
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Reachable tube size information can be used in the process of
validation of computer simulation tools, such as FEM software for
modeling the dynamic response of structures against experimental
data. A common validation methodology comprises a dynamic re-
sponse experiment on a prototypical structure followed by devel-
opment of a numerical model and an analysis of model response to
the same excitation. A comparison of the experimentally observed
and simulated system state trajectories is used to evaluate the quality
of the numerical simulation. Common evaluation criteria are based
on measures of instantaneous, averaged or cumulative, and absolute
or relative prototype versus model signal mismatch errors in the time
and frequency domains. However, the amount of experimental mea-
surement error is rarely explicitly taken into account. Deterministic
reachable tube bounds computed using the ellipsoidal reachability
analysis method presented here provide a way to explicitly include
information about the accuracy of the instruments used in the ex-
periments, thus giving a realistic measure of acceptable error levels for
numerical simulation tools.

Ellipsoidal reachability analysis can also be used to improve the
reliability of hybrid simulation (Stojadinovié¢ et al. 2006). Hybrid
simulation is an experiment-based method for investigating the
dynamic response of structures to time-varying excitation using
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a hybrid model. A hybrid model is an assemblage of one or more
numerical and one or more experimental consistently scaled sub-
structures. The response of a hybrid model to a time-varying ex-
citation is obtained by solving its equations of motion using a
time-stepping integration procedure that dynamically incorporates
measured and computed data. This integration procedure is con-
ducted in the presence of disturbances (Shing and Mahin 1990),
such as model abstractions and approximations, random measure-
ment, systematic experiments, actuation servocontrol, numerical inte-
gration algorithm errors, and time delay. A time-stepping integration
procedure developed for hybrid simulation (Stojadinovi¢ et al. 2006)
is comprised of two phases: (1) a predictive phase, in which the target
state at the end of a time step is determined based on the current state
and the past trajectory of the hybrid model by extrapolation; and (2)
a corrective phase, in which the end of the time step target state
computed (with some delay) for the entire hybrid model using a
time-stepping integration algorithm becomes known, and the system
state trajectory is corrected to arrive at the desired target state. El-
lipsoidal reachability analysis can be used to examine state trajec-
tories computed in predictive and corrective phases of a time step. A
typical duration of a time step in seismic response hybrid simulations
is 0.01 or 0.02 s, governed by the time step when the earthquake
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(a) and (c) undamped and (b) and (d) underdamped SDOF systems

ground motion was acquired. Assuming a linearized model based on
the secant or tangent characteristics of the hybrid model, a reachable
tube for the time step can be computed using uncertain excitation
during the time step and starting from an uncertain current state of the
hybrid model. The hybrid model state trajectory computed during
the predictive phase should be inside this reachable tube. Similarly,
a reachable tube computed for the corrective phase of the time step
should also contain the hybrid simulation corrective phase state
trajectory. Trajectory tests formulated in this way can be used to
avoid errors in the predictive and corrective phases of a hybrid
simulation time step and thus increase the reliability of this simu-
lation method.

Conclusion
In this article, a reachability analysis is introduced and an application
of an ellipsoidal reachability analysis is presented to compute bounds

of response of a linear elastic SDOF system under uncertain dynamic
excitation starting from an uncertain initial state. A deterministic
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description of the initial state and excitation uncertainty is used to
represent state and excitation measurement errors. In an example, an
external ellipsoidal reachable set approximation is to obtain a con-
servative, worst-case estimate of the sets of states a linear SDOF
system can reach under the prescribed uncertainties in response to
finite pulse loading. A method to concatenate ellipsoidal reachable
sets for a sequence of impulse loads to compute the ellipsoidal
reachable set approximation for SDOF system response to earth-
quake excitation was also formulated. Finally, possible applications
of reachability analysis were discussed to gauge the quality of nu-
merical model calibration to experimental data and control error
propagation in experimental methods such as hybrid simulation.

A follow-up article presents an extension of the ellipsoidal
reachability analysis to linear multiple-degree-of-freedom structural
dynamic systems. Additional research is needed to understand (1)
the effects of the magnitude of the initial state and excitation un-
certainty, magnitude of response, and response characteristics of the
system on the rate of growth and final size of reachable tubes; and (2)
options for using reachability analysis to bound response state tra-
jectories of nonlinear structural systems under dynamic excitation.
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