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Abstract

We discuss the present routing algorithms for the dynamic traffic as-
signment (DTA) problem assigning traffic flow in a given road network
as realisticly as possible. We present a new class of so-called routing
operators which route traffic flow at intersections based on real-time in-
formation about the status of the network or on historical data. These
routing operators thus cover the distribution of traffic flow at all pos-
sible intersections. To model traffic flow on the links, we use a macro-
scopic well-known ordinary delay differential equation. We prove the
existence and uniqueness of the solutions of the resulting DTA for a
rather broad class of routing operators.

This new routing approach is required and justified by the increased
usage of real-time information on the network provided by map services,
changing the “laws of routing” significantly. These map and routing
services have a huge impact on the infrastructure of cities so that a more
precise mathematical description of the emerging new traffic patterns
and effects becomes crucial for understanding and improving road and
city conditions.
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1. Introduction

In recent years, new routing and map services providing (allegedly, almost) real-time infor-
mation on the status of a traffic network have increased in usage. Based on this information
these services suggest “shortest routes” and change and will continue to change the routing
behavior of all traffic participants on a given road network all over the world (T}, 2, 3] [4], [5]).

Due to these changes, well-understood and mathematically elegant models like convex
optimization problems for determining Nash-based traffic assignments (6, [7) might be less
precise or appropriate, as they were not meant to incorporate changes of routes during the
routing process over time.

In this contribution, we will present the current status of mathematical modelling of
the routing of traffic flow in networks macroscopically, i.e., as time- (and space-) dependent
continuous density. We will explain most of the chosen approaches dealing with the so-called
dynamic traffic assignment (DTA). We will then introduce a broad class of routing
operators and show their well-posedness on the network for specific macroscopic dynamics,
represented by a system of ordinary delay differential equations. In the considered context,
well-posedness means that the system of differential equations coupled with the named
routing operators admits a (unique) solution. This is not straight forward as the routing
depends on the solution in real time, and causes a coupling between flow allocation and state
of the system. To our knowledge, such a broad and rigorous approach has not been made
in the literature, in particular when the routing itself will depend on the network status
in real time, making it necessary to address the well-posedness by means of a fixed-point
argument.

1.1. Structure of the article

In we present the current state of research with an emphasis on the difference be-
tween link and node dynamics (the terminology is explained in the corresponding sections).
We start with and explain macroscopic traffic flow models using ordinary dif-
ferential equations (ODE) in[Section 2.1.1]and partial differential equations (PDE)
in[Section 2.1.2] In|Paragraphs 2.1.1.1jand [2.1.2.1} we discuss the challenges when applying

the named models to networks.

After presenting the dynamic models involved in describing traffic low on links with
proper node models, we discuss in different routing approaches which distribute
the flow following specific rules/laws. In we briefly explain the archetypes
of probabilistic routing approaches or routing operators located at intersections, followed
in by the time-dependent Wardrop’s principles sometimes also called user
equilibrium (UE) and by optimal control approaches into obtain the “best”
routing for a specific objective function.

introduces a new modelling approach, routing operators, reacting to traffic
situations in up to real time. Having defined the needed notation and network structure

in [Section 3.1| and [Section 3.2] we introduce the considered link dynamics, an ordinary

delay differential equation in present the routing operators in and
then, as a whole, the resulting dynamic traffic assignment problem in
In [Section 3.6} we investigate the well-posedness of the entire time-continuous routing

problem by means of a fixed-point argument and conclude the section with some remarks
about shortest path assignments in We instantiate some well-known routing
operators in the literature in and discuss the applicability of our theory to these
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operators.
The contribution is concluded in[Section 4| with suggestions on future research directions.

2. State of the art

Many different approaches to the dynamic traffic assignment (DTA) problem have been
considered in the literature. Usually, the problem is formulated on a network with links
and nodes representing the corresponding roads and intersections of the considered traffic
network.

In the following, we distinguish between the link dynamics, meaning the dynamics
which traffic flow follows when no intersections are present, and node dynamics, which
disperse incoming traffic flow according to predefined policies or “laws of routing.” For the
link dynamics, we will only consider macroscopic traffic flow models, that is models
describing the flow via density and not single traffic participants.

Depending on the link dynamics, node dynamics become more or less difficult. For
instance, consider an intersection where all out-going links are fully congested. Then, flow
intending to enter the intersection cannot pass to the leaving links and would thus “spill
back” on the entering links. For a rather realistic traffic low and DTA model this is a
crucial requirement as otherwise flow will smoothly pass through the network. Even when
travel time increases there will never occur any gridlock situation, although in reality this
is one of the most important effects one would like to model and better understand.

but from a modelling point of view it makes the underlying equations more complex
and harder to handle. Let us first discuss time-continuous macroscopic modelling of traffic
flow on links in

2.1. Link and node dynamics

In this section, we will describe different time-continuous macroscopic traffic flow models.
For a general overview, we refer to (8, 9, [10]).

2.1.1. ODE models. ODE models for traffic flow are, for instance, presented in (111 [12} [13)
and have the general structure for a given T' € R~q

z'(t) = f(z(t),t), t € [0,T], z(0) = zo

with a proper function f: R — R to be specified, z(t) being the density at time ¢ € [0, 77,
and zo € R>( being the initial density. Usually, the model class is written in greater detail:

2'(t) = inflow[x](t) — outflow[z](t), t € [0,T], 2(0) = o 1.

where inflow[z] indicates the time-dependent inflow onto a considered link and outflow|[x]
the corresponding outflow from a given link. Both inflow and outflow might also depend on
the density x of the considered link indicated in the notation. When interpreting the model
with regard to an entire network, one might also prescribe additional constraints to make
the model more realistic, although mathematically, these constraints can actually cause
issues of well-posedness. Assume for instance that one adds box constraints — a capacity
constraint on a specific link — and additional flow enters this link. Then, when there is no
other modelling taking care of the flow that cannot be processed onto the considered link,
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the model is not well-posed, meaning that the underlying equations do not have a solution.

This can be overcome by defining a proper node model as discussed in [Paragraph 2.1.1.1}

In addition, even though these models have a notion of traffic density, there is no notion
of travel time (as one cannot state how long a certain amount of flow takes to pass a link),
so one needs to come up with objective functions that compute a “type” of travel time
based on the given density (see for instance (7)) for how this is done for the stationary
traffic assignment). However, this is so far confusing, as the model already contains time
t € [0,T], so travel time should be directly defined in terms of this time.

Another approach is to place queues at the exits/entries of links, where the queuing
size is modelled by ordinary differential equations. Several different models exist for this
purpose; we refer to (14 [15] [16] [17) and to (L8} [19, 20), where different generalization based
on the Vickrey model (21I)) are considered. In addition, now one can impose constraints
on links so that if a specific density is reached, the corresponding buffer increases. For short
links where real flow dynamics might not develop, this model class might be fortunate. In
a simplified version following (15)), the model can be written as

min {C,p(t —to)} ¢(t) =0

q'(t) = p(t—to) — {C o) > 0 t€[0,7]

q(0) = go.

Thereby, ¢ : [0,7] — R>o denotes the queue size (or density), to € Rso the free-flow travel
time, C' € R~ the road capacity, and qo € R>o the initial queuing size or initial density. In
addition, the function p : [—to, 7] — R>o represents the inflow, and according to
the function {min{C’,p(t —to)} a(t) =0
C q(t) >0

be computed as 7(t) = to + @.
The next step is to consider ordinary differential equations with delay. One

the outflow. Finally, actual travel time 7(¢) can

instantiation of these equations is also used for the analysis in the present article; the reader

is referred to [Section 3.3| [Definition 4] This model class has been extensively discussed in
(22, 23] 24, 25, 26). The advantage is that even though it is still an ODE model, there is now
an intrinsic travel time as a function of the state density, and that travel time — the delay of

the ordinary differential equation — increases when there is higher density on the link. One
disadvantage of this model class is that only when the delay depends affine-linearly on the
density (25, Theorem 3.2) can a unique solution for every type of essentially bounded inflow
be guaranteed, limiting to some extent its application (25, Theorem 3.2, Chapter 4). Of
course, one can then again prescribe state constraints on the dynamics to avoid links with
high density; however, as pointed out before, this might have impacts on the well-posedness
of the system, as a solution might then be nonexistent after all when inflow into the system
is high or too many links merge into one so that flow cannot be processed anymore.

2.1.1.1. Node models. For the ODE models modelling density and for the delayed ver-
sions, there is no need for a node model. The leaving density from one link can be directly
passed to the following links according to a given routing behavior, as discussed in
as these models do not possess spillback. In case there are additional capacity
constraints stated, further adjustments have to be made to have a well-defined system — for
instance, introducing additional queues at the intersections or having basically large enough
queues in case one already uses queuing models for the links.
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2.1.2. PDE models. The second and most of the time more “realistic” approach to mod-
elling traffic flow on roads as a continuous density over time also takes into account the
spatial component of the link representing the position on the road. This has been done in
(27, 28) following the fundamental theory of conservation of vehicles and a fluid type of ap-
proach. The corresponding governing equation, the LWR PDE (after Lighthill, Whitham,
and Richards), reads as

Duplt,) + 0. (plt, 2)) = 0 (t,z) € (0,T) x X
p(0,2) = po(a), vex
boundary conditions prescribed at 90X

where p(t, z) is the traffic density at space-time coordinate (¢,z) € (0,T) x X, with X C R
being an interval and initial datum po prescribing the density at time ¢ = 0. The function f
is called the flux function and is usually chosen as f(y) :=y-v(y), vy € R, with a monotone
decreasing velocity function v : R — R. A rather famous flux function is the Greenshields
function (29)) with v(y) = 1 — y (when density is scaled to be between 0 and 1), but there
exist many mode fluxes and corresponding velocity functions dependent on the considered
road setup (see (26)). The choice of velocity function is usually made in such a way that
flux increases with density until a turning point when the density reaches a critical limit,
and after that, the flux decreases in terms of the density until it reaches a minimum or even
Z€ro.

Mathematically, the prescribed LWR is a so-called quasi-linear scalar hyperbolic conser-
vation law which can develop shocks and rarefaction waves and also deal with discontinuous
initial data. It is thus significantly more appropriate for modelling traffic flow when spillback
is important than the ODE models previously described in The existence and
uniqueness of solutions for these equations are non-trivial even for the Cauchy problem
meaning without boundary datum, X = R, and have been subject to studies and solved in
(30, 1311, 32, B3] B4) by introducing entropy conditions to single out the physically relevant
unique weak solution among the infinitely many possible weak solutions. The presented
equation has also been studied as the limit of the well-established microscopic “follow the
leader” ordinary differential equations when the number of vehicles approaches infinity (ho-
mogenization), see for instance (35)). It is worth mentioning that the previously defined
model class can be transformed into another, so-called Hamilton-Jacobi PDEs, where semi-
explicit solution formulae are available based on a finite-dimensional optimization problem
for every considered point in space-time (36, 37, [38, [39} [40)).

The extension of the previous PDE to nonlocal traffic flow models has been investi-
gated, for instance in (41}, [42] [43). Here, the previously named velocity v depends not on
p(t,x) but on the averaged density ahead, that is on %f;‘“’ o(t,s)ds, (t,z) € (0,T) x R
for a given n € Rso. The advantages of this type of modelling is that it is more realistic
than the previously chosen “local” LWR model and even in its aggregated form — as density
— closer to microscopic behavior due to its forward-looking parameter n € Rs¢. It is also
mathematically interesting: As there is no entropy condition required, a weak solution is
by itself unique.

One disadvantage of the previously introduced LWR model class is that velocity behaves
purely as a function of the density. For greater realism, one might actually want to model
the velocity by its own dynamics for instance, to model phantom shocks, which are very
common in high-density traffic flows, etc..
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This is why in the literature, second-order traffic flow models are also considered.
We only introduce the inhomogeneous ARZ PDE (after Aw, Rascle, and Zhang) (44], [45])
for (t,z) € (0,T) x X here:

Aup(t, ) + 9x (p(t, x)u(t, v)

O (u(t, ) + h(p(t, z))) + u(t, )0z (u(t,x) + h(p(t, x))
p(0, po(x)

(0, uo(x)

boundary conditions prescribed at 0X.

0 2.
7 (Uealp(t, 7)) — u(t,2)) 3.

)
)
z)
z)

The traffic density at time-space coordinate (t,z) € (0,7") x X is denoted by p(t, z) and the
velocity by u(t,z). denotes the conservation of vehicles and is inspired by the
LWR PDE, with the difference that the velocity function now is not an explicit function
of the density but follows its own dynamics in There, the term h : R — R with
h’' > 0 represents the pressure term stemming from fluid dynamics; however, in traffic flow,
it is more reasonable to call it a “hesitation function” (compare (46))). Ueq : R — R denotes
the equilibrium velocity and 7 € R the reaction time of drivers. The considered set of
equations can be posed as a system of conservation laws and is thus a quasi-linear system
of hyperbolic conservation laws.

For X = R, meaning again as a pure Cauchy problem without a boundary datum,
this model has been studied extensively in (47, 48, [49] [50) for questions on the existence,
uniqueness, regularity, and stability of solutions; for locally constrained flow in (51, 52I);
and for phase transition in (53). Of course, second-order multi-class/commodity models
have also been studied in (54)) and models with creeping in (55). For general conservation
law models, we refer to (56]), where questions on existence and uniqueness are discussed in
significantly more generality.

2.1.2.1. The node model for PDEs — a (modelling) challenge. In(Section 2.1.2] when
X C R is a finite interval, a boundary datum has to be prescribed. However, this boundary

datum might not be attained, as the road might already be fully congested, or higher
flow might want to enter a given link than the link can take. This is why the boundary
datum needs to be described in a weak sense. We refer to (57, 68, [38], 39, (9, [60). For
conservation of flow when the boundary datum is not attained, one needs to keep track of
the flow not entering the considered link. This can be obtained by placing buffers at the
intersections, which make sure that flow is conserved, see (61 for supply chain modelling
with buffers and (62} 63 [64], [65) for traffic flow modelling with buffers and the LWR PDE.
When these buffers have a finite capacity, they also need to allow spillback to the incoming
roads. Thus, it becomes possible for congestion to spread over a node. They also enable
the corresponding system of conservation laws to depend in a continuous way on the input
parameters.

When not using buffers, one can consider the Riemann problem at the intersection,
as has been done in (66} 26}, [67, 68) for the LWR PDEs and in (69)) for the ARZ model. The
problem of the Riemann-solver approach is that the solution is not necessarily continuously
dependent on the input datum, and additional equations have to be postulated to obtain a
reasonable node model (maximizing throughput; see (70) for maximizing a given objective
over the nodes). These dynamics as well as the first-order dynamics have extensions to
multi-commodity flows on networks (71)).
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Having defined the node dynamics, the missing piece for the dynamics to be fully de-
termined is how traffic flow is actually routed at the considered intersections.

2.2. Routing

Having defined the corresponding link models via either PDEs or ODEs, and in case the
proper node models are needed, we need to discuss how routing is actually realized.

2.2.1. Routing operators. A rather straightforward approach to prescribing routing is to
introduce flow ratios at all intersections. These flow ratios might depend on the solution
itself, see in particular (72, [73)), or they might be realized by fixed turning ratios
trained on existing data or stochastic modelling. Even though in our analysis we focus
on macroscopic modelling, many suggested approaches among route choice models for
individuals can also be used for macroscopic modelling. We refer for an overview to (74),
to (78) for a fuzzy route choice model, to (76} [77, [78] [79, [80, BI) for general stochastic
route choice models, and to (82]) for a cognitive cost route choice model. Some of the route
choice models also take into account the state of the network in real time (83, [84). For
the validation of route-choice models, we refer to (85 [86], [87)). Route choice for stationary
models has also been considered in (88 [89] 00, [OT]).

Shortest path—based routing models in real time are quite often used; however, in con-
tinuous dynamics, these shortest path—based models might not be well posed, as explained

later in for a specific class of models.

2.2.2. Time-dependent Wardrop. Wardrop’s principles are rather famous for describing
how flow might get routed in a road network. We introduce them in the following (see (92}
p. 345)):

Wardrop’s first principle: The journey times on all the routes actually used are equal
to each other and less than those which would be experienced by a single vehicle on
any unused route.

Wardrop’s second principle: The average journey time is a minimum.

The first principle defines a rule on how individuals might route themselves in a network
and can be interpreted as a “type” of Nash equilibrium (93} [6]). Individuals chose their route
so that their travel time is minimal taking into account that everyone else does the same.
This requires that everyone knows about all origin destination demand. It can be motivated
by the argument that over a series of days, etc., drivers figure out the proper routes as they
obtain more knowledge about the state of the network and their impact on it when diverting
from specific routes. In contrast, the second principle suggests a routing based on a “social
optimum.” Clearly, the second problem can be approached by an optimal control approach
in the routing, as also suggested in However, both principles allow some
interpretations when it comes to time dynamics. Also the reasonability of these approaches
has to be discussed, as they require one to possess quite precise information about the status
of the network to make proper routing decisions. Usually, routing based on a time-dependent
Wardrop’s condition is called dynamic user equilibrium. Mathematically, this can be
cast as a variational inequality or as a complementary condition. This has been investigated

in detail for different user equilibria in (94], 22} 23] [1I°7] [95] [06] 07, O8] [99]), where variational

formulations for different dynamic user equilibria are given and variational inequalities

www. annualreviews.org * Routing on Traffic Networks



8

obtained. In (100l [101)), similar approaches are undertaken with a solid analysis on the
well-posedness of solutions and numerical studies. For general variational inequalities, we

refer to (L8]).

2.2.3. Optimal Control. The famous M-N model (I} [12)) (after Merchant and Nemhauser)
was one of the first models used in (102) to model the dynamic traffic assignment by using
an optimal control framework. Having defined link models via ODEs, the authors
present an optimal control framework similar to that for the stationary traffic assignment
(7), where the routes are optimized over the entire considered time horizon, minimizing a
given objective function. Two drawbacks of this approach are evident: First, this class of
link models does not explicitly possess a travel time, so one has to come up with an objective
which realizes this travel time in a reasonable way. The other drawback consists of the fact
that an optimal control problem over the entire considered time horizon is stated, although
for the purpose of real time application, such information about when people leave might
not be available. The presented formulation is path-based, so the optimal paths are chosen
when flows enter the network, and no rerouting will occur. A similar approach is considered
in (I03)). When the link dynamics are realized via PDEs, an optimal routing is considered
in (104} 105}, [106) for the LWR (27, 28)) traffic flow model (also with instantaneous control)
and in (I07) for a specific class of nonlocal conservation laws.

3. Routing operators based on the network state

As we aim to propose a mathematical framework capable of handling the change of routing
due to routing applications using real time information (compare [Section 1|, we require the
following properties on routings in the network: The routing should be

1. presented in a very broad way, keeping as much generality as possible and allowing the
results to be applicable to very different routing scenarios,
2. able to distinguish between different types of flow (flow with more information, different
types of vehicles, etc.),

. capable of reacting to a change in the network in real time,

. instantiated so that it can depend in up to real time on the solution of the entire network,
dependent on already passed information or on delayed information,

. dependent on external factors, such as the closing down of specific roads at specific times,

N o O

. located at the different intersections explicitly as a functional expression.

All these mentioned properties will be satisfied by the model introduced and exploited in
[Section 3]

Although our aim and interest lie mainly in the routing, for a mathematical analysis, we
have to consider the full system consisting of the link model and node model, as described
in and routing, as described in From the node model, we must have
a travel time and an increase in travel time when the road is more congested. In addition,
we require a multi-commodity model capable of handling different types of flow, different
types of destinations, and more. As we do not want to restrict our routing operator, we
require that the node model be able to assign — at every time considered — any flow on all
outgoing links and to distinguish between different commodities.

This is why we chose for the link dynamics an ordinary delay differential equation, as

for instance considered in (25) and mentioned in [Section 2.1.1} This equation does not
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model spillback, so we can use as the node model the trivial model of assigning just the
incoming flow according to the routing. This missing feature is acceptable, as we mainly
focus on routing. It still has the property that travel time changes with respect to link
density, so it is significantly complex for routing problems. Of course, a similar framework
taking the proper node dynamics can be also introduced for more advanced link dynamics,
as prescribed in However, in this case, the node model [Paragraph 2.1.2.1]
will not be trivial and needs to satisfy a Lipschitz-continuity with respect to the input

parameters, making the analysis more complex.
Most of the content in this chapter has been discussed and explored in detail in (72).

3.1. Notation and more

We will require the following function spaces:

Definition 1 (Function spaces). For p € [1,00] and T € Rso we define the following
Banach spaces

LP((0,7)) := {f :(0,T) = R Lebesgue-measurable : || f|lLr(0,1)) < oo}

with

p
11l Le 0.1y = (/(0 . £ ()" d8> s pE[1,00),  [[fllLes(o,my) = ess-supieo,ry 1f(2)]

the space of continuous functions on the interval [0,T] as
([0, 7)) ={f:10,T] = R: f is continuous}
with the corresponding norm

1flleqom = max |FO. f€C(0.7)

and the space of Lipschitz-continuous functions as

P
z,y€[0,T]

Wh((0,7)) = {feLw((aT)); sup | L@=iw)

-}

where f' exists almost everywhere by Rademacher’s theorem so that the previous definition

with norm

Hf”wlvoo((o,:r)) = HfHLOO((O,T)) + ||f/\|L°°((0,T))

makes sense. Of course, vectorized versions of the previously defined function spaces are
defined appropriately.

3.2. Network

As we will need to describe the dynamic traffic assignment problem with regard to the
underlying network, we start by defining a network and related attributes, like paths, des-
tination, origin nodes, and more.
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Definition 2 (Network and Paths). We call a directed graph G = (V, A) where V is a finite
set with |V| € N>1, with nodes v € V and arcs a € A CV XV a network. Furthermore.
we define for v € V the sets of incoming arcs and outgoing arcs

Ain(v) = {(0,v) € A: 0 €V}, Aout(v) == {(v,0) € A: 0 € V}.
We define the set of paths P*¢ between two nodes (v,d) € V? without cycles as:

v
pUd = U {peAk: Vi,j €{1,....k+1},i#j:vi,v; €V :v; # vy,
k=1

V1 =0, Vk+1 = d,p = ((Uiyvi—&-l))ie{l,.“,k}}

For every path p = (py,...,p,)" € PV with k € N>, we define its length by len(p) == k.
In the network we specify source nodes as

ocvy
and destination nodes as
Dc{dev: JEO st P”’d;«é@}.
We define OD as the set of origin/source-destination pairs by
OD = {(v,d) e(’)xD:P“’d#@}.
Finally, we define for d € D the set OP? of arcs which are part of paths starting from an

arbitrary node v € O and ending in d if (0,d) € OD:

[ Al
opt .= U {Pe €A:FeO st (0,d e OD, pe P, 1< len(p)} 4.

=1

and the outgoing arcs for a node v € V from which destination d € D is reachable as
Agut(v) = {a €A:3F eV witha= (v,0) Na € OPd}.

Assumption 1 (Feasible network). The network G in contains at least one
OD-pair, i.e. |OD| > 0.

3.3. The link model

In this section, we introduce the link dynamics which we consider to use throughout this
article and which have been mentioned in To this end we require different
commodities representing the mathematical way to express/model different types of traffic
flow, different types of “information aware” flow, using different routing systems or no
routing suggestions at all, etc. As we want to distinguish between different commodities,
we also define

Definition 3 (Multi-commodity). For a given n € N>1 we define the multi-commodity-
set as C:={1,...,n}.
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The link dynamics read as follows:
Definition 4 (Link delay model for multi-commodity with affine linear delay on a single
link). Denote by the superscript (c,d) € C x D a tuple containing commodity type and
destination node as given in|Definition 5 Assume that x : [0,T] — Rf(l)ml represents the

flow and let w: [0,T] — leglvl be the inflow. Then, for a free flow travel time b € Rsg

and congestion factor h € R>¢ we consider the following system of delay ODE

®(t) = u(t) — glu, z, &](t) te0,T]
:13(0) =0 6
z(t) =Y > (1) t € 10,7 7.
ceC deD
Tx](t) == b+ hx(t) te[0,T] 8.
pla](t) =t + 7[z](t) t€0,T]
. 0, a.e. t €10,b)
w,xz,x|(t) = —14 10.
9! 1) {m ae. t € [b, T+ 7[z](T)]

where plx]™! is the inverse function of [0,T] > t +— p[z](t).

Some comments are in order to give a better understanding of the previously defined
model. presents the link dynamics. We need to have it in a vectorized form
as we will need to keep track of different types of flow: On the one hand, flow heading to
different destinations d € D has to be kept track of individually, and also flow which follows
different routing policies, for instance, flow using information about the traffic system in
real time vs. flow not using it, etc.

The dynamical process is presented in a coupled system of ordinary delay differential
equations in Thereby, u denotes the inflow onto the link (vectorized with
different commodities and destinations), and g the outflow which is detailed below and will
be a function of the density of the link. states that the link is empty when
starting. denotes the cumulative density of the link, that is the density of all
flows on the link, summarizing over all different commodities and destinations. [Equation (8)|
denotes the delay caused by the traffic density. The higher the cumulative density z is, the
larger the delay becomes. b can be seen as the free flow delay or travel time, when the road
is empty and h is a tuning parameter impacting the influence of the travel time or delay
with regard to the cumulative density. Based on this, gives the time when an inflow
entering at time ¢t € [0, T] actually exists the link, and g in[Eq. (10)|shows how the outflow
is determined by means of the inflow and the travel time. The denominator stands for a
spreading or concentration of flow due to higher or lower density and is needed for keeping
the flow conserved.

As a solution to an ordinary delay differential equation with a delay depending on the
solution itself, does not necessarily exist, we give the following

Theorem 1 (Existence and Uniqueness of the link delay model with affine linear delay as
presented in [Definition 4)). Let T' € Rsq and the link-delay model with affine linear delay

as in |Definition J| be given and assume that uw € L™ ((O,T);Rlzc(‘)lvl is given as well as
b€ Rso and h € R>g. Then, the delay ODE system in|Eqgs. (5)| to [(10)| is well-posed and
admits a unique Carathéodory solution & € WhH™ ((O7 T); R\ZC(I)\DI)‘
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Proof. The proof can be found in (25, Theorem 3.1, Theorem 3.2) and takes advantages of
the delay character so that one can use an iterative approach in time for solving a series of
delay equations on small time horizon and sticking them together. O

As already pointed out, the advantage of this model is that there is no spill-back so that
at every intersection one can assign as much flow to any of the out-going links as needed.

This basically makes the normally required node model discussed in [Paragraph 2.1.1.1|

obsolete or trivial, and simplifies our analysis about routing as we can directly continue to
the definition of a routing operator.

3.4. The routing operator

In this section, we define the routing operator. We start with the most general
possible and restrict the routing operator later in

Definition 5 (General routing operator). Let T' € Rsq and let forv € V be d € D,c € C

and a € A% (v) be given as in |Definition 4 Let ext € L°°((0,T);R™*). Then, we call

XS routing operator iff

25 1 (0, 1) REIPT) 5 L0, 1) R™) — L™((0,7); 0,1)) 11.
such that for every (x,ext) € L™ ((O,T);Rlz’%”c”m) X L% ((0,T); R™ext)

> g mext](t)=1  te[0,T] ae. 12.
acAd  (v)

As one can see from |Definition 5| particular from |[Eq. (11), the routing operator is

actually an operator taking into account the full solution on the network over the full time
horizon considered. The routing operator carries a sub-index assigning flows to all exiting
links a € A%, (v) from a intersection node v € V. Even more, it can route differently for
different types of commodities ¢ € C and destinations d € D, a reasonable assumptions
when recalling that the OD pairs might vary significantly for different destinations d € D
and different types of flow might behave/getting routed differently. Finally, the routing can
also be influenced by so called externalities. Indicated by the routing operator
has to conserve flow and thus routes all incoming flows with their different destinations
and commodities to the out-going links at every time. The function values of the routing
operator are assumed to be between 0 and 1 in

Next, we specify the routing operators as the generality of routing operators provided in
is too broad to obtain any results on existence or uniqueness of the system on
the network. As it makes sense to consider routing operators, which use at time ¢ € [0, T
at most the traffic state & up to time ¢ (see we distinguish a Lipschitz-continuous
routing which is capable of incorporating routing decisions made in up to real time from a
delay-type routing operator, where only at finitely many points in time the decision can be
made in real time and is otherwise delayed and no Lipschitz-continuity or only continuity
is required.

requires the following projection operator which will be helpful in defining
delayed routing.
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Definition 6 (Projection mapping). Define for a € R the projection mapping Pjg ) : R —
min{max{0,t},a} if a € R>g

R on [0,a] by: VteR: Plo,q(t) =
0 else.

Definition 7 (Routing Operators). Let the assumptions of |Definition 5 be given. Then,
we define under the assumption that all introduced routing operators satisfy |[Definition 5

(A) L-Continuous Routing: We call ZL%¢ Lipschitz-continuous routing operator
iff it is Lipschitz-continuous in the following sense: For a p € (1,00] it holds

Vext € L™((0,T);R"*) Vt € [0,T] 3L € Rsp Va, & € C ([0, T];R‘;;“C“D') :

H%‘zgd [€,ext] — 225" &, ext]‘

<L|x-—a
LP((0,) Iz = 2lo(o.nmiancim)

(B) Delay-type Routing: We call Z93° o delay-type routing operator iff there exists
T ..
for N&* € Nxy a time vector t&% = ((tﬁ’d)l et (ti;d)Nc.d) € (0,17 * with
(te) yed =T and

(t;’d) < (tZ’d) Vie {1,...,N[{’d f 1},
i i+l

a delay function §&* € L°°((0,T);[0,T)) such that for every i € {1,...,N&% — 1} the
following regularity and estimate on the delay §$¢ hold

62"1‘ =0

(%))

m

62’“"[

() (557),,,) ([(“) (tg’d)iﬂ)) ) 13.

C
o) (55),,,)) = (t;’d)l

and, finally, for a.e. t € [0,T], Ve € C ([O,T];R;”C”DI) recalling |Definition 6

c,d
o

RDo @, ext](t) = RDE" [:c o P[O’ég,d(t)] , ext} (t). 14.

Again, some explanations are in order. The Lipschitz-continuous operator is meant to
be Lipschitz-continuous in L”, p € (1, o] when measuring the network state in the uniform
topology. As one can see from the Lipschitz-continuity has to hold for all ¢ € [0, T
guaranteeing that it can only depend on the network state at time ¢ € [0,7] at most at
time t. As the solutions @ on all links are at least Lipschitz-continuous — as long as the
inflows are essentially bounded — we know that « is continuous and can actually measure in
the continuous topology. As we will illustrate later, this Lipschitz-continuous dependency
is not a too strong condition and is satisfied by a variety of different routing operators (see
Section 3.8]).

The Lipschitz-continuous dependency is needed as the real time dependency of the
routing operator gives another coupling in any of the considered ODEs on the links. The
inflow onto these links is a function of the routing operator and the routing operator by itself
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Figure 1

Illustration of a delay function. The thick diagonal line represents the identity, the red graph

shows an example of a general feasible delay function é. Furthermore, the green graph shows the
case when a piecewise vanishing delay and the blue graph when a constant delay € € R~ occurs.
5(t) 5(t) 4(t)
ty | B Feoeore ; pian
L 7 IR TIPS PN
ts 2 Y ERTTTT ,/_ 7Y EEPTT Sl A
to T freeeenens e IR IR TTTr A A
L ‘ Byt
t1 B b ,
: : — 1t —f———
t1 to t3 ty t1 to t3 ty
Figure 2

Illustration of the flow information used by the routing operator. Every horizontal line represents
the time line. The delay-type routing operator # maps time points — which are represented on the
upper horizontal lines — to time periods that do not occur later in time. This produced time
periods — which are part of the lower horizontal lines — build the possible evaluation time periods
for the flow . Depicted are the constant e-delay (left) and the piecewise vanishing delay (right).

t

again on the state of these links up to the present time. This is the reason why the problem
has to be addressed by means of a fixed-point argument, for which — in case one wants to
obtain uniqueness of solutions — the contraction mapping principle, Banach’s fixed-point
theorem — is essential (108, Theorem 3.A). We refer to[Theorem 3] Also note that all routing
operators are coupled with each other as the entire traffic state will change according to
the routing operators and the routing operators will change their routing assignment based
on the traffic state.

We also want to mention that a weaker form of routing operators is available in (72,
Definition 2.12, C), where we only assume continuity. However, as this result is based on
Schauder’s fixed-point theorem (LI08, Corollary 2.13), the solution cannot be expected to
be unique, even more we can give examples where there would be infinitely many solutions.
We thus renounce the presentation of these classes of routing operators.

The delayed routing in does not need any continuity or even Lipschitz-
continuity as it mainly acts or makes decisions based on the state of the network in a
delayed sense. The additional complexity in [Eq. (13)| comes from the fact that we also
want the possibility that the routing operator depends on the real time solution at at most
finitely many points. This is also illustrated in Which has been borrowed from
(72] Remark 2.14).

It is also worth mentioning that the presented approach does not need to know any
inflow — origin-destination demand — into the network as it will only need information at
time t € [0,7] and will then react properly on the state of the traffic state.

The previously defined routing operators will now be implemented into the DTA frame-

work in [Section 3.5
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3.5. The DTA framework incorporating information of the network state

In this we present the entire DTA problem when the routing is performed by
the routing operators introduced in [Section 3.4}

Definition 8 (Network formulation of the link-delay model with routing operators: DTA).

Consider for a time horizon T' € Rso a network G = (V, A) as in with origins
O CV and destinations D C V as in|Definition 2. Let the inflow into the network for v € O

be given as sy € L™ ((O,T);RQ‘D‘). Then, we pose the dynamics subject to the link delay

model for multi-destination with routing as proposed in for all t € [0,T] and
a € A with b, € R>o and ha € R> as:

&4 (t) = wa(t) — g4 [Ua, Ta, Ta] (1) tel0,T] 15.
£a(0) =0 16.
za(t) = Z Z z & (1) telo, 7] 17.
ceC deD
Talwal(t) = ba + haa(t) te[0,T] 18.
palTa](t) =t + Ta[za](t) tel[0,7] 19.
0, a.e. t €1[0,bq

ga['U;ay Iayi:a](t) = { ua(Pa[Ia]_l(t>) [ ) 20.

m, a.e. t € [ba, T —+ Ta [Z'a} (T)]

for a.e. t € [0,T]. In addition, we define the summarized load at a junction — dependent on
if there is an external source or not — for (¢,d,v) €C X D x V

c,d
8y v,d) € OD,ceC
;:},d: z : g,d[ i, Ta, .&} { ( )

on [0,T]. 21.
) 0 veV\0O,cel

Finally, recalling the routing operator 5% given in with d € D, the coupling
condition for the connecting nodes are given for (v,c,d) €V x C x D,a € Al (v)

on [0,T] 22.

ug " =

end {rf,’d Rz, ext] ifa € OP?

0, else

with OP? as in The presented set of equations will be called the dynamic traffic
assignment (DTA) considered.

[Eqs. (15)] to [(20)] represent the link dynamics on every link @ € A in the network
(see , while the cumulative inflow onto one node. Dependent on if
the considered node v € V is a source node, additional source s&¢ is added or not added.
Finally, represents the routing on the links exiting a node. This is why we prescribe
the inflow uS? for a € A%, (v) as all the flow having entered the node v and the source
flow s, i.e. &%, and apply the routing operator Z. In case, flow cannot be routed on the

considered link as there is no connection, no path, to the destination, we instantiate the
inflow as zero. This entire system is called the dynamic traffic assignment subject to
routing operators, and in we will present results on existence and uniqueness of
solutions.
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3.6. Well-posedness of the DTA with routing operators

In this section, we present the well-posedness of the DTA system introduced in
before when performing the routing by the suggested Lipschitz-continuous or delayed rout-
ing operators. The study of existence and uniqueness of solutions on the network is crucial.
This is due to the fact that the routing operators itself depend on the state of the network
so that another coupling between all equations emerges.

Theorem 2 (Existence/uniqueness of the network model for routings with delay-property).
Recall the setting described in |Definition a where every routing operator Z5° fulfills the
conditions according to |Item (B)l in |Deﬁnitz’on ’7|with time vectors t&% € |0, T}Nsyd. Then
there is a unique solution of the system presented in and the solution satisfies

@, € Wh™ ((o, T);R‘ZC(L‘D') Va € A

Proof. The proof can be found in (72, Theorem 3.1). The basic idea consists of taking
advantage of the delay. Using the delay in the routing, the routing choices depend except
for finitely many points where the routing might actually happen in real time on the network
solution of previous times. As this solution is already well-known there is no problem with
any coupling of the routing operator w.r.t. the state of the network. For the time points
where the routing might actually use real time information, we can approach these points
from previous times and take advantage of the Lipschitz-continuity of the solution to identify
the proper solution at the considered time-point. O

Theorem 3 (Existence/uniqueness of the network model for (L.—)Continuous routing op.).
Let the network with the link-delay dynamics as in[Definition 8 be given and assume that
Ze? is a (L-)Continuous routing operator satisfying [Iltem (A )| in|Definition 1. Then there
ezists a unique solution x,, a € A of link-delay ODEs on the network and the solution

satisfies
T, € WH™ ((0, T);R‘ZC(')‘D') Va € A

Proof. The proof can be found in (72} Theorem 3.4). The proof is significantly more ad-
vanced than the proof of Here, we take advantage of the result in (25), where
the solution of the link-delay ODE is constructed over a sequence of time steps, taking
advantage of the delay property of the ODE. Combining this with the Lipschitz-continuous
routing operators we can define a self-mapping which is contractive in the uniform topology
and obtain a unique fixed-point on the entire network, that is a solution to the DTA subject
to Lipschitz-continuous routing operators. O

3.7. Some remarks

Remark 1 (Instantaneous shortest path routing and instability). As claimed in
often a shortest path routing assignment in real time is posed. However, consider
only two possible routes and assume that travel time is identical for both routes at a specific
time t € [0,T]. Then, flow has to be distributed on both links simultaneously, however in
which ratio is fully model dependent as well as on other inflows of the links part of the con-
sidered paths. In case the specific ratio is not met, this directly contradicts shortest paths
assignments. Also when discretizing the composed model this problem becomes evident: As
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there will be never the same travel time at least numerically, in every time step all or noth-
ing is sent on the out-going links. This “all or nothing” assignment might switch from
time step to time step and is sensitive with respect to the discretization. For details and a
counter example why a shortest-path assignment in continuous modelling is rather difficult
to well-pose, we refer to (72, Remark 4.24).

Remark 2 (Forecasting). FEven though our approach does not allow a forecast in time as
we only assume to have real time information available, one can do a statistical forecast
with the proper model or a simplified forecast and can implement this as ext. As long as
only information in delayed form as suggested in is considered, nothing in addition
has to be prescribed in order to obtain an unique solution on the network. If information
in real time is used and based on this a forecast is run, this forecast needs to depend in a
Lipschitz-continuous way on the input datum and also the routing operator would be required
to depend in a Lipschitz-continuous way on ext. We do not go into details.

3.8. Some instantiations of routing operators

In this section, we will present some routing operators for which our assumptions hold. Some
of the examples are borrowed from (72). To formulate the routing operators mathematically,
we need a notation of path-travel time which we will present in

Definition 9 (Path travel time). Let (v,d) € V X D as in be given. Then, we
define for t € [0,T] the set XV%(t) of the involved path flows from node v to destination

d, where &, € C ([O, T];R‘zc(l)‘m), a€ A, as

xvi) = {(m;(t)7...,:c;cn(p)(t)>T} te[0,7).

pePVd
Let the travel time T4]zq.] on every arc a € A and £ = |PV?| be given. After redefining
its components — for a better readability — respectively to p',. .., p%, we define the vector of

possible travel times 7% from node v to destination d by

len(i)l) len(i)e)

o [x”vd] (t) = 7! [xﬁ%] B D T [%g] (t) te[0,T]

i
i=1 i=1

_ T [x} (t) teo,7].
je{1,....¢}

Routing 1 (Routing with a logit-function). Given v € V and d € D we define weighted
path distribution routing as

_ _’_‘U,d X'U,d
fora e Ay (v) %o @, ext](t) == Z € (e, , t € [0,7).
pepvd D B G i (O
P1=a pepu.d

This routing operator is in the literature sometimes called nested-logit model and assigns
on all exiting links at node v € V a percentage of the incoming flow to the outgoing links
ae Ay, (v) based on the needed travel time to reach the destination. The exponential terms
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lead to the fact that most flow is sent onto the shortest route and on all possible routes a
flow is assigned, even a very small flow.

The routing operator satisfies |Definition 7, [Item (A ) so that we obtain by

the existence and uniqueness of the solution on the network. Clearly, the operator can be

enriched by tuning parameters.

In case of delay, a shortest path assignment can contrary to be considered
and yields a unique solution on the network:

Routing 2 (Shortest path with delay). Given v € V and d € D we define shortest path
routing for t € [0,T] and a € Aout(v)? with delay € € R>o as

%z, ext)(t) = ! 23.

{pl :p € arg min T4 (XU 0 Pl ] (t)}'

pePv:d

This operator assigns flow only on leaving nodes a € Agut(’l)) whit minimal travel time and
in case that there is more than one shortest route it assigns flow equally. Due to the delay

character it satisfies [Definition 4, [[tem (B)| so that we obtain by [Theorem 3 the existence

and uniqueness of the solution on the network. We emphasize that a real time shortest path
delay might not be well-posed as detailed in [Remark 1|

Routing 3 (Variational inequalities as routing operators). Having we can
formulate the variational inequalities for routing as investigated in as time-

dependent Wardrop’s conditions (92), recalling that for every origin destination pair (v,d) €
V x D, for every commodity ¢ € C and for every time t € [0,T], the used paths’ travel times

have to be smaller or equal to the travel time of the minimal paths, or — in formulae — when
the commulative assignment x,,a € A is an optimal assignment: Vt € [0,T], V(v,d) €
VxDVeel

S S el () (walt) - 2i(1) 2 0 24,

peP?d a€{p1,--,Plen(p)}

for every z, cumulative admissible flow. Compare also (13, Chapter 7.3). Altogether, also
variational inequalities can be interpreted as routing operators in the sense of
however our results are not applicable as there is mo Lipschitz-continuity or delay prop-
erty holding and also only a continuous dependency of the so obtained routing operator is
questionable.

For a more comprehensive list of routing operators fitting in the proposed framework
we refer to (72, Section 4). We want to emphasize once more that the introduced class of
routing operators is very broad so that many in the literature already used routing operators
fit in the proposed framework.

4. Conclusion and future research

In this work, we have — for an ordinary delay differential equation on the links — presented
a rigorous framework for up to real time routing based on the state of the traffic in the
network and how it connects to already existing research in the literature. We have shown
the existence and uniqueness of solutions in the network and have considered so-called
routing operators that are rather general and broadly applicable. Future research should
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address the following related problems: (1) Replacing the link dynamics instantiated here by
ordinary delay differential equations with more advanced traffic flow models, as for instance
the LWR model, the ARZ model, or the recent nonlocal models presented in
The additional complexity — as mentioned before — will come from the need to define the

proper node models in [Paragraph 2.1.2.1] For simple PDE models, a first approach has

been made in (73)). (2) Numerical testing. Due to the structure of the routing operators
potentially depending on the status of the network at any time, every routing operator
has to know about this status at all times, requiring on the computational side a clever
distribution of this information. Additionally, due to the fact that every destination has to
be realized as a commodity, the density on each link is at least of the dimensionality of the
number of destinations (multiplied by the number of different commodities) at every time
step. As there might be many links in a given network where specific destinations cannot
be reached, it might be worthwhile to analyze the network first for its connectivity. (3)
Testing of specific routing operators. Once the specific structure for the routing operator has
been chosen, there are many parameters that can still be chosen in the routing. Therefore,
a study on real data optimizing the routing parameters accordingly would be insightful.
(4) Stability analysis. For the Lipschitz-continuous routing, a stability analysis should be
carried out. Changing the Lipschitz routing in the proper topology and all demand slightly,
one can conclude that the solution in the full network is also close in the proper topology.
Clearly, for a specific link, this question of the mentioned stability can easily be answered
positively.
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