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This article is motivated by the practical problem of highway traffic estimation using

velocity measurements from GPS enabled mobile devices such as cell phones. In order to

simplify the estimation procedure, a velocity model for highway traffic is constructed,

which results in a dynamical system in which the observation operator is linear. This

article presents a new scalar hyperbolic partial differential equation (PDE)

model for traffic velocity evolution on highways, based on the seminal

Lighthill-Whitham-Richards (LWR) PDE for density. Equivalence of the solution of

the new velocity PDE and the solution of the LWR PDE is shown for quadratic flux

functions. Because this equivalence does not hold for general flux functions, a dis-

cretized model of velocity evolution based on the Godunov scheme applied to the LWR

PDE is proposed. Using an explicit instantiation of the weak boundary conditions of

the PDE, the discrete velocity evolution model is generalized to a network, thus making

the model applicable to arbitrary highway networks. The resulting velocity model

is a nonlinear and nondifferentiable discrete time dynamical system with a linear

observation operator, for which a Monte Carlo based ensemble Kalman filtering data
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2 D. B. Work et al.

assimilation algorithm is applied. The model and estimation technique is evaluated

with experimental data obtained from a large-scale field experiment known as Mobile

Century, which is available for download at http://traffic.berkeley.edu.

1 Introduction

1.1 Motivation

The convergence of communication, sensing, and multimedia platforms such as smart-

phones provides the engineering community with unprecedented monitoring capabil-

ities. Standard smartphones include numerous sensors (accelerometers, light sensors,

GPS), wireless connectivity ports (GSM, GPRS, Wi-Fi, bluetooth, infrared), and ever in-

creasing computational power and memory. The rapid penetration of GPS in phones has

enabled the explosion of new Location Based Services, heavily relying on spatial and

context awareness. Their low cost, portability and computational capabilities make

smartphones useful for numerous applications in which they act as sensors moving

with humans, embedded in the built infrastructure. Large scale applications include

traffic flow estimation [33, 34], which is a rapidly expanding field at the heart of

mobile internet services. With the cellular phone communication infrastructure in

place and privacy aware smartphone sensing technology in full expansion [17], a large

volume of data from mobile devices is now available [16]. Unlike traditional traffic

sensors which typically measure vehicle flows and occupancies from which vehicle

densities can be computed, mobile devices report vehicle speeds or travel times along

stretches of roadway. Numerous traffic estimation techniques developed in the litera-

ture rely on density based traffic models such as the Lighthill-Whitham-Richards (LWR)

partial differential equation (PDE) [25, 28] and its discretization using the Godunov

scheme [21, 23, 30] (also known as the Cell Transmission Model (CTM) [6, 7] in the trans-

portation literature). Thus, a key missing piece in creating a real–time system capable of

monitoring traffic using mobile phones is a traffic flow model with velocity as the state.

This article provides a mathematical approach to address this challenge: it presents a

PDE model of traffic, applicable to smartphone collected data. The proposed model is

new, and it simplifies the estimation problem when viewed in a state space framework

because the state velocity variables are directly observed from the smartphone data.

1.2 Problem statement: Lagrangian data assimilation for distributed velocity fields

This work constructs a model for the evolution of a velocity field v(x, t) on a highway

segment x ∈ [0, L], which is a distributed parameter system. Vehicles labeled by i ∈ N
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A Traffic Model for Velocity Data Assimilation 3

travel along the highway with trajectories xi(t), and measure the velocity v(xi(t), t) along

their trajectories (Lagrangian measurements). These discrete measurements are used to

reconstruct or estimate the function v(x, t), in a process referred to as data assimilation

or inverse modeling [24]. Figure 1 illustrates the process: the evolution of the velocity

field v(x, t) can be depicted as a surface, which is to be reconstructed. A subset of the

vehicles is sampled along their trajectories. For illustration purposes in the figure, four

vehicles are sampled at time t = tm, which produces four points on the v(x, t) surface

which can be used by the algorithm to reconstruct the surface.

Data from mobile devices can be obtained through a variety of sampling strate-

gies, including a new paradigm patented by Nokia, called Virtual Trip Lines (VTLs),

which act as virtual triggers for mobile sensing [17].

1.3 Related work

Earlier studies have specifically addressed the traffic flow estimation problem using

density evolution models and Kalman Filtering (KF) in its various forms. In [31], Mixture

Kalman Filtering (MKF) was applied to the CTM [6] to estimate traffic densities for

ramp metering. The nonlinear CTM was transformed into a switching state space model,

which enabled the use of a set of linear equations to describe the state evolution for the

distinct flow regimes on the highway (e.g. highway is in free-flow or congestion). In [15],

specific modes of the dynamics presented in [31] are used to incorporate Lagrangian

Fig. 1. Illustration of the distributed velocity field v(x, t) to be reconstructed from Lagrangian

samples. Four samples vi(xi(t), t) are shown at t = tm, from vehicles i transmitting their data

(indicated by up-arrows above the vehicles).
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velocity trajectories into an extension of the CTM, called the Switched Mode Model

(SMM), using Kalman filtering. A real–time algorithm for traffic estimation based on

the Extended Kalman Filter (EKF) using a model resulting from the discretization of a

PDE system for speed and density was used in [32]. A key ingredient of this work is the

differentiability of the numerical scheme employed for the second order model of traffic

used by the authors, a feature the model proposed in this work does not possess. Other

treatments of traffic estimation include adjoint–based control and data assimilation in

[18, 19], Unscented Kalman Filtering (UKF) in [26] and Particle Filtering (PF) in [14, 26,

29].

A common feature for CTM based methods described above is that the evolution

of traffic state (typically density, not velocity) relies on a set of linearized equations

which are needed in order to use the KF or EKF techniques. On the other hand, the PF

technique is a nonlinear scheme for solving the Bayesian update problem, but has a

higher computational cost.

Other studies have investigated the highway traffic estimation problem using

cell phone tower information. In [1], an EKF was applied to a second order model of

vehicle density and velocity, and validated in simulation. In practice, the modeling

assumption that network providers can accurately provide both density and flow of the

cellular phones currently on the highway of interest is limited, especially in dense and

complex roadway networks. The work [5] uses a fully nonlinear particle filter to assimi-

late the mean velocity of a vehicle traveling between cell tower hand-off points, but also

suffers from the same practical limitations in dense road networks. On the contrary, the

velocity model and estimation procedure proposed in this work are motivated by practi-

cal requirements and technical limitations, and were validated in real–time and online

with data obtained during a large–scale field experiment known as Mobile Century.

1.4 Outline and contribution of the article

This work is organized as follows. We propose a new model for evolution of velocity

in the form of a PDE derived from the seminal LWR PDE in Section 2.1. We estab-

lish the equivalence of the proposed model in the velocity and the density domain

for a quadratic flux function (called the Greenshields model) in Section 2.3. We prove

that this equivalence does not hold for general flux functions, which is a negative

result. For general flux functions, we use a transformation of the Godunov scheme which

enables us to create a nonlinear discrete dynamical system for velocity evolution, which

approximates the entropy solution of the LWR PDE in a compact domain (Section 2.4).
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A Traffic Model for Velocity Data Assimilation 5

We then instantiate weak boundary conditions explicitly and derive the domain of

boundary data for which strong boundary conditions can be prescribed (Section 3).

We extend the model to a network with the proper use of the strong boundary con-

ditions, using linear programming to compute their values (Section 3). The technique

used to perform data assimilation with velocity measurements is described in Section 4,

which uses an algorithm based on Ensemble Kalman Filtering (EnKF). The results of the

estimation approach applied to the velocity evolution model are presented using data

collected from the Mobile Century field experiment in Section 5, which ran an earlier

version of the algorithm (online and in real–time).

2 Mathematical Model of Traffic Velocity Evolution

2.1 Preliminaries

This section reviews the theory of scalar first order hyperbolic conservation law, which

serves as a basis for the creation of a class of velocity evolution models. Known as

the Lighthill-Whitham-Richards (LWR) partial differential equation (PDE) [25, 28], the

macroscopic traffic flow model which describes the evolution of vehicle density ρ for a

stretch of highway of length L over a time T is given as:

∂ρ(x, t)

∂t
+ ∂Q (ρ(x, t))

∂x
= 0 (x, t) ∈ (0, L) × (0, T) (1)

ρ(x, 0) = ρ0(x), ρ(0, t) = ρl(x), ρ(L , t) = ρr(x) (2)

where Q(·) is the flux function defined in an interval [0, ρmax], and ρmax is the maximal

density. The terms ρ0(·), ρl(·), and ρr(·) denote the initial data, left boundary data, and

right boundary data respectively. The flux function Q(·) expresses the flow of vehicles

as a function of the density, and is known as the fundamental diagram in the trans-

portation engineering community [6, 7].

Assuming that the velocity can be modeled as a function V(·) of the density in

[0, ρmax], the flux function reads:

Q (ρ) = ρ V(ρ) (3)

Remark 1. For traffic applications, the flux function Q(·) is generally assumed to be

concave and piecewise C 1. This function may be approximated by strictly concave C 2

flux functions with superlinear growth to fit the framework of [2] and [22]. �
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Since transport equations such as (1) involve discontinuities which can appear

in finite time even from smooth initial conditions (see [3]), weak entropy solutions to the

density evolution model must be considered.

Definition 2.1 (Weak entropy solution). A weak entropy solution ρ(·, ·) of (1)–(2) is

defined as follows:∫ L

0

∫ T

0

(
|ρ(x, t) − k| ∂

∂t
ϕ(x, t) + sgn(ρ(x, t) − k) (Q(ρ(x, t)) − Q(k))

∂

∂x
ϕ(x, t)

)
dtdx

+
∫ L

0

∫ T

0
sgn (k) (Q(ϒρ(x, t)) − Q(k)) · n ϕ(x, t)dtdx ≥ 0 ∀ϕ ∈ C 2

c ([0, L] × [0, T); R+) ,

∀k ∈ R

where ϒ is the trace operator and n is the exterior normal to the domain. �

In general, in presence of boundary conditions, equation (1) does not have a solu-

tion. It was proposed in [22] to write boundary conditions in such a way that the entropy

solution to equation (1) exists and is unique. This formulation of the boundary condi-

tions for the initial-boundary value problem (1)– (2) adapted to our case is described

next.

Definition 2.2 (Left weak boundary condition - concave flux function). For a general

flux function F (·), the proper weak description of the left boundary condition for (1) in

terms of the trace of the solution u(0, t) and the left boundary data ul(t) is as follows:

sup
k∈D(u(0,t),ul (t))

(sgn (u(0, t) − ul(t)) (F (u(0, t)) − F (k))) = 0 a.e. t > 0 (4)

where D(x, y) = [
inf (x, y) , sup (x, y)

]
. �

It was observed in [22] that for a strictly convex continuously differentiable flux

function under sufficient regularity of the boundary data ul(·), an equivalent formula-

tion of (4) can be obtained. In [10], it is shown that continuity of the boundary data is

sufficient for an equivalent formulation. In our case, this formulation reads:

a.e. t > 0,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(0, t) = ul(t)

xor F ′(u(0, t)) ≤ 0 and F ′(ul(t)) ≤ 0 and u(0, t) �= ul(t)

xor F ′(u(0, t)) ≤ 0 and F ′(ul(t)) > 0 and F (u(0, t)) ≤ F (ul(t))

(5)
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A Traffic Model for Velocity Data Assimilation 7

Remark 2. The preceding equation (5) is a description of cases for which (4) is satisfied,

which is shown graphically in Figure 2. Note the description is slightly different from

[30] in that the sets defined on each line of (5) are mutually exclusive. The first line of

(5) corresponds to the case when the trace of the solution u(0, t) takes the value of the

boundary data ul(t), which is analogous to a prescription of the boundary condition in

the strong sense. The second line and third lines correspond to cases which satisfy (4),

but where the value of the trace does not take the value prescribed at the boundary.

Finally, the white areas shown in Figure 2 correspond to a zero measure set of time

values for a left boundary data, trace pair. �

Definition 2.3 (Right weak boundary condition - concave flux function). For a gen-

eral concave flux function F (·), the description of the right boundary condition for the

Fig. 2. Graphical representation of the left boundary data, trace pairs for a concave flux which

satisfy (5). x-axis: Characteristic speed of the trace of the solution u(0, t). y-axis: Characteristic

speed of the boundary data ul (t). The solid line labeled u(0, t) = ul (t) corresponds to the first line of

(5), the dash-dot region corresponds to the second line of (5), and the solid gray region corresponds

to the third line of (5). The curve F (u(0, t)) = F (ul (t)) bounding the gray region depends on the

choice of F (·), and is drawn as a straight line for illustration purposes. The region in solid white

occurs for a set of times t with measure zero.
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8 D. B. Work et al.

LWR PDE (1) can be expressed in terms of the trace of the solution u(L , t) and the right

boundary data ur(t) one wants to apply as:

a.e. t > 0,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(L , t) = ur(t)

xor F ′(u(L , t)) ≥ 0 and F ′(ur(t)) ≥ 0 and u(L , t) �= ur(t)

xor F ′(u(L , t)) ≥ 0 and F ′(ur(t)) < 0 and F (u(L , t)) ≤ F (ur(t))

(6)

where ur(·) is a function of C 0(0, T). �

We now expand on the first line of equations (5)– (6) in order to state explicitly

the set of the boundary data, trace pairs for which the boundary data is prescribed in

the strong sense.

Lemma 2.4 (Strong boundary conditions - concave flux). For a strictly concave flux

function F (·), the cases for strong boundary conditions read as follows: a.e. t > 0,

u(0, t) = ul(t) iff⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F ′(u(0, t)) ≥ 0 and F ′(ul(t)) ≥ 0

xor F ′(u(0, t)) ≤ 0 and F ′(ul(t)) ≤ 0 and u(0, t) = ul (t)

xor F ′(u(0, t)) ≤ 0 and F ′(ul(t)) > 0 and F (u(0, t)) > F (ul (t))

(7)

and a.e. t ≥ 0,

u(L , t) = ur (t) iff⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F ′(u(L , t)) ≤ 0 and F ′(ur(t)) ≤ 0

xor F ′(u(L , t)) ≥ 0 and F ′(ur(t)) ≥ 0 and u(L , t) = ur (t)

xor F ′(u(L , t)) ≥ 0 and F ′(ur) < 0 and F (u(L , t)) > F (ur (t))

(8)

�

Proof. We prove the case of the left boundary condition for a concave flux and note a

similar argument holds for the right boundary and in the case of convex flux functions.

Beginning with the statement of weak boundary conditions, (5) we can write: a.e. t > 0,

u(0, t) �= ul(t) iff{
F ′(u(0, t)) ≤ 0 and F ′(ul(t)) ≤ 0 and u(0, t) �= ul(t)

xor F ′(u(0, t)) ≤ 0 and F ′(ul(t)) > 0 and F (u(0, t)) ≤ F (ul(t))
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A Traffic Model for Velocity Data Assimilation 9

If we are not in one of these two cases, then by taking their complement, we must have

either ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F ′(u(0, t)) ≥ 0 and F ′(ul(t)) ≥ 0

xor F ′(u(0, t)) ≤ 0 and F ′(ul(t)) ≤ 0 and u(0, t) = ul (t)

xor F ′(u(0, t)) ≤ 0 and F ′(ul(t)) > 0 and F (u(0, t)) > F (ul (t))

xor F ′(u(0, t)) > 0 and F ′(ul(t)) < 0

(9)

For the fourth line in (9), a.e. t > 0 we will have F ′(u(0, t)) = 0, so it is removed and the

conditions for strong left boundary conditions are obtained. �

2.2 Velocity functions

In order to obtain a partial differential equation for velocity, we propose to express the

density as a function of the velocity by inverting the velocity function from equation (3).

The algebraic expression of the velocity function is a modeling choice, and it is typically

constructed to fit experimental data.

Introduced in 1935, one of the earliest velocity functions considered is the

Greenshields [13] affine velocity function:

v = VG (ρ) = vmax (1 − ρ/ρmax)

where vmax is the maximum (freeflow) velocity, and ρmax is the maximum (jam) density.

This model remains a useful mathematical model because of its simplicity, despite dis-

agreements with observed traffic data. Since it expresses a linear relationship between

speed and density, it is clearly invertible as:

ρ = PG(v) = V−1
G (v) = ρmax (1 − v/vmax) (10)

The widely used Daganzo-Newell velocity function assumes a constant velocity

in free-flow and a hyperbolic velocity in congestion:

v = VDN(ρ) =
⎧⎨
⎩

vmax if ρ ≤ ρc

−w f

(
1 − ρmax

ρ

)
otherwise

where vmax, ρmax, ρc and w f are respectively the maximum velocity, maximum density,

critical density at which the flow transitions from free-flow to congested, and the back-

wards propagating wave speed, respectively. Because the Daganzo-Newell velocity func-

tion is not strictly monotonic in freeflow, it cannot be inverted.

 at U
niversity of C

alifornia, B
erkeley on M

ay 13, 2013
http://am

rx.oxfordjournals.org/
D

ow
nloaded from

 

http://amrx.oxfordjournals.org/


10 D. B. Work et al.

In order to use the Daganzo-Newell model in a velocity setting, we approximate

it by a hyperbolic-linear velocity function, with a linear expression in free-flow and a

hyperbolic expression in congestion:

v = VHL(ρ) =
⎧⎨
⎩

vmax

(
1 − ρ

ρmax

)
if ρ ≤ ρc

−w f

(
1 − ρmax

ρ

)
otherwise

For continuity of the flux at the critical density ρc, the additional relation ρc
ρmax

= w f
vmax

must be satisfied.

The hyperbolic–linear velocity function can be inverted to obtain the density as

a function of velocity:

ρ = V−1
HL (v) =

⎧⎪⎨
⎪⎩

ρmax

(
1 − v

vmax

)
if v ≥ vc

ρmax

(
1

1+ v
w f

)
otherwise

(11)

where vc is the critical velocity: vc = V(ρc). This hyperbolic-linear velocity function

yields a quadratic-linear flux function as illustrated in Figure 3. Unless noted other-

wise, we assume the velocity function is invertible throughout the remainder of this

article.

2.3 Derivation of a velocity PDE in conservative form for the Greenshields flux function

In this section, we derive a velocity PDE in conservative form for the Greenshields flux

and we show that for other C 1 velocity functions, there is no velocity transport equa-

tion equivalent to the LWR equation. The important result shown here is that unless the

velocity function is affine (i.e., the Greenshields case), there will not be equivalence

between weak solutions to the derived velocity PDE and the weak solutions of the

density PDE written in terms of the velocity.

Fig. 3. Fundamental diagrams (top row) and velocity functions (bottom row) for Greenshields

(left), Daganzo-Newell (center), and quadratic-linear (left).
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A Traffic Model for Velocity Data Assimilation 11

First, we introduce the notion of a weak velocity solution to the LWR PDE.

Assuming that the velocity function is invertible with inverse P (·), the PDE (1) in weak

form for ρ(·, ·) is equivalent to the following formulation for v(·, ·):
∫ L

0

∫ T

0

(
P (v(x, t))

∂ϕ

∂t
(x, t) + Q(P (v(x, t)))

∂ϕ

∂x
(x, t)

)
dxdt

+
∫ L

0
P (v0(x)) ϕ(x, 0)dx = 0 ∀ϕ ∈ C 2

c ([0, L] × [0, T)) (12)

In order to use existing numerical analysis schemes for the PDE we want to

obtain, we would like to transform the weak formulation (12) into the following conser-

vation law for velocity with initial condition v0(·):⎧⎨
⎩

∂
∂tv(x, t) + ∂

∂x R(v(x, t)) = 0

v(x, 0) = v0(x)
(13)

By analogy with the classical LWR equation, the velocity PDE (13) is called LWR-v PDE.

Because the flux function R(v) in the velocity conservation law (13) is convex, the weak

boundary conditions are given as follows:

Definition 2.5 (Weak boundary conditions - convex flux function [2, 22]). For a con-

vex flux function F (·), the weak formulation of boundary conditions reads:

a.e. t > 0,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(0, t) = ul(t)

xor F ′(u(0, t)) ≤ 0 and F ′(ul(t)) ≤ 0 and u(0, t) �= ul(t)

xor F ′(u(0, t)) ≤ 0 and F ′(ul(t)) > 0 and F (u(0, t)) ≥ F (ul(t))

and

a.e. t > 0,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(L , t) = ur(t)

xor F ′(u(L , t)) ≥ 0 and F ′(ur(t)) ≥ 0 and u(L , t) �= ur(t)

xor F ′(u(L , t)) ≥ 0 and F ′(ur(t)) < 0 and F (u(L , t)) ≥ F (ur(t))

where ul(·), ur(·) are functions of C 0(0, T). The functions ul(·) and ur(·) are the strong

boundary conditions one wants to apply at the left and the right boundaries. �

We can now state the main result of this section, which defines the velocity

functions for which a velocity evolution PDE in conservative form can be constructed.
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12 D. B. Work et al.

Theorem 2.6. For a velocity function piecewise analytic in [0, ρmax], the velocity PDE

in weak form (12) is equivalent to system (13) if and only if the velocity function is affine

(Greenshields case).

Proof. See Appendix A. �

Thus for more realistic traffic models with nonlinear velocity functions, it is not

possible to derive a PDE model for velocity in conservation form (13).

2.4 Numerical approximation of the solution

The LWR-v PDE (13) can be discretized using the Godunov discretization scheme [12] to

construct a nonlinear discrete time dynamical system [35]. The Godunov scheme com-

putes an approximation of the weak solution to the PDE in conservative form in discrete

time and space. Because of the equivalence of the solution of (12) and (13), the Godunov

discretization and the velocity inversion commute, which is not the case for general flux

functions.

Remark 3. For the case when the velocity function is not affine, the discrete velocity

model must be constructed by applying the Godunov scheme directly to the LWR PDE,

then applying the velocity inversion. Note that the order in which the operations are

done is important, and that inversion before discretization for non-affine velocity func-

tions would not lead to the solution of (12) [3]. �

We discretize the time and space domains by introducing a discrete time

step �T , indexed by n ∈ {0, · · · , nmax} and a discrete space step �x, indexed by i ∈
{0, · · · , imax}. Given the LWR PDE (1), application of the Godunov discretization scheme

yields the following relation for the time evolution of the discretized solution of (1):

ρn+1
i = ρn

i − �T

�x

(
G

(
ρn

i , ρn
i+1

) − G
(
ρn

i−1, ρn
i

))
(14)

In the above equation, ρn
i denotes the value of the computed solution at time step n and

space step i. The Godunov flux G (ρ1, ρ2) is defined as:

G (ρ1, ρ2) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Q(ρ2) if ρc ≤ ρ2 ≤ ρ1

Q(ρc) if ρ2 ≤ ρc ≤ ρ1

Q(ρ1) if ρ2 ≤ ρ1 ≤ ρc

min (Q(ρ1), Q(ρ2)) if ρ1 ≤ ρ2

(15)
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A Traffic Model for Velocity Data Assimilation 13

In order to ensure numerical stability, the time and space steps are coupled

by the CFL condition [23]: αmax
�T
�x ≤ 1 where αmax denotes the maximal characteristic

speed. This discrete model is commonly referred to as the cell transmission model in

the transportation engineering community [6, 7].

Note that if ρ1 ≤ ρ2, with v1 = V(ρ1) and v2 = V(ρ2), then v1 ≥ v2 when V(·) is

monotonically decreasing (which is typically the case for traffic applications). Further-

more, since V(·) is invertible, from (3), we obtain the following relationship: Q(ρ) =
Q̃(v) = V−1(v)v. Finally, application of the inversion to (14) and (15) yields the Cell Trans-

mission Model for velocity (CTM-v):

vn+1
i = V

(
V−1 (

vn
i

) − �T

�x

(
G̃

(
vn

i , vn
i+1

) − G̃
(
vn

i−1, vn
i

)))
(16)

where the transformed Godunov velocity flux G̃ (v1, v2) is given by:

G̃ (v1, v2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Q̃ (v2) if vc ≥ v2 ≥ v1

Q̃ (vc) if v2 ≥ vc ≥ v1

Q̃ (v1) if v2 ≥ v1 ≥ vc

min
(

Q̃ (v1) , Q̃ (v2)
)

if v1 ≥ v2

(17)

Example 2.7 (Hyperbolic-linear model). After evaluation of the function (11), equa-

tion (17) reduces to:

G̃ (v1, v2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

v2ρmax

(
1

1+ v2
w f

)
if vc ≥ v2 ≥ v1

vcρmax

(
1 − vc

vmax

)
if v2 ≥ vc ≥ v1

v1ρmax

(
1 − v1

vmax

)
if v2 ≥ v1 ≥ vc

min
(

V−1
HL (v1) v1, V−1

HL (v2) v2

)
if v1 ≥ v2

(18)

We choose not to simplify the last line in (18) due to the piecewise analytical expression

of function V−1
HL (·). �
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14 D. B. Work et al.

We note that the evolution of the velocity field at each discrete point on an edge

except at the boundary points vn
0 and vn

imax
is well defined by (16) and (18). At these

boundaries the equations:

vn+1
0 = V

(
V−1

(
vn

0

) − �T
�x

(
G̃

(
vn

0, vn
1

) − G̃
(
vn−1, vn

0

)))
vn+1

imax
= V

(
V−1

(
vn

imax

)
− �T

�x

(
G̃

(
vn

imax
, vn

imax+1

)
− G̃

(
vn

imax−1, vn
imax

))) (19)

contain references to the ghost points vn−1 and vn
imax+1, which are points which do not

lie in the physical domain. The values of vn−1 and vn
imax+1 are given by the prescribed

boundary conditions to be imposed on the left and right side of the domain respectively.

Note that these boundary values do not always affect the physical domain because of

the nonlinear operator (18), which causes the boundary conditions to be implemented

in the weak sense.

3 Extension of the Model to Networks

3.1 Network model and edge boundary conditions at junctions

We now show how to extend the velocity model to road networks in the presence of

shocks and weak boundary conditions. This extension is addressed in the literature

for density traffic models in the transportation engineering community using physical

principles in [7], and also in a mathematical context in [11].

We model the highway transportation network as a directed graph consisting of

vertices ν ∈ V and edges e ∈ E . Let Le be the length of edge e. The spatial and tempo-

ral variables are x ∈ [0, Le], and t ∈ [0,+∞) respectively. In order to model traffic flow

across the network, we define a junction indexed by j as a tuple J j := (
ν j, I j, O j

) ⊆
V × E × E , consisting of a single vertex ν j ∈ V, a set of incoming edges indexed by

ein ∈ I j, and a set of outgoing edges indexed by eout ∈ O j. On each edge, the velocity

field evolves according to (16), with an important modification in the computation of the

points at the boundary. Instead of implementing ghost points, it is natural to require

the left and right boundary conditions to be a function of upstream and downstream

links, so that the velocity field can be evolved across the network.

We look for unique description of the evolution of the velocity dynamics at the

junctions. Following the conditions for uniqueness of [11], we present three physically

motivated restrictions on the dynamics, namely (i) conservation of vehicles across the

junction, (ii) vehicles follow a set route across the junction, which define how the traffic

flux from edges into the junction are routed to the outgoing edges (iii) traffic flow across
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A Traffic Model for Velocity Data Assimilation 15

the junction is maximized. Conditions (i) and (ii) imply that for the edge boundaries at

the junction, boundary conditions must hold in the strong sense. This creates an upper

bound on the flows on each edge into and out of the junction, which can be computed.

By transforming these conditions into the velocity domain, the velocity evolution at the

junctions can be determined by solving a linear programming problem.

3.1.1 Physical constraints

Consider a junction j with
∣∣I j

∣∣ incoming edges and
∣∣O j

∣∣ outgoing edges. First, we assume

that the junction has no storage capacity, so all vehicles which enter the junction must

also exit the junction. Conservation of the number of vehicles across the junction gives

rise to the constraint that the total flux into the junction must equal the total flux out of

the junction: ∑
ein∈I j

Q̃ein

(
vein

(
Lein, t

)) =
∑

eout∈O j

Q̃eout

(
veout (0, t)

)
(20)

Next, we assume that the total volume of traffic entering from an incoming

edge is distributed amongst the outgoing edges according to an allocation parame-

ter α j,eout,ein ≥ 0. The allocation matrix Aj∈ [0, 1]|O j|×|I j|, where Aj(eout, ein ) = α j,eout,ein ,

encodes the aggregate routing information of the traffic across the junction. That is,

for all vehicles entering the junction j on edge ein , α j,eout,ein denotes the proportion of

vehicles which will exit the junction through edge eout. This proportion can be de-

termined empirically using historical origin-destination tables, or by analyzing the

volumes of data collected near the junction. Because the vertex has no storage capacity,

the sum of allocated flows from a fixed incoming link across all outgoing flows must be

equal to one:

∑
eout∈O j

α j,eout,ein = 1 (21)

Note that constraints (i) and (ii) combined imply Aj Q̃ein = Q̃eout . If we view the

exiting flows from the incoming edges of the junction as a boundary condition for an

outgoing edge, then the physical constraint
∑

ein∈I j
α j,eout,ein Q̃ein = Q̃eout for each eout can

be interpreted as a requirement that strong boundary conditions must be imposed on

eout. But strong boundary conditions (i.e. equality) cannot always be imposed for an

arbitrary pair
(∑

ein∈I j
α j,eout,ein Q̃ein, Q̃eout

)
, so the statement of strong boundary condi-

tions ((7) and (8) for a concave flux) provides upper bounds on the admissible incom-

ing and admissible outgoing fluxes over which the flow is maximized (constraint (iii)).
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16 D. B. Work et al.

The maximum incoming admissible flux into the junction from edge ein given a desired

velocity vein to be prescribed in the strong sense is denoted by γ max
ein

(
vein

)
(resp. δmax

ein

(
ρein

)
for a given density). Similarly, the maximum outgoing admissible flux out of the junc-

tion from edge eout given a desired velocity veout to be prescribed in the strong sense is

denoted by γ max
eout

(
veout

)
(resp. δmax

ein

(
ρein

)
for a given density).

Thus the three conditions give rise to the following linear program for the exiting

fluxes (denoted by the vector dummy variable ξ ∈ R
|I j |) on the incoming edges ein for

junction j:

max: 1Tξ

s.t. : Ajξ ≤ γ max
O j

0 ≤ ξ ≤ γ max
I j

(22)

where γ max
I j

:=
(

γ max
ein,1

, · · · , γ max
ein,|I j|

)
, γ max

O j
:=

(
γ max

eout,1
, · · · , γ max

eout,|O j|
)

are the upper bounds

on the fluxes on the edges entering and exiting the junction, to be computed subse-

quently. With the optimal solution to (22), denoted by ξ∗, the terms G̃ein

(
vn

imax
, vn

imax+1

)
and G̃eout

(
vn−1, vn

0

)
in the CTM-v (19) are given by:

G̃ein

(
vn

imax
, vn

imax+1

) = ξ∗
ein

, G̃eout

(
vn−1, vn

0

) =
∑

ein∈I j

α j,eout,einξ∗
ein

(23)

Remark 4. We note that the solution to this linear program is not always unique. In

fact, for some instantiations of Aj, the gradient of the objective function may be normal

to a facet of the constraint set polytope, in which case all feasible points on the facet

will obtain the same objective value. This can be resolved in many cases by adding

some noise to the coefficients of Aj. A second problem can occur when the maximum

flow on an outgoing edge is an active constraint in the solution. When this occurs, the

linear program must be augmented with additional priority constraints which describe

how the flux from the incoming edges share the limited outgoing capacity. For more

information on resolving the nonuniqueness of solutions to (22), the reader is referred

to [11]. �

3.1.2 Computation of the maximum admissible flux

First we introduce a function τ(·), used to describe the domain for which we obtain

admissible fluxes F (·). For a continuous strictly concave C 0 flux function with F (0) =
F (umax), the mapping from flux F (u) to u is double valued, with one value above and

 at U
niversity of C

alifornia, B
erkeley on M

ay 13, 2013
http://am

rx.oxfordjournals.org/
D

ow
nloaded from

 

http://amrx.oxfordjournals.org/


A Traffic Model for Velocity Data Assimilation 17

one value below the critical value uc. For a given u, τ(u) is the map which produces the

alternate u for the same flux. The function is expressed as follows:

F (τ (u)) = F (u) ∀ u ∈ [0, umax]

τ(u) �= u ∀u ∈ [0, umax]\{uc}

Given that F (·) is in C 0 ([0, umax]), strictly increasing in [0, uc) and strictly decreasing in

(uc, umax] the following holds:

0 ≤ u ≤ uc ⇔ uc ≤ τ(u) ≤ umax

We now define the upper bounds on the flux entering the junction from each

incoming edge, and the flux leaving the junction on each outgoing edge. More precisely,

for each incoming and outgoing link, we seek to find the upper bound on the admissible

flux entering (resp. leaving) the link such that strong boundary conditions are imposed

on the boundaries for all edges at the vertex. First we derive these admissible fluxes

δeout(·) (resp. δein (·)) in terms of the trace of the density ρeout(0, t) (resp. ρein(L , t)), then

apply the velocity inversion to arrive at admissible fluxes γeout (·) (resp. γein (·)) in terms

of the trace of the velocity veout(0, t) (resp. vein(L , t)).

For a strictly concave flux F (·) with a maximum obtained at the critical value uc

we categorize the values of u(0, ·) and ul(·) for which (7) holds:

a.e. t > 0, u(0, t) = ul(t) iff⎧⎨
⎩ u(0, t) ∈ [0, uc] and ul(t) ∈ [0, uc]

xor u(0, t) ∈ (uc, umax] and ul(t) ∈ [0, τ (u(0, t))) ∩ {u(0, t)}
(24)

Recalling that incoming admissible fluxes are the set of fluxes corresponding to bound-

ary data for the outgoing links which can be imposed in the strong sense, we can define

the set of incoming admissible fluxes on an outgoing edge as:

• For ρeout(0, t) ∈ [0, ρc,eout ]:

δeout

(
ρeout(0, t)

) ∈ 
e out

(
ρeout(0, t)

) :=
{

Q̂ : ∃ρ̂ ∈ [
0, ρc,eout

] ; Q̂ = Q
(
ρ̂
)}

(25)

where ρc,eout is the critical density on the edge eout.

• For ρeout(0, t) ∈ [ρc,eout, ρmax,eout ]:

δeout

(
ρeout(0, t)

) ∈ 
e out

(
ρeout(0, t)

) :={
Q̂ : ∃ρ̂ ∈ {

ρeout(0, t)
} ∪ [

0, τ
(
ρeout(0, t)

)) ; Q̂ = Q
(
ρ̂
) } (26)
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18 D. B. Work et al.

Similarly, (8) can be rewritten in terms of outgoing admissible fluxes for incom-

ing edges as:

• For ρein(Lein , t) ∈ [0, ρc,ein ]:

δein

(
ρein(Lein , t)

) ∈ 
ein

(
ρein(Lein, t)

) :={
Q̂ : ∃ρ̂ ∈ {ρein(Lein , t)} ∪ (

τ(ρein(Lein , t)), ρmax,ein

] ; Q̂ = Q
(
ρ̂
)}

(27)

where ρmax,ein is the maximum density on the edge ein.

• For ρein(Lein , t) ∈ [ρc,ein , ρmax,ein ]:

δein

(
ρein(Lein , t)

) ∈ 
ein

(
ρein(Lein, t)

) :=
{

Q̂ : ∃ρ̂ ∈ [
ρc,ein , ρmax,ein

] ; Q̂ = Q(ρ̂)
}

(28)

If the admissible flux is maximized, and written in terms of velocity, we obtain:

γ max
eout

(
veout(0, t)

) =
⎧⎨
⎩Q̃(vc,eout) if veout(0, t) ∈ [

vc,eout, vmax,eout

]
Q̃

(
veout(0, t)

)
if veout(0, t) ∈ [

0, vc,eout

]

and

γ max
ein

(
vein(Lein , t)

) =
⎧⎨
⎩Q̃

(
vein(Lein , t)

)
if vein(Lein , t) ∈ [

vc,ein , vmax,ein

]
Q̃

(
vc,ein

)
if vein(Lein , t) ∈ [

0, vc,ein

]

which are the upper bounds used in (22).

Example 3.1 (Maximum admissible flux - hyperbolic-linear model). The maximum

outgoing admissible flux is given as:

γ max
eout

(
veout(0, t)

) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρmax

(
1 − vc,eout

vmax

)
vc,eout

if veout(0, t) ∈ [
vc,eout , vmax,eout

]
ρmax

(
1

1+ veout (0,t)
w f

)
veout(0, t)

if veout(0, t) ∈ [
0, vc,eout

]
(29)
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and the maximum incoming admissible flux is given as:

γ max
ein

(
vein(Lein , t)

) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρmax

(
1 − vein (Lein ,t)

vmax

)
vein(Lein, t)

if vein(Lein, t) ∈ [
vc,ein , vmax,ein

]
ρmax

(
1

1+ vc,ein
w f

)
vc,ein

if vein(Lein, t) ∈ [
0, vc,ein

]
(30)

�

3.2 Discrete CTM-v network algorithm

The CTM-v network algorithm is obtained by sequentially applying the CTM-v scheme

on each link of the network and solving the junction conditions as presented in the

previous section, which includes solving the LP (22) posed earlier. The network is thus

marched in time and consists in a large scale discrete dynamical system which can be

used for data assimilation and inverse modeling. Given the velocity field at each discrete

point i ∈ {0, · · · , imax} on all edges of the network

vn :=
[
vn

0,e0
, · · · , vn

imax,e0
, · · · , vn

0,e|E| , · · · , vn
imax,e|E|

]
the velocity at time t = (n+ 1)�T is given by:

vn+1 = M[vn] (31)

where M[·] denotes the following update algorithm:

1. For all junctions j ∈ J :

(a) Compute γ n
imax,ein

(
vn

imax,ein

)
∀ein ∈ I j, and γ n

0,eout

(
vn

0,eout

)
∀eout ∈ O j using (29)

and (30).

(b) Solve the LP (22) for ξ∗, and update G̃ein

(
vn

imax
, vn

imax+1

)
and G̃eout

(
vn−1, vn

0

)
through (23).

2. For all edges e ∈ E : Compute vn+1
i,e ∀i ∈ {1, · · · , imax,e} according to the

CTM-v (16) and (19).

4 Velocity Estimation

The goal of this section is to build an estimator to reconstruct the evolution of the

velocity field on the highway. That is, we wish to estimate the velocity field vn on the

network at each time step n using velocity data obtained from the mobile devices.
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20 D. B. Work et al.

4.1 State–space model

Given the velocity field at all points on the network at time n�t, the velocity at time

(n+ 1)�T is constructed using the CTM-v algorithm vn+1 = M[vn], which is given by the

CTM-v network algorithm in section 3.2. This algorithm consists of the following steps.

For each vertex in the network, a linear program is solved such that strong boundary

conditions are imposed on the incoming and outgoing edges of the junction. Next, the

velocity field is updated according to the numerical scheme outlined earlier (which is

nonlinear and non-differentiable). If we operate on the CTM-v model, rather than the

CTM model, the observations of the state (i.e. the velocity measurements from mobile

devices) can be modeled with a linear observation operator, which simplifies the esti-

mation problem. For estimation purposes, we extend the model to

vn = M[vn−1] + ηn (32)

where ηn ∼ (0, Qn) is the Gaussian zero-mean, white state noise with covariance Qn, used

to model inaccuracies in the evolution model (see for example [20]).

A network observation model is given by:

yn = Hnvn + χn (33)

The linear observation matrix Hn ∈ {0, 1}pn×κ encodes the pn discrete cells on

the highway for which the velocity is observed during discrete time step n and

κ = ∑
e∈E (imax,e + 1) is the corresponding (total) number of cells in the network. The

last term in expression (33) is the white, zero mean observation noise χn ∼ (0, Rn) with

covariance matrix Rn.

4.2 Extended Kalman filtering for nonlinear systems

If the operator M[·] in (32) was differentiable in vn, the optimal estimate for the state vn

could be obtained using the following traditional extended Kalman filtering equations:

• Forecast step (Time-update):

vn
f = M[vn−1

a ]
Pn

f = Mn−1
L Pn−1

a

(
Mn−1

L

)T + Qn (34)
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where ML is the Jacobian matrix of mapping M (also known as the tangent

linear model) defined as

Mn−1
L (i, j) = ∂Mi[vn−1

a ]
∂vn−1

j

(35)

• Analysis step (Measurement-update):

vn
a = vn

f + Gn
(

yn − Hnvn
f

)
(36)

Pn
a = Pn

f − GnHnPn
f (37)

Gn = Pn
f

(
Hn)T

(
HnPn

f

(
Hn)T + Rn

)−1
(38)

where Pn
f (resp. Pn

a) is the error covariance of the forecast (analyzed) state at

time n.

The initial conditions for the recursion are given by v0
a = v0 and P0

a = P0.

4.3 Ensemble Kalman filter

The ensemble Kalman filter was introduced by Evensen in [9] as an alternative to EKF

to overcome specific difficulties with nonlinear state evolution models, including non-

differentiability of the model and closure problems. Closure problems refer to the fact

that in EKF, it is assumed that discarding the higher order moments from the evolution

of the error covariance in (34) yields a good approximation. In cases in which this lin-

earization approximation is invalid, it can cause an unbounded error variance growth

[9]. To tackle this issue EnKF uses Monte Carlo (or ensemble integrations). By propagat-

ing the ensemble of model states forward in time, it is possible to calculate the mean and

the covariances of the error needed at the analysis (measurement-update) step [4] and

avoid the closure problem. Furthermore, a strength of EnKF is that it uses the standard

update equations of EKF, except that the gain is computed from the error covariances

provided by the ensemble of model states.

EnKF also comes with a relatively low numerical cost. Namely, usually a rather

limited number of ensemble members is needed to achieve a reasonable statistical

convergence [4].

In traditional Kalman filtering, the error covariance matrices are defined in

terms of the true state as P f = E[(v f − vt)(v f − vt)
T ] and Pa = E[(va − vt)(va − vt)

T ]
where E[·] denotes the average over the ensemble, v is the model state vector at particu-

lar time, and the subscripts f , a, and t represent the forecast, analyzed, and true state,

respectively. Because the true state is not known, ensemble covariances for EnKF have
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to be considered. These covariance matrices are evaluated around the ensemble mean

v̄, yielding P f ≈ Pens, f = E[(v f − v̄ f )(v f − v̄ f ))
T ] and Pa ≈ Pens,a = E[(va − v̄a)(va − v̄a)

T ]
where the subscript ens refers to the ensemble approximation. In [4], it is shown that

if the ensemble mean is used as the best estimate, the ensemble covariance can consis-

tently be interpreted as the error covariance of the best estimate. For complete details

of derivation of the EnKF algorithm, the reader is referred to [9].

The ensemble Kalman filter algorithm can be summarized as follows [4, 9]:

1. Initialization: Draw K ensemble realizations v0
a(k) (with k ∈ {1, · · · , K}) from

a process with a mean speed v̄0
a and covariance P0

a.

2. Forecast: Update each of the K ensemble members according to the

CTM-v (32) forward simulation algorithm. Then update the ensemble mean

and covariance according to:

vn
f (k) = M[vn−1

a (k)] + ηn(k) (39)

v̄n
f = 1

K

K∑
k=1

vn
f (k) (40)

Pn
ens, f = 1

K − 1

K∑
k=1

(
vn

f (k) − v̄n
f

) (
vn

f (k) − v̄n
f

)T
(41)

3. Analysis: Obtain measurements, compute the Kalman gain, and update the

network forecast:

Gn
ens = Pn

ens, f

(
Hn)T

(
HnPn

ens, f

(
Hn)T + Rn

)−1
(42)

vn
a(k) = vn

f (k) + Gn
ens

(
yn

meas − Hnvn
f (k) + χn(k)

)
(43)

4. Return to 2.

In (43), an important step is that at measurement times, each measurement is

represented by an ensemble. This ensemble has the actual measurement as the mean

and the variance of the ensemble is used to represent the measurement errors. This

is done by adding perturbations χn(k) to the measurements drawn from a distribution

with zero mean and covariance equal to the measurement error covariance matrix Rn.

This ensures that the updated ensemble has a variance that is not too low [4].

4.3.1 Large scale real–time implementation

The ensemble Kalman filter algorithm presented in the previous section is in a frame-

work in which all of the unknown state variables on each edge in the network are

updated simultaneously. This introduces the following problems. First, because the
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state covariance is represented through a limited number of ensemble members,

non-physical correlations may arise. This means that the correlation matrix may incor-

rectly show correlation between distant parts of the highway network which do not cor-

relate in practice. Secondly, the framework described previously requires the forecast

error covariance in (41) to be computed for the entire highway network, for use in com-

puting the Kalman gain in (42). When operating on large scale networks such as the San

Francisco Bay Area, CA, the loading the covariance matrix into memory can easily re-

quire more than 2 GB of space, creating computational limitations for implementation.

To circumvent the above mentioned problems for practical implementations, we

employ a covariance localization method. This approach limits the correlation between

the velocity states on all edges in the network. For a given edge e, only nearby links

(upstream and downstream in the network) can exhibit correlation, thereby removing

correlation across distant parts of the network. These techniques have also been imple-

mented for oceanography data assimilation problems (see e.g. [27]).

For this large scale traffic network estimation problem, localization also pro-

vides a computationally efficient way to update the state variables at the measurement

update time in (42)–(43). Namely, due to the localization, the computation of the co-

variance matrix in (41) is transformed into a computation of numerous small localized

covariance matrices for each edge in the network. These small scale covariance matri-

ces are computed for each edge given its neighboring edges on which the correlation is

assumed to be physically meaningful. Finally, this allows for the distributed solving of

the update equations.

For the localization, we introduce a localization operator Le for each edge e,

which is constructed at the initialization stage. This operator indicates which velocity

states on the other edges of the network are allowed to have correlation with the velocity

state on the eth edge. The implementation of the EnKF algorithm described previously

can be modified for localization by replacing the measurement update equations (41)-

(43) with the following sub-algorithm:

For each edge e ∈ E :

1. Using the localization operator Le, compute the localized forecast error

covariance:

Pn
ens, f,e = 1

K − 1

K∑
k=1

Le

(
vn

f (k) − v̄n
f

) (
Le(v

n
f (k) − v̄n

f )
)T

(44)
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2. Analysis: Obtain measurements yn
meas,e from edges that are indicated in Le,

compute the Kalman gain, and update the the local forecast:

Gn
ens,e = Pn

ens, f,e

(
Hn

e

)T
(
Hn

ePn
ens, f,e

(
Hn

e

)T + Rn
e

)−1
(45)

vn
a,e(k) = vn

f,e(k) + Gn
ens,e

(
yn

meas,e − Hn
ev

n
f (k) + χn

e (k)
)

(46)

3. Return to 1.

It is worth noting that in practice, the operator Le does not need to be con-

structed as a matrix in the computer memory and subsequently be used to do the rel-

atively demanding matrix multiplications. In other words, the eth edge has references

to the forecasts and measurements of its neighboring edges needed to construct the

localized forecast error covariance matrix.

5 Experimental Results

5.1 Mobile Century case study (February 8, 2008)

Nicknamed the Mobile Century experiment, a prototype privacy-aware data collection

system was launched on February 8, 2008 and used to estimate traffic conditions for

a day on I-880 near San Francisco, CA. With the help of 165 UC Berkeley students, 100

vehicles carrying Nokia N95 phones drove repeated loops of 6 to 10 miles in length

continuously for 8 hours. This section of highway was selected specifically for its com-

plex traffic properties, which include alternating periods of free-flowing, uncongested

traffic, and slower moving traffic during periods of heavy congestion. These vehicles

represented approximately 2% to 5% of the total volume of traffic on the main line of the

highway during the experiment. A local log on each device stored the position, time, and

estimated speed at 3 second intervals (Figure 4a) for experiment analysis purposes.

Because of privacy constraints, the full trajectories of the vehicles are never

sent to the traffic estimation system. Instead, measurements are obtained from the

mobile devices using a sampling strategy known as Virtual Trip Lines (VTLs) [17], which

are virtual geographic line segments placed on the roadway. When a vehicle trajectory

intersects a VTL, the phone reports its velocity to the system.
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(a)

(b)

Fig. 4. I-880N experiment data. (a) Vehicle trajectory logs stored locally on the phone. (b) PeMS

velocity contour plot. Color denotes speed in mph. x-axis: time of day. y-axis: postmile.
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The section is also monitored with 17 inductive loop detectors, which are pro-

cessed by the PeMS system to produce speed estimates every 5 minutes [36]. To construct

a velocity contour (Figure 4a), the roadway is discretized into 17 links centered around

the detectors. A complete description of the experiment and comparison of the VTL data

and PeMS data can be found in [16]. The data collected during the experiment is down-

loadable on the project website [37].

During the experiment at approximately 10:30 am, a multiple car accident

created significant unanticipated congestion for northbound traffic south of CA-92 (see

Figure 4a). The California Highway Patrol reported an incident located at postmile 26.64

at 10:27 am, lasting 34 minutes [36], although GPS readings in Figure 4a show slow-

downs in the area as early as 10:10 am. An earlier version of the EnKF CTM-v algorithm,

running in real-time during the experiment, detected the accident’s resulting bottleneck

and corresponding shockwave [35], and broadcast the results to the web.

5.2 Numerical implementation

The network implemented for the results presented in this article is a 6.8 mile stretch

of I-880N from the Decoto Rd. entrance ramp at postmile 20.9, to the Winton Ave. exit

ramp at postmile 27.7. The network model consists of 13 edges and 14 junctions (six

exit ramps, seven entrance ramps, and one lane drop), shown in Figure 5. The following

link parameters are selected for this experiment: ρmax = 200 vehicles per lane per mile,

vmax = 70 mph, and w f = 13 mph. Each link is discretized into equal maximal length cells

such that �x ≤ 0.11 miles and a time step �t = 5 seconds is used to ensure numerical

stability. The mainline boundary conditions are assumed to be free flowing at 67 mph

with standard deviation of 2 mph, and the ramps are set at 30 mph with a standard

deviation of 2 mph. The boundary conditions are implemented in the weak sense, and

thus are not always imposed on the computational domain. The state noise covariance

Fig. 5. Road geometry of I-880N between Decoto Rd. (postmile 20.9) to the south and Winton

Ave. (postmile 27.7) to the north. Arrows represent ramp entrance and exit locations, numbers

represent the number of lanes on each of the 13 links.
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(a) (b)

(c) (d)

Fig. 6. VTL measurements with (a) 10 VTLs and (b) 40 VTLs, and EnKF CTM-v velocity contour

plots with (c) 10 VTLs and (d) with 40 VTLs. Color denotes speed in mph. x-axis: time of day.

y-axis: postmile.

matrix Qn is assumed to be diagonal with standard deviation 2 mph, and the measure-

ment error covariance Rn is assumed to be diagonal with standard deviation 4 mph.

Parameter estimation and characterization of the error covariance structures is the

subject of ongoing work. An initial ensemble with 100 members with mean 67 mph

is drawn from P0
a, which is assumed diagonal with standard deviation 4 mph. In one

scenario, measurements are collected from ten evenly spaced VTLs, while a second

scenario considers measurements collected from 40 evenly spaced VTLs.
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5.3 Comparison with inductive loop detectors

We present a comparison of the velocity estimate from the EnKF CTM-v algorithm using

measurements from 10 and 40 VTLs (Figure 6a–6b) with the velocity estimate obtained

from the PeMS system [36]. In order to compare the velocity contours, the EnKF CTM-

v estimates are projected onto the coarse discretization induced by the location of the

PeMS inductive loop detectors and their corresponding update frequency, then averaged.

Because the inductive loops used in the PeMS system are also subject to errors, the

resulting velocity contour should not be taken as the ground truth velocity contour.

In general, the results of the EnKF CTM-v with 10 VTLs (Figure 6c) and 40 VTLs

(Figure 6d) show good agreement with the PeMS velocity estimate (Figure 4b). Both VTL

and PeMS estimates capture important features of the congestion pattern, including the

extent of the queue resulting from the accident, which propagates upstream to post-

mile 23.25 just after 11:00, before it begins to clear (see Figures 6 and 4b). The effects

of bottlenecks created by capacity decreases at postmiles 25.8 and 24.7 are also well

described, and differ by less than 10 mph throughout most of the experiment when

40 VTLs are used (Figure 7b).

Features of the velocity model are also evident in Figures 6c-6d. In freeflow,

information propagates downstream along characteristics, while in congestion informa-

tion propagates upstream. Also, the discontinuities in the solution joining free flowing

upstream sections with congested downstream sections are resolved with high granu-

larity (see in particular the discontinuity caused by the morning accident, Figures 6c-

6d). On the other hand, the PeMS estimates in the same region transition from freeflow

speeds in excess of 65 mph to 20 mph congestion over a period of 15 min.

One area where the model appears to underestimate the congestion appears

between postmiles 24.7 and 25.1, in Figure 6c. Both the upstream and downstream

sections are five lanes, while the intermediate section has only four lanes. The lane

drop at postmile 24.7 acts as a bottleneck, and vehicle speeds increase after entering

the four lane link. While speeds increase in both the raw GPS logs (Figure 4a) and the

PeMS estimates (Figure 4b), the resulting velocity estimated from 10 VTLs is approxi-

mately 15 mph faster than the PeMS estimate (Figure 7a). The difference decreases with

additional VTLs (Figure 7b).

The congestion resulting from the morning accident also highlights some of the

differences between the EnKF CTM-v estimates created with 10 VTLs and 40 VTLs.

Because the model does not predict accidents, measurements are needed to drive the

ensemble states into congestion. Because the congestion is recorded on VTLs earlier
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(a)

(b)

Fig. 7. PeMS and EnKF CTM-v comparison. Color denotes speed difference between PeMS and

EnKF CTM-v with (a) 10 VTLs and (b) 40 VTLs, in mph. Color denotes speed in mph. x-axis: time

of day. y-axis: postmile.
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and more frequently than with the coarser VTL spacing, the ensembles converge to the

slower state more quickly. Additionally, because the congested state is slower, the dif-

ference in fluxes surrounding the discontinuity is increased, which in turn causes the

shockwave speed to increase. Particularly around postmile 25, the decrease in veloc-

ity from the shockwave causes the difference between PeMS and EnKF CTM-v velocity

measurements to increase with additional VTLs (Figure 7a–7b).

At postmile 26.3, the EnKF CTM-v and PeMS estimates differ by almost 20 mph

throughout the day (Figure 7a–7b). However, there is good agreement on the down-

stream cell centered at postmile 26.0 which is congested, and the upstream cell cen-

tered at postmile 26.5, which is freeflow, so disagreement comes from the transition

between the two states. Another area of disagreement occurs in the afternoon rush

hour between postmiles 20.9 and 23.6. The EnKF CTM-v estimates show several dis-

tinct shockwaves followed by faster traffic. These features are missed in the aver-

age speeds reported by PeMS in the region, which leads to high disagreement in this

area.

6 Conclusion and Future Work

This article presents a new scalar hyperbolic partial differential equation (PDE) model

for the evolution of traffic velocity on highways, based on the seminal Lighthill-

Whitham-Richards (LWR) PDE. It proves the equivalence of the solution of the new PDE

and the LWR PDE for quadratic flux functions, and proves that the equivalence does

not hold for general flux functions. To circumvent this negative result, the article pro-

poses a discretized model for the evolution of velocity, obtained using a transformation

of the Godunov scheme. With an explicit instantiation of weak boundary conditions,

the nonlinear discretized scheme is generalized to a network, thus making the model

applicable to arbitrary highway systems. The resulting nonlinear time invariant dy-

namical system forms the basis of the ensemble Kalman filtering algorithm, which is

introduced because of the nonlinearity and non-differentiability of the model. The al-

gorithm was validated using velocity data obtained from GPS-equipped mobile phones

in vehicles during the Mobile Century field experiment, and shows good agreement with

velocity estimates from PeMS using loop detector data, even at penetration rates be-

low five percent. This algorithm was implemented in a live system in which both fixed

loop detector data and cell phone data was fused to produce traffic estimates in North-

ern California as part of a follow-up field operational test known as Mobile Millennium

[37].
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A. Proof of Theorem 2.6

Proof. The proof proceeds in two steps. Beginning with equation (12) instantiated for

the Greenshields density function (10), we show that the conservation equation obtained

is the one from system (13). Substitution of the explicit expression of PG in (12) yields:

∫ L

0

∫ T

0
ρmax

∂

∂t
ϕ(x, t)dxdt −

∫ L

0

∫ T

0

ρmax

vmax
v(x, t)

∂

∂t
ϕ(x, t)dxdt

+
∫ L

0

∫ T

0
QG

(
ρmax − ρmax

vmax
v(x, t)

)
∂

∂x
ϕ(x, t)dxdt

−
∫ L

0

ρmax

vmax
v0(x) ϕ(x, 0)dx +

∫ L

0
ρmax ϕ(x, 0)dx = 0

where QG(ρ) = ρ VG(ρ). Since ϕ ∈ C 2
c ([0, L] × [0, T)) the first term equals

− ∫ L
0 ρmax ϕ(x, 0)dx and cancels with the last term. Multiplication by − vmax

ρmax
gives:

∫ L

0

∫ T

0
v(x, t)

∂

∂t
ϕ(x, t)dxdt +

∫ L

0
v0(x) ϕ(x, 0)dx

−
∫ L

0

∫ T

0

vmax

ρmax
QG

(
ρmax − ρmax

vmax
v(x, t)

)
∂

∂x
ϕ(x, t)dxdt = 0

which means that v is a weak solution of the PDE:

∂

∂t
v(x, t) + ∂

∂x
(RG(v(x, t))) = 0

with the initial condition v(x, 0) = v0(x), and the velocity flux function

RG(v) = − vmax

ρmax
QG(PG(v)) = v2 − vmax v

This completes the first part of the proof.

Now, we show that the Rankine-Hugoniot jump condition [8, 23] is not conserved

in the transformation from (1) to (13) for the general case, which means that the equiva-

lence is not obtained for general flux functions.

First, note that a necessary condition to have equivalence between the LWR

PDE (1) and the LWR-v PDE (13) is to have the same characteristics speeds for a state ρ

in (1) and for the state V(ρ) in (13). This yields Q′(P (v)) = R′(v). Integrating this relation

between any states (ρ1, v1) and (ρ2, v2) we obtain:

∫ v2

v1

Q′(P (v))dv =
∫ v2

v1

R′(v)dv
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Using the variable change v = V(ρ), we obtain:∫ ρ2

ρ1

Q′(ρ) V ′(ρ)dρ =
∫ v2

v1

R′(v)dv (A1)

Next, the Rankine-Hugoniot jump condition [8, 23] reads:

Q(ρ2) − Q(ρ1)

ρ2 − ρ1
= R(v2) − R(v1)

v2 − v1
(A2)

which we can rewrite as: ∫ v2

v1

R′(v)dv = v2 − v1

ρ2 − ρ1

∫ ρ2

ρ1

Q′(ρ)dρ (A3)

If we substitute equality (A1) into equation (A3) we obtain:∫ ρ2

ρ1

Q′(ρ) V ′(ρ)dρ = V(ρ2) − V(ρ1)

ρ2 − ρ1

∫ ρ2

ρ1

Q′(ρ)dρ

which translates to:∫ ρ2

ρ1

V ′(ρ) (V(ρ) + ρ V ′(ρ))dρ =
(

1

ρ2 − ρ1

∫ ρ2

ρ1

V ′(ρ)dρ

) ( ∫ ρ2

ρ1

(V(ρ) + ρ V ′(ρ))dρ

)
(A4)

If we define the function Gρ1 in [ρ1, ρi] by Gρ1(ρ2) = 1
ρ2−ρ1

∫ ρ2
ρ1

V ′(ρ)dρ, on intervals on

which V is smooth, we can write:

V ′(ρ2) (V(ρ2) + ρ2 V ′(ρ2)) = G ′
ρ1

(ρ2) (ρ2 V(ρ2) − ρ1 V(ρ1)) + Gρ1(ρ2) (V(ρ2) + ρ2 V ′(ρ2))

(A5)

Given the expression of Gρ1 , if we differentiate (ρ2 − ρ1) Gρ1(ρ2) w.r.t ρ2 we obtain for all

ρ2 in [ρ1, ρi]:

((ρ2 − ρ1) Gρ1(ρ2))′ = Gρ1(ρ2) + (ρ2 − ρ1) G ′
ρ1

(ρ2) = V ′(ρ2)

Thus if we factor V(ρ2) + ρ2 V ′(ρ2) in the first and last term of (A5) and if we replace

Gρ1(ρ2) − V ′(ρ2) by −(ρ2 − ρ1) G ′
ρ1

(ρ2) we obtain:

G ′
ρ1

(ρ2)
(
(ρ2 V(ρ2) − ρ1 V(ρ1)) − (ρ2 − ρ1) (V(ρ2) + ρ2 V ′(ρ2))

) = 0 (A6)

The second term in the product can be written as Z(ρ1, ρ2) = Q(ρ2) − Q(ρ1) − (ρ2 −
ρ1) Q′(ρ2). So either Q(·) is affine and Z(ρ1, ρ2) is zero, either Q is strictly concave or

strictly convex and Z(ρ1, ρ2) is different from zero, and the first term of (A6) must be

zero. If the first term in (A6) is zero, it means that V is of the form V(ρ) = aρ + b. If the

second term is zero, it means that V is of the form V(ρ) = a
ρ

+ b. So we obtain a neces-

sary condition that V is piecewise affine or hyperbolic.

 at U
niversity of C

alifornia, B
erkeley on M

ay 13, 2013
http://am

rx.oxfordjournals.org/
D

ow
nloaded from

 

http://amrx.oxfordjournals.org/


A Traffic Model for Velocity Data Assimilation 33

If there exists a point ρi ∈ [0, ρmax] s.t. V has a different algebraic expression for ρ > ρi

and ρ < ρi, simple algebra shows that the equality of the Rankine-Hugoniot speeds (A2)

does not hold in general. Therefore V is either of the form aρ + b in [0, ρmax], or a
ρ

+ b in

[0, ρmax]. The second possibility is excluded by assumption on V (unbounded speed as ρ

goes to zero). �
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