Arterial traffic

EE 291 (Spring 2010) – Aude Hofleitner

Recall: distributed systems modelling

Lighthill-Whitham-Richards partial differential equation

- Nonlinear first order hyperbolic scalar conservation law
- Concave flux function (empirical fundamental diagram)
- Weak boundary conditions [Lighthill-Whitham, 1955; Richards, 1956]
- ho(x,t) is the vehicle density.

$$\frac{\partial \rho}{\partial t} + \frac{\partial q(\rho)}{\partial x} = 0$$

$$\rho(a, t) = \rho_a(t)$$
$$\rho(b, t) = \rho_b(t)$$
$$\rho(x, 0) = \rho_0(x)$$

In the case of arterial traffic

- A lot of unknown and highly variable parameters
 - Traffic lights
 - Pedestrians
 - Bad parking
 - Delivery trucks...
 - Capacity of the road
 - Different traffic flows (bikes, trucks...)

An integrated approach of distributed systems and statistical models

- 1. Model the dynamics of the distributed system (assumptions, LWR equation...)
- 2. Define a set of independent parameters P describing the model (often have physical interpretations)
- 3. Derive the probability distributions of the state variables (density, velocity...) parameterized by P
- 4. When you observe data, estimate the parameters by maximizing the probability to observe the data: maximize the likelihood

If you observe a lot of long travel times, long delays, the road is likely congested...

Step 1: Assumptions and model dynamics

- Neglect overtaking
- Stationarity of traffic conditions (constant arrival rate, fixed cycle timing, no constant increase or decrease of queue lengths)
- Triangular fundamental diagram
- Conservation of vehicles

Step 2: Define the relevant parameters of the model

- Cycle timing (red and cycle time)
- Traffic conditions (arrival rate, queue length, clearing time)
- Driving behavior (free flow speed' distribution of free flow speed)

- Undersaturated regime
- Congested regime

Variable of interest: density at location x, averaged over time

Probability distribution of observing a car at location x is proportional to the average density (normalizing constant)

→ Spatial heterogeneity of the travel time on arterials

Variable of interest: travel time. Depends on:

- the delay experienced,
- the driving behavior
- Conditional probability distribution of travel time for a given free flow speed for a given set of parmaters
- Integrate over the free flow speeds (total probability law)

Parametric travel time distributions, depends on

- Origin a and destination b
- Parameters of the model

The distributions are quasi-concave (sublevel sets are convex).

Proof not detailed here

The likelihood function:

Probability of the observations conditioned on the value of the parameters,

Maximize the log-likelihood:

- Optimization problem
- Might have constraints dictated by the physics of the problem

e.g. bounds on the parameters, constraint on signals sharing an intersection, stationarity assumptions...

Best estimate of the parameters, given the observed data

- Solve the constrained optimization problem $\begin{array}{ll} \max i \\ \rho_{a}, \rho_{\max}, \rho_{c}, \\ \overline{v}_{f}, R, C, l_{r}, \alpha, \sigma^{2} \end{array} \begin{array}{ll} \sum_{i} \ln(f(x_{i})) \\ \sum_{i} \ln(f(x_{i})) \\ \rho_{a}, \rho_{\max}, \rho_{c}, \\ \overline{v}_{f}, R, C, l_{r}, \alpha, \sigma^{2} \end{array}$ s.t $\begin{array}{ll} \rho_{a} \leq \rho_{c}(1 R/C) \\ l_{r} + v_{f}(C R)\rho_{c}/\rho_{\max} \leq L \end{array}$
- The constraints are given by the physics of the model (stationarity, cycle timing, queue length...)
- →Estimation of the road parameters
- Spatial distribution of vehicles on a link: models the spatial heterogeneity of travel times
- ➔ Travel time distribution estimation and prediction

Results

- Needs little data
- Does not overfit
- Physical interpretation
- Estimation and prediction of travel times
- Improve accuracy (compare to baseline model)

- For this project: finalize the results for the travel time estimation and prediction
- Ongoing work:
 - Spatio temporal evolution of traffic conditions: transition probability matrices on the evolution of parameters (Hidden Markov Model)
 - → Summer 2010
 - Hierarchical model (bayesian analysis)
 Currently testing
 - Joint distribution of travel times on links with multiple intersections (flow synchronization)

Questions?

