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INTRODUCTION:  
  PROBLEM  MOTIVATION	




S  Usual  assumption:  Watershed  is  an  LTI  System	

S  Input:  rainfall  (hyetograph)	


S  Measured  by  rainfall  gauge.	

S  Output:  runoff  (hydrograph)	


S  Measured  by  stream  gauge  at  watershed  outlet.	

S  Watershed  defines  a  system  transfer  function	


S  Finding  transfer  function  allows  prediction  of  flood  events!  	


S  Many  methods  to  find:	

S  Distributed  parameter  physical  system;  let’s  model  it!	

S  Objective  is  to  use  minimal  number  of  gauges  to  estimate  watershed  

response.  	


INTRODUCTION:  
  HYDROGRAPH  GENERATION	


Watershed
H(manning's n, slope, 
vegetation, climate, 

geology,…) 

Input : 
{Rainfall(t)}

Output:
{Runoff(t+lag)}



INTRODUCTION    
PROBLEM  SETUP	




INTRODUCTION:  
PRIMARY  PROJECT  OBJECTIVES	


S  Analytical  derivation:	


S  Overland  Flow  	


S  Method  of  Characteristics.	


S  Numerical  simulations  of  solution:	


S  Steady  rainfall  and  runoff  rate	


S  Temporally-­‐‑  and  spatially-­‐‑  varying  rainfall  and  
runoff  rate	




ANALYTIC  SOLUTION  
FROM  NAVIER-­‐‑STOKES  TO    

SAINT-­‐‑VENANT  IN  1  MINUTE	


Conservation of momentum in Navier-Stokes: 

Use Leibniz’s rule, the free-surface condition and  

For laminar and transitional flows, use KE correction coefficient: 
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ANALYTIC  SOLUTION  
FROM  NAVIER-­‐‑STOKES  TO    

SAINT-­‐‑VENANT  IN  1  MINUTE	


Some additional assumptions yield: 

More commonly written as: 

Small departure from uniform steady flow by substitution of 
V = V0 + Vp and h = h0 + hp 
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Shear stress; bed slope 



ANALYTIC  SOLUTION  
FROM  NAVIER-­‐‑STOKES  TO    

SAINT-­‐‑VENANT  IN  1  MINUTE	


Take  
inflow = rainfall – infiltration 
 to get: ∂h

∂t
+ ∂q
∂x

= r − f

r ⇓

f ⇓

∂h
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Variation  of  
depth  with  

time.	


Variation  of  
flow  with  
distance  	


∂q
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ANALYTIC  SOLUTION  
ASSUMPTIONS,  BC/IC,    
AND  CHARACTERISTICS	


q = αhm

Explicit form: 

t = t p , 0 < x < L.
Characteristic Domains 

Domain 1: 

x = 0, 0 < t0 < tr .Domain 2: 

tr = t.Domain 3: 

h(0,t) = 0, h(x,0) = 0

α = 1

n
S0

Flow vs. Height 

Zero flow at initial  
time and distance  

Manning’s 
Law 

Initial BC/IC 

dh / dt = r − f

dx / dt =αmhm−1

Characteristic Equations 



ANALYTIC  SOLUTION  
CHARACTERISTIC  DOMAIN  I	


t = t p , 0 < x < L

tp =
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ANALYTIC  SOLUTION  
CHARACTERISTIC  DOMAIN  II	


x = 0, t p < t < tr

Characteristics emanate from time axis; t0 > tp: 

h = S2 / 2
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ANALYTIC  SOLUTION  
CHARACTERISTIC  DOMAIN  III	


tr = t f

Now no rain, so:  
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ANALYTIC  SOLUTION  
RESULTS	


!
!
!



ANALYTIC  SOLUTION  
DISCUSSION	


S  Can  only  work  for  very  specific  cases  of  physical  seaings	


S  Try  to  solve  analytically  with  changes  will  become  a  mental  
gymnastic  exercise.  (we  tried  to  solve  it  with  two  storms)	


S  Rescue  ?  Go  Numerical  –  finite  difference  schemes	




Introduction Methods Part Deux 

NUMERIC  SOLUTION  
Explicit  Finite-­‐‑Differences  Solution	


Start with discrete uniform rainfall  
and infiltration: 
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CE 123  
Water Resources Engineering 

 
Numerical Solution of the Kinematic Wave - Overland Flow 

Explicit Finite Differences Linear Approximation 
 
 The continuity and momentum equations may be combined into equation (1) below: a 
non-linear, one-dimensional, partial differential equation.  The first equation can be easily solved 
numerically for y = f (x, t, i - f ).  Once y is found, it is then substituted into equation (2) to give 
flow per unit width of overland flow (e.g., cfs/ft). Thus, equations (1) and (2) are for unit width 
[A= y (1) = y]. 

    
 m -1y

 +  = i -fy
t x

y�� �
� �             (1) 

                 (2) 
 mq = V y =      y�

 
The more general case is to solve for A(x,t), including width of overland flow.  This model can 
be extended to the stream-channel case, and eventually the catchment-stream case: 

     + = q
t x

mA A�� �
� �

            (3) 

    
m AQ ��             (4) 

 
Explicit Finite-Differences Solution 
 
 The objective of the numerical solution is to solve for A(x,t) at each point on the x-t grid, 
given the parameters � � and m, and the initial and boundary conditions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Explicit Finite Differences Grid 
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In particular, we are interested in the value of A (x = L, t).  The finite-difference form of the 
spatial and time derivatives is: 
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 To create a linear equation, the value of A used in (�mAm-1) is found by averaging the 
values across the diagonal; thus, as a linear function of known values of A: 

1
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 Let the value of rainfall excess ( i - f ) = q [which becomes lateral inflow for the channel-
flow case]. It is obtained by averaging (over time) the values on the (i+1)th distance line: 
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 By substituting the above expressions into equation (3), the linear-scheme finite-
difference approximation to the kinematic wave is given by Bras (1990): 
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Solving explicitly for the unknown value of A, 
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 The Courant condition (a restriction on the relationship of the time step to the distance 
increment) applies: 
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 The dimensionless parameter, �, as defined above is used to test if the kinematic wave 
speed (dx /dt) times the ratio of the simulation time step to the grid spacing (��t/��x) is less than 
or equal to 1.  If this condition is violated, an alternate finite difference approximation to 
equation (3) is invoked: 
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 To create a linear equation, the value of A used in (�mAm-1) is found by averaging the 
values across the diagonal; thus, as a linear function of known values of A: 
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 Let the value of rainfall excess ( i - f ) = q [which becomes lateral inflow for the channel-
flow case]. It is obtained by averaging (over time) the values on the (i+1)th distance line: 
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 By substituting the above expressions into equation (3), the linear-scheme finite-
difference approximation to the kinematic wave is given by Bras (1990): 
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Solving explicitly for the unknown value of A, 
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 The Courant condition (a restriction on the relationship of the time step to the distance 
increment) applies: 
 

  
� � 1 1

* *

where  = Kinematic Wave Celerity

and 1

i
k

k

m m
k

x
t c

c

t
c m A m A

x
� � �� �

�
� 	

�
� �

�
	

 

 The dimensionless parameter, �, as defined above is used to test if the kinematic wave 
speed (dx /dt) times the ratio of the simulation time step to the grid spacing (��t/��x) is less than 
or equal to 1.  If this condition is violated, an alternate finite difference approximation to 
equation (3) is invoked: 
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Introduction Methods Part Deux 

NUMERIC  SOLUTION  
4-­‐‑POINT  IMPLICIT  FINITE  DIFFERENCE	


Use weighting parameter for spatial derivative: 

∂y

∂x
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Plug into previous update function: 
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NUMERIC  SOLUTION  
EXPLICIT  FINITE-­‐‑DIFFERENCES  SOLUTION	




NUMERIC  SOLUTION  
MCCORMACK  SPLITTING  METHOD	


CONCEPT	
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MCCORMACK  SPLITTING  METHOD	


RESULTS	




DISCUSSION  
NUMERIC  VS.  ANALYTIC	


S  Work  in  Progress	


S  Numerical  errors  expected	


S  Initial  condition  and  the  
forcing  turn	


S  Unsteadiness  	


ANALYTICAT! NUMERICAT!

VS.!



S  Analytic  solution  is  elegant,    
but  limited	


S  Numerical  schemes  are  
powerful  but  subject  to  
approximation  errors	


S  Validate  using  empirical  unit  
hydrograph  approach	


S  Use  a  spatial  grid  of  
interpolated,  real  infiltration  
data  and  rainfall  	


 

CONCLUSIONS  
&  

FUTURE  DIRECTIONS	




THANK  YOU!	


QUESTIONS? 
e.g., Who Are Those People? 
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