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Abstract— We consider the problem of imputing the function
that describes an optimization or equilibrium process from
noisy partial observations of nearly optimal (possibly non-
cooperative) decisions. We generalize existing inverse optimiza-
tion and variational inequality problems to construct a novel
class of multi-objective optimization problems: approximate
bilevel programs. In this class, the “ill” nature of the comple-
mentary condition prevalent in bilevel programming is avoided,
and residual functions commonly used for the design and
analysis of iterative procedures, are a powerful tool to study
approximate solutions to optimization and equilibrium prob-
lems. In particular, we show that duality gaps provide stronger
bounds than `p norms of KKT residuals. The weighted criterion
method is in some sense equivalent to existing formulations in
the case of full observations. Our novel approach allows to solve
bilevel and inverse problems under a unifying framework, via
block coordinate descent, and is demonstrated on 1) consumer
utility estimation and pricing and 2) latency inference in the
road network of Los Angeles.

I. INTRODUCTION

Optimization [4] and equilibrium [7] problems have a
wide range of applications in, e.g., economics, engineering,
statistics, finance. In many scenarios, the outputs are easily
observable, while we do not have access to the function
meant to describe the process. Iyengar and Kang [8] and Ke-
shavarz, Wang, and Boyd [10] focused on the inverse convex
optimization (inverse CO) of imputing a convex objective
from full observations of nearly optimal decisions. Bertsi-
mas et al. [3] recently considered the inverse variational
inequality problem of imputing the function that describes
the Variational Inequality (VI) from full observations of
approximate equilibria. The works outlined above present
many applications: consumer utility estimation, latency infer-
ence in traffic networks, value function estimation in control
etc. In general, inverse problems have been studied quite
extensively; see [8], [10], [3] for a survey.

In the present work, we focus on the fact that data suffers
from missing values mainly due to experimental limitations
and we extend our previous work [16] with a rigorous
mathematical framework for our formulation, combining
ideas from computational mathematics, inverse, bilevel, and
multi-objective (MO) or Pareto programming.
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We first observe that existing formulations of inverse CO
and VI problems fall into two categories: (i) a bilevel form
[8], [16] in which the function describing the process is
chosen such that the induced optimal decision minimizes the
distance to the observations, (ii) a residual form [10], [3] in
which the function is imputed such that that data points are
the closest to being optimal. The former allows more control
on the fit to data points, while the latter avoids the ‘ill’
nature of complementary constraints; see [9], [11]. Hence,
we propose a combined bilevel-residual form in the form of
a MO problem, called approximate bilevel program, which
leverages the benefits of both formulations.

Our novel formulation relies on the notions of approximate
solutions to VI and CO problems which are formalized
by using specific residual functions typically used for the
design and analysis of iterative methods (e.g. stopping rules
or certificates of suboptimality) to solve VIs [7, §10] and
CO problems [6, §6],[4, §9]. In our work, and similarly to
[10], [3], residuals are used to design merit functions which
measure the agreement of the fitting CO and VI models to the
observations. In particular, we find that duality gaps provide
stronger bounds than any `p-norm of KKT residuals. These
theoretical insights are critical for the choice of appropriate
residuals to solve inverse problems.

Finally, our MO formulation allows better control by
allowing to express preferences between Pareto optimal
points; see [12]: in structural estimation, theoretical and
experimental results suggest that more weight should be
assigned on the fit to data points whereas in control, more
weight should be put on the residual function, especially
when the model is a good approximation of the reality.

In contrast to the MPEC literature which focused on
developing specialized algorithms [11], [5], we apply the
block coordinate descent (BCD) algorithm proposed in our
previous work [16] for out numerical experiments. Since the
proposed reformulation is in general convex in each block
of variables, except for a concave constraint that is relaxed,
we apply CO to the block updates using high quality CO
solvers.

II. MOTIVATING EXAMPLE: TRAFFIC ASSIGNMENT

Since CO and VI models have numerous applications; see
[4], [7], [15], the potential of inverse VI and CO problems
is huge. We present two applications.

We give a summary of the traffic assignment model; see
[13, §2.2.2], [16, §2] for more details. We consider a network
(N ,A) with N the node set and A the set of directed arcs.
Given a set of commodities C ⊆ N ×N , a flow of demand



rate λk must be routed from sk to tk for each commodity
k = (sk, tk) ∈ C. The k-th commodity flow vector is denoted
xk = (xka)a∈A ∈ RA+ . For each arc a ∈ A, we are also
given a continuous positive nondecreasing delay (or latency)
function sa : RA+ → R depending on the aggregate flow
vector v =

∑
k x

k ∈ RA+ . Beckmann et al. [2] considered
the separable case in which sa(·) is only function of the
aggregate flow va =

∑
k x

k
a on arc a, and proved the User

Equilibrium (UE) (defined by Wardrop [17]) exists and is
solution to the program:

min
x

z(Zx) s.t. Ax = b, x � 0 (1)

where (xk)k∈C are stacked in an overall flow vector x ∈
R|C||A|, Z ∈ {0, 1}|A|×|C||A| maps x to v, i.e. v = Zx =∑
k xk, and f : RA+ → R is the Beckmann function on v:

z(v) =
∑
a∈A

∫ va

0

sa(u)du (2)

However, delay functions sa are in general difficult to
estimate while aggregate flows va are easily measurable, but
only on a small subset of arcs in the network, due to the
cost of deploying and maintaining a sensing infrastructure
in a large urban network.

III. MOTIVATING EXAMPLE: CONSUMER BEHAVIOR

We also consider an oligopoly in which n firms produce
n products indexed by i = 1, · · · , n (one for each firm)
with prices p = (pi)

n
i=1. We suppose that the consumer

purchases a quantity xi of product i in order to maximize a
nondecreasing and concave utility function U(x) minus the
price paid pTx, where x = (xi)

n
i=1 is the overall demand:

min pTx− U(x) s.t. x � 0 (3)

However, the utility U : Rn → R is not known in practice,
and a method for imputing U based on N observations
of pairs (pj ,xj), j = 1, · · · , N of prices and associated
demands has been proposed in [10]. The imputed utility U
is then used by company producing i to set a price pi in order
to achieve a target consumer demand xdes

i in its product.
In oligopolies, the price of each product is publicly

available and each firm has in general perfect knowledge
of its own demand xi, however it may only have partial
information on other demands.

IV. VARIATIONAL INEQUALITY, CONVEX OPTIMIZATION

We recall fundamental results in VI and CO theory. From
our assumptions on the delay functions sa (positivity, con-
tinuity, monotonicity), (1) is a convex program. Concavity
of U also implies convexity of problem (3). Both problems
have general form, denoted OP(K, f ):

min f(x) s.t. x ∈ K (4)

where K ⊆ Rn is a convex set, f : K → R a convex function,
and n the dimensionality. OP(K, f ) is a convex optimization
(CO) problem. From the optimality conditions [4, §4.2.3]:

Theorem 1. With f differentiable and ∇f its gradient, a
feasible point x? ∈ K solves OP(K, f ) if and only if

∇f(x?)T (u− x?) ≥ 0, ∀u ∈ K (5)

The VI problem can be seen as a generalization of (5) where
∇f is replaced by a general map F . Given a set K ⊆ Rn
and a map F : K → Rn, the VI problem, denoted VI(K, F ),
consists in finding x ∈ K such that:

F (x)T (u− x) ≥ 0, ∀u ∈ K (VI)

In the remainder of the article, we suppose that K is a
polyhedron (such as in our two application):

K = {x ∈ Rn |Ax = b, x � 0} (6)

This assumption allows different characterizations of solu-
tions to VI(K, F ). As in [1], we define the primal-dual
system associated to the linear program minu∈K F (x)Tu:

F (x)Tx = bTy, ATy � F (x), Ax = b, x � 0 (7)

From LP strong duality, we have the following result:

Theorem 2. Let K polyhedral given by (6). Then x solves
VI(K, F ) if and only if there exists y such that (x,y) satisfies
the primal-dual system (7).

The proof is given in [1, Th. 1]. A direct implication is:

Corollary 1. Let K polyhedral given by (6) and f differ-
entiable convex. Then x ∈ K solves OP(K, f ) if and only
if there exists y such that (x,y) satisfies the primal-dual
system (7) with F = ∇f .

A related system is the Karush-Kuhn-Tucker system of a VI:

F (x) = ATy +π, Ax = b, x � 0, π � 0, xTπ = 0 (8)

The following result is from [7, §1.2.1]:

Theorem 3. Let K polyhedral given by (6). Then x solves
VI(K, F ) if and only if there exists y,π such that (x,y,π)
satisfies the KKT system (8).

In convex optimization, the above result is known as the
well-known KKT optimality conditions [4, §5.5.3].

Corollary 2. Let K polyhedral given by (6) and f differen-
tiable convex. Then a point x ∈ K solves OP(K, f ) if and
only if there exists y,π such that (x,y,π) satisfies the KKT
system (8) with F = ∇f .

We say that x is primal feasible if Ax = b, x � 0 and (x,y)
is said to be dual feasible if ATy � F (x). In the reverse
OP(K, f ), f is sought such that data points approximately
satisfy the KKT system with F = ∇f [10], and in the reverse
VI(K, F ), F is sought such that data points approximately
verify the primal-dual system [3].

V. FUNCTION IMPUTATION VIA PARETO OPTIMIZATION

Building on previous works [8], [10], [3], [16], we develop
a novel class multi-objective (MO) programs for solving the
inverse CO and VI problems.



Since the reverse OP(K, f ) can be seen as finding a map
F = ∇f and reconstructing f from F , we will refer to
both VI(K, F ) and OP(K, f ) as a mathematical problem
MP(K, F ) over the feasible set K. We first define a notion
of approximate solutions:

Definition 1. Given nonnegative functions rPD, rKKT such that

rPD(x,y) = 0 ⇐⇒ (7) holds at (x,y) (9)
rKKT(x,y,π) = 0 ⇐⇒ (8) holds at (x,y,π) (10)

a point x is an ε-approximate solution to MP(K, F ) under
rPD if there exists y such that rPD(x,y) ≤ ε (resp. under
rKKT if there exists (y,π) such that rKKT(x,y,π) ≤ ε).

The functions rPD, rKKT are called residual functions asso-
ciated to the primal-dual and KKT systems respectively. We
are given N pairs (qj , zj) of parameters and observations of
nearly optimal decisions corresponding to different configu-
rations of the system. The parameters qj are triplets (Aj ,bj)
such that Aj ,bj define a polyhedron Kj = {x |Ajx =
bj}. We seek a map F and approximate solutions xj to
MP(Kj , F ) that agree with the observations. The inverse
problem can be formulated in residual form:

min
F,x,y

∑
j rPD(xj ,yj)

s.t. Hxj = zj , AjTyj � F (xj), ∀ j
F ∈ F

(11)

min
F,x,y,π

∑
j rKKT(xj ,yj ,πj)

s.t. Hxj = zj , AjTyj � F (xj), πj � 0, ∀ j
F ∈ F

(12)

where F is the set of feasible maps. Observe that with
full observations, i.e. with H the identity, (12) and (11)
are equivalent to the formulations in [10] and [3] respec-
tively. As we will see in the next section, imposing primal-
dual feasibility on the pairs (xj ,yj), i.e. having Ajxj =
bj , (Aj)Tyj � F (xj), j = 1, · · · , N allows a rigorous
study of the residuals rPD, rKKT. However, since observations
are noisy and mathematical models are approximations of the
reality, the system Ajxj = bj , Hxj = zj may be infeasible,
especially when we have full observations and would expect
Ajzj = bj to hold. Hence, we relax Hxj = zj and impose
primal-dual feasibility, where φ is some penalty function:

min
F,x,y

[ ΣjrPD(xj ,yj), Σjφ(Hxj − zj) ]T

s.t. Ajxj = bj , xj � 0 ∀ j
AjTyj � F (xj) ∀ j
F ∈ F

(13)

min
F,x,y,π

[ ΣjrKKT(xj ,yj ,πj), Σjφ(Hxj − zj) ]T

s.t. Ajxj = bj , xj � 0 ∀ j
AjTyj � F (xj), πj � 0 ∀ j
F ∈ F

(14)

In the our MO formulations above, we are minimizing pairs
of objective functions, and we also allow different choices of
penalties on the observation residuals Hxj−zj , for example
φ = ‖ · ‖1 will incur a fitting robust to outliers, φ = ‖ · ‖2 a

fitting robust to noise; see [4, §6.1], hence our formulations
are in some sense more robust than the ones in [10], [3].

VI. APPROXIMATE BILEVEL PROGRAMS

Imposing rPD = rKKT = 0 in our formulations forces xj to
be a solution of MP(Kj , F ), which incurs a bilevel program:

min
F,x

∑
j φ(Hxj − zj)

s.t. xj is a solution to MP(Kj , F ) ∀ j
(15)

This formulation has been proposed in [8] for inverse CO
and in [16] for inverse VI. However, having the primal-dual
or KKT systems as constraints is not practical because of
the complementary constraints F (x|θ)Tx = bTy or x �
0, π � 0, πTx = 0, which cause the standard Mangasarian-
Fromovitz Constraint Qualification (MFCQ) to be violated at
any feasible point [18], hence generating severe numerical
difficulties in standard nonlinear solvers [9], [11].

With F = {F (·,θ)}θ∈Θ a parametric family, replacing
φ(Hx − z) by a general objective g, and having A,b
parametrized by θ, our formulations become:

min
θ,x,y

[rPD(x,y,θ), g(x,θ)]T

s.t. A(θ)x = b(θ), A(θ)Ty � F (x,θ)
θ ∈ Θ

(16)

min
θ,x,y,π

[rKKT(x,y,π,θ), g(x,θ)]T

s.t. A(θ)x = b(θ), A(θ)Ty � F (x,θ)
π � 0, θ ∈ Θ

(17)

where Θ collects the admissible parameters and the residuals
now depend on θ via F (·,θ). These programs are approxi-
mations of the bilevel program:

min
p,x

g(x,θ)

s.t. x is a solution to MP(K(θ), F (·,θ))
(18)

hence our formulation can be seen as a penalized refor-
mulation of a bilevel program, in which we avoid to deal
with the complementary condition. We note that bilevel
programs are an important class of problems with many
applications; see [11], [5]. Standard smoothing methods
applied to x � 0, π � 0, xTπ = 0 are via the perturbed
Fischer-Burmeister function [5, §6.5], but our smoothing via
residual has a suboptimality interpretation, hence we call the
novel problems (13) and (14) ‘inverse VI and CO problems
in combined bilevel-residual form’, which are part or a larger
and novel class of programs of the form (16) and (17) we
call approximate bilevel programs.

VII. RESIDUAL AND MERIT FUNCTIONS

In this section, we specify the residuals rPD, rKKT and
define more intuitive residuals associated to suboptimal so-
lutions to VI(K, F ), OP(K, f).

Definition 2. Suppose K polyhedral given by (6). Given
a map F : K → Rn and a function f : K → R, the
gap function associated to VI(K, F ), the suboptimality gap



associated to OP(K, f), and the duality gap associated to
the primal-dual system (7) are defined by:

rVI(x) = max
u∈K

F (x)T (x− u) (19)

rOP(x) = f(x)−min
u∈K

f(u) (20)

rPD(x,y) = F (x)Tx− bTy (21)

These are classic bounds, analyzed respectively, e.g., in [7,
§3.1.5], [4, §9.3.1], and [3]. When primal feasibility holds,
rOP and rVI are nonnegative and define merit functions [7,
§1.5.3] because rVI(x) = 0 (resp. rOP(x) = 0) if and only if
x is solution to VI(K, F ) (resp. OP(K, f)). Hence, we say
that x ∈ K is an ε-suboptimal solution to VI(K, F ) (resp.
OP(K, f)) if rVI(x) ≤ ε (resp. rOP(x) ≤ ε). In forward
problems, rVI and rOP describe decisions that are at most ε
from optimal. In reverse problems, they describe models that
disagree with the data at most ε from the perfect fit.

While rVI and rOP are more intuitive, evaluating them
requires solving a mathematical program, so they cannot
be used in our MO formulation. Instead, rPD is used. It is
nonnegative when primal-dual feasibility holds, from weak
LP duality; see [1], and so a merit function. We will show
in the next section that rPD defines the same bound as rVI.

We now define the residual functions associated to the
KKT system. We first define the slack variables associated
to the dual feasibility condition:

ν := F (x)−ATy (22)

which implies that dual feasibility is equivalent to ν � 0.
Definition 3. Suppose K is given by (6). Given a map F :
K → Rn, the residuals associated to the KKT system of
VI(K, F ) are given by (with ◦ is the Hadamard product):

rstat(x,y,π) = F (x)−ATy − π = ν − π (23)
rcomp(y,π) = x ◦ π = (xiπi)

n
i=1 (24)

Note that if F = ∇f for a potential f , then rstat, rcomp
are the residuals associated to the KKT system of OP(K, f).
Any nonnegative functions of rstat, rcomp that vanishes if and
only if rstat = 0, rcomp = 0 is a merit function. Common
choices include `p norms, Hüber loss, log-barrier functions,
which have different effects on the distribution of rstat, rcomp
[4, §6.1]. We focus here on the KKT merit function when it
is a `p norm of rstat, rcomp with a weighting factor α > 0:

r
`p
KKT(x,y,π) := ‖[α rstat(x,y,π), rcomp(y,π)]‖p

= (
∑
i α

p|νi − πi|p + |xiπi|p)1/p

(25)
The above residual is used in practice as a certificate of
suboptimality in iterative methods for solving OP(K, f ) [6,
§6]. It has been proposed in [10] as a measure of the fit of
a CO model to the data.

VIII. BOUNDS ON APPROXIMATE SOLUTIONS

We now derive necessary and sufficient conditions for
ε-suboptimality. The results below, due to [1], compare
rVI, rPD, and rOP:

Theorem 4. Suppose K given by (6). Let ε ≥ 0, x ∈ K. Then

rVI(x) ≤ ε ⇐⇒ ∃y : ATy � F (x), rPD(x,y) ≤ ε (26)

In addition, if F is the gradient of a convex potential f :

rPD(x) ≤ ε =⇒ rOP(x) ≤ ε (27)

Hence, when primal-duality feasibility holds, rPD ≤ ε is
necessary and sufficient for ε-suboptimality for VI(K, F ).
When f = ∇F , rPD ≤ ε is sufficient for ε-suboptimality
for OP(K, f ), but not necessary (see Appendix), hence rOP
defines weaker bounds than rVI or rPD. We now compare rVI
and rKKT.

Theorem 5. Suppose K ⊆ Rn is given by (6). Let ε > 0 and
x ∈ K such that rVI(x) ≤ ε. Then for all p ≥ 1 and α > 0:

∃y, π � 0 : ATy � F (x), r
`p
KKT(x,y,π) ≤ ε (28)

Reciprocally, if (28) holds for p > 1, then:

rVI(x)/ε ≤
(

1 + (‖x‖∞/α)
p

p−1

) p−1
p

n1− 1
p (29)

and if (28) holds for p = 1, then:

rVI(x)/ε ≤ (1 + (‖x‖∞/α− 1)+) (30)

We observe: 1) the upper bounds (29) and (30) are tight,
2) rVI and rPD define sufficient bounds for ε-suboptimality
in the sense of rKKT, but not necessary (see Appendix). In
other words, rVI and rPD define stronger bounds than rKKT.
When F = ∇f , combining Theorem 5 and rVI ≥ rOP from
Theorem 4 gives bounds on the ratio of suboptimality of OP
to ε-suboptimality under rKKT:

Corollary 3. Suppose K given by (6) and F = ∇f with f
convex. Let ε > 0, x ∈ K, p > 1 such that (28) holds, then:

rOP(x)/ε ≤
(

1 + (‖x‖∞/α)
p

p−1

) p−1
p

n1− 1
p (31)

and if (28) holds for p = 1, then:

rOP(x)/ε ≤ (1 + (‖x‖∞/α− 1)+) (32)

To summarize the results of this section, when primal-dual
feasibility holds, we have, for any norm ‖ · ‖ on Rn:

rKKT ≤ ε ⇐= rVI ≤ ε ⇐⇒ rPD ≤ ε =⇒ rOP ≤ ε
rOP/ε = O(‖x‖) ⇐= rKKT ≤ ε =⇒ rVI/ε = O(‖x‖)

Consequently, rPD given by (21) can be used to fit both
VI and CO models to the data. If we solve the estimation
problem and find that rPD is small, then the fitting VI or
CO model is consistent with the data. On the contrary, if
many of the rPD are large, then we can conclude that the
fitting VI is not a good model for our data. However, this is
not sufficient to say that our CO model is inconsistent with
the data because large values of rPD can be caused by the
existence of optimal solutions with large norms. Values of
rKKT provide more insights on whether the CO model can
explain the data.

In many scenarios, the feasible set K is bounded, e.g. in
game theory where K describes strategy distributions [14],



hence rVI, rOP, rPD, rKKT are equivalent (in the sense of
norms), and rPD may be necessary and sufficient to measure
the fit of VI and CO models to the data.

IX. SCALARIZATION METHODS FOR ESTIMATION

We recall the pairs of objectives in (13) and (14), where
the dependencies on F are made explicit:

[ ΣjrPD(xj ,yj , F ), Σjφ(Hxj − zj) ]T (33)

[ ΣjrKKT(xj ,yj ,πj , F ), Σjφ(Hxj − zj) ]T (34)

In this section, we apply the common weighted sum method
to articulate preferences between the two objectives in (33)
(resp. (34)); see [12] for a survey on MO optimization. It is
known that the weighted sum method is sufficient for Pareto
optimality, but varying the weights w may not capture all the
Pareto optimal points, although it provides information about
available trade-offs between the objectives. For instance, with
some tuning on w, our formulations (13) and (14) capture,
in some sense, the optimal solutions to the inverse problems
(12) and (11) proposed in [10] and [3]. More precisely, if
the objective in (12) or (11) attains values less than ε, we
can achieve, for all ε′ > 0:

ΣjrPD(xj ,yj , F ) ≤ ε, Σjφ(Hxj − zj) ≤ ε′ (35)

ΣjrKKT(xj ,yj ,πj , F ) ≤ ε, Σjφ(Hxj − zj) ≤ ε′ (36)

with the following scalarization of (13) and (14):

min
F,x,y

wMP ΣjrPD + wobs Σjφ(Hxj − zj)

s.t. Ajxj = bj , xj � 0 ∀ j
AjTyj � F (xj) ∀ j
F ∈ F

(37)

min
F,x,y,π

wMP ΣjrKKT + wobs Σjφ(Hxj − zj)

s.t. Ajxj = bj , xj � 0 ∀ j
AjTyj � F (xj), πj � 0 ∀ j
F ∈ F

(38)

Theorem 6. Let ε ≥ 0 and suppose the minimum objective
value of the inverse problem (11) (resp. (12)) is ε and
attained at a primal feasible point. Then, for all ε′ > 0 and
for all wMP, wobs > 0 with wMP +wobs = 1 and wobs ≥ ε

ε+ε′ ,
problem (37) (resp. (38)) is sufficient for (35) (resp. (36)).

Observe that setting ε = 0 in Theorem 6 gives the following
result, which characterizes a perfect fit to the data:

Corollary 4. Suppose the optimal objective value of the
inverse problem (11) (resp. (12)) is null. Then for all weights
wMP, wobs > 0 with wMP+wobs = 1, problem (37) (resp. (38))
is sufficient for (35) (resp. (36)) with ε = ε′ = 0.

The result in Theorem 6 suggests to set wobs close to 1 if
we trust our observations. It requires that an optimal solution
to (12) or (11) is primal-feasible. For example, the absence
of noise in the constraints Ajx = bj and in the observations
zj = Hxj is sufficient to have this condition.

X. SCALARIZATION METHODS FOR CONTROL

Similarly, if there exists a pair of control policy and
induced response (θ,x) such that the upper-level objective
in (18) is equal to α, then, for all ε′ > 0, we can achieve:

rPD(x,y,θ) ≤ ε′, g(x,θ) ≤ α (39)
rKKT(x,y,π,θ) ≤ ε′, g(x,θ) ≤ α (40)

with the following scalarization of the approximate bilevel
programs (16) and (17):

min
θ,x,y

wMP rPD(x,y,θ) + wg g(x,θ)

s.t. A(θ)x = b(θ), A(θ)Ty � F (x,θ)
(41)

min
θ,x,y,π

wMP rKKT(x,y,π,θ) + wg g(x,θ)

s.t. A(θ)x = b(θ), A(θ)Ty � F (x,θ)
π � 0

(42)

Theorem 7. Let α > 0 and MP(K, F ) refers to VI(K, F ).
Suppose the upper-level objective g in (18) is a nonnegative
function and the minimum objective value of (18) is α (it
may not be attained). Then, for all ε′ > 0 and for all weights
wMP, wobs > 0 with wMP + wobs = 1 and wMP ≥ α

α+ε′ , the
problem (41) (resp. (42)) is sufficient for (39) (resp. (40)).

Hence our approximate bilevel programs are a novel unifying
framework for solving bilevel programs and inverse VI/CO
problems. With enough weight on the observation residuals,
they can be used to impute the function that describes a VI
or CO model, and with enough weight on rPD or rKKT, they
can be used to solve bilevel programs.

Finally, it is desirable to divide the objective functions
by their maximum value (approximated via engineering
knowledge) to have a consistent comparison between them.

XI. NUMERICAL RESULTS

Traffic assignment: We consider the same highway net-
work and experimental setup as in [16]. Recall the aggregate
flow v = (va)a∈A = Zx =

∑
k x

k with xk the commodity
flows. Our parametric VI model F (x,θ) = ZTS(Zx,θ) has
polynomial delays S(·,θ) : RA+ → R is:

S(v,θ) =
(
da(1 +

∑6
i=1 θi(va/ma)i)

)
a∈A

(43)

for all θ ∈ Θ := R6
+, where da and ma are the free

flow delay and capacity on arc a. We note that F (·,θ) is
nonnegative, monotone, convex for all θ ∈ Θ. Using our
inverse VI formulation (37) with φ = 1

2‖ · ‖
2
2, we want to

impute θ from N = 4 partial observations zj = H̃vj ∈
RAobs

+ of UE aggregate flows vj associated to four demand
vectors bj ∈ R|C||N |, j = 1, 2, 3, 4. The measurements are
obtained by solving the traffic assignment problem (1) with
two ‘true’ delay functions: (44) estimated by the Bureau of
Public Roads and the hyperbolic delay (45):

Spoly(v) =
(
da(1 + 0.15(va/ma)4)

)
a∈A (44)

Shyper(v) = (1− 3.5/3 + 3.5/(3− va/ma))a∈A (45)

We scale ΣjrPD(xj ,yj ,θ) and Σjφ(Hxj − zj) by the
inverse of max

∑
j F (xj)Txj ≈

∑
j

∑
k∈C 5λkck and



max
∑
j φ(Hxj − zj) ≈

∑
j φ(Hxj0 − zj) where xj0 is the

UE flow solution to VI(Kj , F (·,θ0)) with initial parameters
θ0, λk is the demand rate in commodity (sk, tk) ∈ C, and
ck is the shortest path cost between sk and tk with free
flow delays da.1 The program (37) is solved via BCD where
each block is updated using CVXOPT.2 Figure 2 provides
the final values of the scaled duality gap ΣjrPD(xj ,yj ,θ)
and observation residual Σiφ(Hxj −zj) for different values
of wobs and wMP = 1− wobs.

Fig. 1. Imputation of the delay maps Spoly, Shyper using formulation
(37) with parametric model map F (·,θ) = ZTS(Zx,θ) given by (43).
As predicted by Theorem 6, the observation residual decreases (to
10−7) as wobs gets close to 1 as shown in (d), while the duality gap
stays constant as shown in (c). The relative error on the flow predicted
by the imputed map F (·, θ̂) is small for wobs large enough as shown
in (b). With accurate measurements, we suggest to solve (37) with
wobs = 0.9, which gives the estimated 1 +

∑6
i=1 θ̂iu

i in (e) and (f).

Consumer utility: As in [10], we consider n = 5 firms
sharing the market. We are firm 3 and we observe N = 200
pairs (pj , zj), j = 1, · · · , N with zj = [xj2, · · · , x

j
5]T where

xj ∈ R5
+ is the consumer demand incurred by prices pj

using the CO model (3) with ‘real’ consumer utility U real

given by (46). The prices are sampled uniformly in [8, 12]5.
We impute U real using the parametric utility given by (47)
with (Q, r) ∈ Θ := {(Q, r) |Qxmax + r � 0, r � 0, Q �
0} so that U is concave quadratic and nondecreasing on
the demand range [0,xmax], where xmax is obtained from
the data. The imputed utility is used by firm 3 to price
its product to achieve different demand levels, given other
prices sampled uniformly in [8, 12]. The numerical results
are shown in Figure 4 with 2 models for A = 50(I + B):
model 1 where Bij is sampled uniformly in [0, 0.3] for i 6= j,
and model 2 where Bij is sampled from 0.5·Bernoulli(0.3).

1We assume the maximum delay is at most 5 times the free flow delay.
2CVXOPT is a Python software package available at http://cvxopt.

org. Implementation of the block descent is open source and available at:
https://github.com/jeromethai/traffic-estimation-wardrop.

U real(x) = 1T
√
Ax + b (46)

U(x,Q, r) = (1/2)xTQx + rTx (47)

Fig. 2. Use of the imputed utility to price product 3 for different target
demands xdes

3 . In (b), the prices are scattered due to correlations with
other prices in model 1, while in (d), the prices vary linearly with xdes

3
since the prices in model 2 are more uncorrelated. In (a), (c) the blue
line is the x = y line. For both models, the imputed utility performs
well with relative errors of 26% and 10% on the training data and
target demands xdes

3 close to realized demands xreal
3 .

REFERENCES

[1] M. Aghassi, D. Bertsimas, and G. Perakis. Solving asymmetric
variational inequalities via convex optimization. Operations Research
Letters 34, 5:481–490, 2006.

[2] M. Beckmann, C. B. McGuire, and C. B. Winsten. Studies in the
Economics of Transportation. Cowles Commission Monograph, 1956.

[3] D. Bertsimas, V. Gupta, and I. Ch. Paschalidis. Data-Driven Estimation
in Equilibrium Using Inverse Optimization. Mathematical Program-
ming, 2014.

[4] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, March 8 2004.

[5] S. Dempe. Foundations of Bilevel Programming. Springer, 2002.
[6] A. S. El-Bakry, R. A. Tapia, T. Tsuchiya, and Y. Zhang. On

the Formulation and Theory of the Newton Interior-Point Method
for Nonlinear Programming. Journal of Optimization Theory and
Applications, 89:507–541, 1996.

[7] F. Facchinei and J. Pang. Finite-Dimensional Variational Inequalities
and Complementarity Problems. Springer, New York, 2003.

[8] G. Iyengar and W. Kang. Inverse conic programming with applica-
tions. Operations Research Letters 33, 2005.

[9] H. Jiang, D. Ralph, and J. Pang. QPECgen, a MATLAB generator for
mathematical programs with quadratic objectives and affine variational
inequality constraints. Computational Optimization and Applications,
13:25–59, 1999.

[10] A. Keshavarz, Y. Wang, and S. Boyd. Imputing a Convex Objective
Function. IEEE International Symposium on Intelligent Control (ISIC),
2011.

[11] Z. Q. Luo, J. S. Pang, and D. Ralph. Mathematical Programs with
Equilibrium Constraints. Cam, 1996.

[12] R. T. Marler and J. S. Arora. Survey of multi-objective optimization
methods for engineering. Structural and Multidisciplinary Optimiza-
tion, pages 369–395, 2004.

[13] M. Patriksson. The Traffic Assignment Problem - Models and Methods.
VSP, Utrecht, 1994.

[14] W. H. Sandholm. Potential Games with Continuous Player Sets.
Journal of Economic Theory, 97:81–108, 2001.

[15] Gesualdo Scutari, Daniel P. Palomar, Francisco Facchinei, and Jong-
Shi Pang. Convex Optimization, Game Theory, and Variational
Inequality Theory. IEEE Signal Processing Magazine, 35, 2010.

[16] J. Thai, R. Hariss, and A. Bayen. A Multi-Convex approach to Latency
Inference and Control in Traffic Equilibria from Sparse data. Submitted
to the 2015 American Control Conference, 2014.

[17] J. G. Wardrop and J. I. Whitehead. Correspondence. Some Theoretical
Aspects of Road Traffic Research. ICE Proceedings: Engineering
Divisions 1, 1952.

[18] J. J. Ye and D. L. Zhu. Optimality conditions for bilevel programming
problems. Optimization: A Journal of Mathematical Programming and
Operations Research, 33, 1995.


