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Abstract The adjoint method provides a computationally efficient means of calcu-
lating the gradient for applications in constrained optimization. In this article, we
consider a network of scalar conservation laws with general topology, whose behavior
is modified by a set of control parameters in order to minimize a given objective func-
tion. After discretizing the corresponding partial differential equation models via the
Godunov scheme, we detail the computation of the gradient of the discretized system
with respect to the control parameters and show that the complexity of its computation
scales linearly with the number of discrete state variables for networks of small vertex
degree. The method is applied to the problem of coordinated ramp metering on free-
way networks. Numerical simulations on the I15 freeway in California demonstrate
an improvement in performance and running time compared with existing methods.
In the context of model predictive control, the algorithm is shown to be robust to noise
in the initial data and boundary conditions.
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1 Introduction

In this paper, we propose a discrete adjoint approach to compute optimal ramp
metering strategies on road networks modeled by conservation laws. Networks of
one-dimensional conservation laws, described by systems of nonlinear first-order
hyperbolic partial differential equations (PDEs), are an efficient framework formodel-
ing physical phenomena, such as freeway traffic evolution [1–3] and supply chains [4].
Similarly, PDE systems of balance laws are useful in modeling gas pipeline flow [5,6]
and water channels [7,8]. Optimization and control of these networks is an active
field of research [9–11]. More generally, numerous techniques exist for the control
of conservation laws, such as, for example, backstepping [12,13], Lyapunov-based
methods [12], and optimal control methods [14–16].

In particular, a common approach consists in computing the gradient of the cost
functional via the adjoint method [17–19]. Nevertheless, its implementation in the
framework of nonlinear conservation laws presents several difficulties linked to the
discontinuous character of the solutions. In particular, the presence of shocks in the
solutions requires a careful sensitivity analysis based on the use of shift differentials
and generalized tangent vectors; see [20–22]. Extensive study exists also on the choice
of method for effectively computing the gradient via the adjoint. In particular, the
continuous adjoint method [9,23–25] operates directly on the PDE and a so-called
adjoint PDE system, which, when solved, can be used to obtain an explicit expression
of the gradient of the underlying optimization problem.Conversely, the discrete adjoint
method [9,11,17] first discretizes a continuous-timePDEand then requires the solution
of a set of linear equations to solve for the gradient. Finally, a third approach exists,
which uses automatic differentiation techniques to generate an adjoint solver from the
numerical representation of the forward system [26,27].

It iswell known that the numerical treatment of the adjointmethod imposes a careful
choice of the discretization scheme to avoid the introduction of numerical errors at
discontinuities [28]. Rigorous convergence results for optimization problems have
been provided for Lax–Friedichs-type schemes [29] and relaxation methods [30]. The
case of road networks in free-flow conditions is addressed in [9]. In our more general
setting of PDE networks and applications to freeway traffic control, the presence
of junction conditions, with both forward and backward-moving shockwaves, led us
to use a modified Godunov scheme, which precisely takes into account the flows
at the network nodes. An alternative approach involves using Lax–Friedichs-type
discretizations with higher-resolution interpolation schemes [31]. Moreover, general
existence and stability results for the corresponding system of equations modeling
traffic evolution on the network are still missing at themoment. Therefore, establishing
rigorous convergence results for the gradient computation in this framework is out of
the scope of this paper. Here, we made the choice of the discrete adjoint approach,
which derives the gradient directly from the discretized system, thus avoiding dealing
with weak boundary conditions in the continuous system [1,2,32].

There exist many applications of the adjoint method for control, optimization
and estimation of physical systems in engineering. Shape optimization of air-
craft [24,25,33] has applied the method effectively to reduce the computational cost
in gradient methods associated with the large number of optimization parameters. The
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technique has also been applied in parameter identification of biological systems [19].
State estimation problems can be phrased as optimal control problems by setting the
unknown state variables as control parameters and penalizing errors in resulting state
predictions from known values. This approach has been applied to such problems as
open water state estimation [34] and freeway traffic state estimation [35].

Since conservation laws may be nonlinear by nature and lead to nonconvex or
nonlinear formulations of the corresponding optimization problem, fewer efficient
optimization techniques exist for the discretized version of these problems than for
convex problems, as one example. One approach is to approximate the system with
a “relaxed” version in order to use efficient linear programming techniques. In trans-
portation, by relaxing the Godunov discretization scheme, the linearization approach
was used in [36] for optimal ramp metering and in [37] for optimal route assignment,
having a zero relaxation gap under certain modeling assumptions. The ramp meter-
ing technique in [38] uses an additional control parameter (variable speed limits) to
mimic linearized freeway dynamics. While the upside of these methods is reduced
computational complexity and the guarantee of finding a globally optimal solution,
the downside is that the model of the linearized physical system may greatly differ
from the actual system to which the control policies would be applied.

Another approach avoids discretization of the continuous system by taking advan-
tage of certain simplifying assumptions in the dynamics. In [39], the problemof finding
optimal split ratios on a traffic network is efficiently solved by deriving nonlinear and
linear algebraic formulations of a simplified form of the continuous system dynamics
which only considers forward-moving shockwaves. In [40], a mixed-integer linear
program (MILP) formulation is posed for the optimal routing of goods on a supply
chain, leading to efficient solutions of this particular application. The number of integer
constraints needed in theMILP formulation is proportional to the number of nonlinear
constraints in the underlying system and has a direct impact on the efficiency of MILP
solvers.

Applications to highly nonlinear systems such as freeway traffic may prefer nonlin-
ear programming approaches such as the adjoint method using nonlinear discretization
techniques, which avoid integer constraints and allow the constraints to capture more
complex dynamics. This approach leads to more expensive optimization algorithms,
such as gradient descent, and does not guarantee finding a global optimum. One diffi-
culty in this approach comes in the computation of the gradient, which, if using finite
differences, requires a full forward simulation for each perturbation of a control para-
meter. This approach is taken in [41] to compute several types of decentralized ramp
metering strategies. The increased complexity of the finite differences approach for
each additional control parameter makes the method unsuitable for real-time applica-
tion on moderately sized freeway networks.

Rampmetering is a common freeway control strategy, providing ameans of dynam-
ically controlling freeway throughput without directly impeding mainline flow or
implementing complex tolling systems. While metering strategies have been devel-
oped using microscopic models [42], most strategies are based off macroscopic state
parameters, such as vehicle density and the density’s relation to speed [43–45]. Reac-
tive metering strategies [46–48] use feedback from freeway loop detectors to target
a desired mainline density, while predictive metering strategies [11,36,41,49] use a
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physical model with predicted boundary flow data to generate policies over a finite
time horizon. Predictivemethods are often embeddedwithin amodel predictive control
loop to handle uncertainties in the boundary data and cumulative model errors [38].

The rest of the article is organized as follows. Section 2 gives an overview of scalar
conservation law networks and their discretization via the Godunov method, while
introducing the nonlinear, finite-horizon optimal control problem. Section 3 details
the adjoint method derivation for this class of problems and shows how it can be used
to compute the gradient in time andmemory space linear in the number of discrete state
and control variables. Section 4 applies the adjoint method to the problem of optimal
coordinated ramp metering. Numerical results on a model of a 19.4-mile freeway
network in California are given in Sect. 5. Section 6 gives open questions and future
work.

2 Preliminaries

2.1 Conservation Law PDEs

In this paper, we focus on scalar hyperbolic conservation laws. In particular, we con-
sider the nonlinear transport equation of the form:

∂tρ (t, x) + ∂x f (ρ (t, x)) = 0 (t, x) ∈ R+ × R, (1)

where ρ = ρ(t, x) ∈ R+ is the conserved scalar quantity and f : R+ → R+ is a
Lipschitz continuous flux function [50]. Throughout the article, we suppose that f is
a concave function.

The Cauchy problem to solve is then

∂tρ + ∂x f (ρ) = 0, (t, x) ∈ R+ × R, ρ(0, x) = ρ̄(x), x ∈ R, (2)

where ρ̄(x) is the initial condition. It can be shown that there exists a unique weak
entropy solution for the Cauchy problem(2). For further details regarding the theory
of hyperbolic conservation laws, we refer the reader to [1,51].

Definition 2.1 Riemann Problem. A Riemann problem is a Cauchy problem (2) with
a piecewise-constant initial datum (called the Riemann datum):

ρ̄(x) =
{

ρ−, if x < 0,

ρ+, if x ≥ 0.
(3)

We denote the corresponding self-similar entropy weak solutions by WR
( x

t ; ρ−, ρ+
)
.

2.2 Network of PDEs

A network is defined as a set of N links I = {1, . . . , N }, with junctions J .
Each junction J ∈ J is defined as the union of two nonempty sets: the set of
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Fig. 1 Space discretization for a link i ∈ I. Step size is uniform �x , with discrete value ρk
j representing

the state between x j−1 and x j

n J incoming links Inc(J ) = (
i1J , . . . , in J

J

) ⊂ I and the set of m J outgoing links

Out(J ) =
(

in J +1
J , . . . , in J +m J

J

)
⊂ I. Each link i ∈ I has an associated upstream

junction JU
i ∈ J and downstream junction JD

i ∈ J and has an associated spatial
domain [0, Li ] over which the evolution of the state on link i , ρi (t, x), solves the
Cauchy problem:

(ρi )t + f (ρi )x = 0, ρi (0, x) = ρ̄i (x), (4)

where ρ̄i ∈ BV ∩ L1
loc (Li ;R) is the initial condition on link i . For simplicity of

notation, this section considers a single junction J ∈ J with Inc (J ) = (1, . . . , n)

and Out (J ) = (n + 1, . . . , n + m).

Remark 2.1 There is redundancy in the labeling of the junctions; if link i is directly
upstream of link j , then we have JD

i = JU
j . See Fig. 1.

While the dynamics on each link ρi (t, x) is determined by (4), the dynamics at
junctions still needs to be defined.

Definition 2.2 Riemann problem at junctions. A Riemann problem at J is a Cauchy
problem corresponding to an initial datum (ρ̄1, . . . , ρ̄n+m) ∈ R

n+m which is constant
on each link i.

Definition 2.3 A Riemann solver is a map that assigns a solution to each Riemann
initial data. For each junction J it is a function

RS:Rm+n → R
m+n, (ρ̄1, . . . , ρ̄n+m) �→ RS (ρ̄1, . . . , ρ̄n+m) = (

ρ̂1, . . . , ρ̂n+m
)
,

where ρ̂i provides the trace for link i at the junction for all time t ≥ 0.

For a link i ∈ Inc (J ), the solution ρi (t, x) over its spatial domain x < 0 is given by
the solution to the following Riemann problem:

(ρi )t + f (ρi )x = 0, ρi (0, x) =
{

ρ̄i , if x < 0,

ρ̂i , if x ≥ 0.
(5)

The Riemann problem for an outgoing link is defined similarly, with the following
modifications:

ρi (0, x > 0) = ρ̄i and ρi (0, x ≤ 0) = ρ̂i . Note that the following properties for
the Riemann Solver holds:
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– All waves produced from the solution to Riemann problems must emanate out
from the junction. In other words, the solution to the Riemann problem on an
incoming link must only produce waves with negative speeds, while the solution
on an outgoing link must only produce waves with positive speed.

– The sum of all incoming fluxes must equal the sum of all outgoing fluxes:

∑
i∈Inc(J )

f
(
ρ̂i

) =
∑

j∈Out(J )

f
(
ρ̂ j

)
. (6)

This condition guarantees mass conservation at junctions.
– The Riemann solver must produce self-similar solutions, i.e.,

RS (RS (ρ̄1, . . . , ρ̄n+m)) = RS (ρ̄1, . . . , ρ̄n+m) = (
ρ̂1, . . . , ρ̂n+m

)
. (7)

The justification for these conditions can be found in [1]. The above conditions are
not always sufficient to guarantee a unique Riemann solver. Additional conditions are
added for specific applications to achieve uniqueness, often modeling additional phys-
ical phenomena at junctions. In Sect. 4, we detail the additional conditions added to
the rampmetering solver which enforce fluxmaximization along the freewaymainline
sections and specify a merging priority model for vehicles entering from the onramps.

2.3 Godunov Discretization

In order to find approximate solutions, we use the classical Godunov scheme [52]. We
use the following notation: x j+ 1

2
are the cell interfaces and tk = k�t the time with

k ∈ N and j ∈ Z. x j is the center of the cell, �x = x j+ 1
2

− x j− 1
2
the cell width, and

�t is the time-step.

Godunov Scheme for a Single Link The Godunov scheme is based on the solutions of
exact Riemann problems. The main idea of this method is to approximate the initial
datum by a piecewise- constant function; then the resulting Riemann problems are
solved exactly one time-step ahead and a global solution is constructed by piecing the
problem solutions together. Finally, one takes the mean over each cell and proceeds by
iteration. Given ρ(t, x), the cell average of ρ at time tk in the cell C j =]x j− 1

2
, x j+ 1

2
]

is given by

ρk
j = 1

�x

∫ x
j+ 1

2

x
j− 1

2

ρ(tk, x)dx . (8)

Then we proceed as follows:

1. Solve the Riemann problem at each cell interface x j+ 1
2
with initial data (ρk

j , ρ
k
j+1).

2. Compute the cell average at time tk+1 in each computational cell and obtain ρk+1
j .
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Fig. 2 Self-similar solution for
Riemann problem with initial
data (ρk

j , ρ
k
j+1). The

self-similar solution at x
t = 0

for the top diagram [i.e.,
W − R(0; pk

j pk
j+1)] gives the

flux solution to the discretized
problem in the bottom diagram

We remark that waves in two neighboring cells do not intersect before �t if the
following Courant–Friedrichs–Lewy (CFL) condition holds, λmax ≤ �x

�t , where
λmax = max

a
| f ′ (a) | is the maximum wave speed of the Riemann solution at the

interfaces.
Godunov scheme can be expressed as follows:

ρk+1
j = ρk

j − �t

�x
(gG(ρk

j , ρ
k
j+1) − gG(ρk

j−1, ρ
k
j )), (9)

where gG is the Godunov numerical flux given by

gG : R × R → R, (ρ j , ρ j+1) �→ gG(ρ j , ρ j+1) = f (WR(0; ρ j , ρ j+1)),

where WR is as defined in Definition 2.1. See Fig. 2 for a graphical depiction of WR .

Godunov Scheme at Junctions The scheme just discussed applies to the case in which
a single cell is adjacent to another single cell. Yet, at junctions, a cell may share a
boundary with more than one cell. A more general Godunov flux can be derived for
such cases. For incoming links near the junction, we have:

ρk+1
L�

i
= ρk

L�
i

− �t

�x

(
f
(
ρ̂k

L�
i

)
− gG

(
ρk

L�
i −1

, ρk
L�

i

))
, i ∈ {1, . . . , n} ,

where L�
i are the number of cells for link i (see Fig. 1) and ρ̂k

i is the solution of the
Riemann solver RS

(
ρk
1 , . . . , ρ

k
n+m

)
for link i at the junction. The same can be done

for the outgoing links:

ρk+1
1 = ρk

1 − �t

�x

(
gG

(
ρk
1 , ρ

k
2

)
− f

(
ρ̂k
1

))
, i ∈ {n + 1, . . . , n + m} .
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Remark 2.2 Using the Godunov scheme, each mesh grid at a given tk can be seen
as a node for a one-to-one junction with one incoming and one outgoing links. It is
therefore more convenient to consider that every discretized cell is, rather, a link with
both an upstream junction and downstream junction. Thus, we consider networks in
which the state of each link i ∈ I at a time-step k ∈ {0, . . . , T − 1} is represented by
the single discrete value ρk

i .

The previous remark allows us to develop a generalized update step for all discrete
state variables.Wefirst introduce a definition in order to reduce the cumbersome nature
of the preceding notation. Let the state variables adjacent to a junction J ∈ J at a

time-step k ∈ {0, . . . , T − 1} be represented as ρk
J :=

(
ρk

i1J
, . . . , ρk

i
n J +m J
J

)
. Similarly,

we let the solution of a Riemann solver be represented as ρ̂ J := RS
(
ρ J

)
. Then, for

a link i ∈ I with upstream and downstream junctions, JU
i and JD

i , and time-step
k ∈ {0, . . . , T − 1}, the update step becomes:

ρk+1
i = ρk

i − �t

�x

(
f

((
RS

(
ρk

JD
i

))
i

)
− f

((
RS

(
ρk

JU
i

))
i

))

= ρk
i − �t

�x

(
f
((

ρ̂ JD
i

)
i

)
− f

((
ρ̂ JU

i

)
i

))
, (10)

where (s)i is the i th element of the tuple s. This equation is thus a general way of writ-
ing the Godunov scheme in a way, which applies everywhere, including at junctions.

Working Directly with Flux Solutions at Junctions The equations can be simplified if
we do not explicitly represent the solution of the Riemann solver, ρ̂ J , and, instead,
directly calculate the flux solution from the Riemann data. We denote this direct
computation by gG

J , the Godunov flux solution at a junction:

gG
J : Rn J +m J → R

n J +m J , ρ J �→ f
(
RS

(
ρ J

)) = (
f
(
ρ̂1

)
, . . . , f

(
ρ̂n+m

))
. (11)

This gives a simplified expressions for the update step:

ρk+1
i = ρk

i − �t

�x

((
gG

JD
i

(
ρk

JD
i

))
i
−

(
gG

JU
i

(
ρk

JU
i

))
i

)
. (12)

2.4 State, Control, and Governing Equations

The rest of the article focuses on controlling systems of the form in Eq. (12) in which
some parts of the state can be controlled directly (for example, in the form of boundary
control). We wish to solve the system in Eq. (12) T time-steps forward, i.e., we
wish to determine the discrete state values ρk

i for all links i ∈ I and all time-steps
k ∈ {0, . . . , T − 1}. Furthermore, at each time-step k, we assume a set of “control”
variables

(
uk
1, . . . , uk

M

) ∈ R
M that influence the solution of the Riemann problems

at junctions, where M is the number of controlled values at each time-step, and each

123



J Optim Theory Appl (2015) 167:733–760 741

control may be updated at each time-step.We assume that a control may only influence
a subset of junctions, which is a reasonable assumption if the controls have some
spatial locality. Thus, for a junction J ∈ J , we assume without loss of generality that

a subset of the control parameters

(
uk

j1J
, . . . , uk

j
MJ
J

)
∈ R

MJ influence the solution of

the Riemann solver. Similar to the notation developed for state variables, for control

variables, we define uk
J :=

(
uk

j1J
, . . . , uk

j
MJ
J

)
as the concatenation of the control

variables around the junction J . To account for the addition of controls, we modify
the Riemann problem at a junction J ∈ J at time-step k to be a function of the current
state of connecting links ρk

J , and the current control parameters uk
J . Then using the

same notation as before, we express the Riemann solver as:

RSJ : R
n J +m J × R

MJ → R
n J +m J ,

(
ρk

J ,uk
J

)
�→ RSJ

(
ρk

J ,uk
J

)
= ρ̂

k
J .

We represent the entire state of the solved system with the vector ρ ∈ R
N T , where

for i ∈ I and k ∈ {0, . . . , T − 1}, we have ρNk+i = ρk
i . Similarly, we represent the

entire control vector by u ∈ R
MT , where uMk+ j = uk

j . For each state variable ρk
i ,

write the corresponding update equation hk
i :

hk
i : RN T × R

MT → R, (ρ,u) �→ hk
i (ρ,u) = 0.

This takes the following form:

h0
i (ρ,u) = ρ0

i − ρ̄i = 0, (13)

hk
i (ρ,u) = ρk

i − ρk−1
i + �t

Li
f

(
RSJD

i

(
ρk−1

JD
i

,uk−1
JD

i

))
i

− �t

Li
f

(
RSJU

i

(
ρk−1

JU
i

,uk−1
JU

i

))
i
= 0 ∀k ∈ {2, . . . , T − 1} , (14)

or in terms of the Godunov junction flux:

hk
i (ρ,u) = ρk

i − ρk−1
i + �t

�x

(
gG

JD
i

(
ρk

JD
i
,uk−1

JD
i

))
i
− �t

�x

(
gG

JU
i

(
ρk

JU
i
,uk−1

JU
i

))
i
,

(15)

for all links i ∈ I, where ρ̄i is the initial condition for link i . Thus, we can construct a
system of N T governing equations H (ρ,u) = 0, where the hi,k is the equation in H
at index Nk + i ; the ordering of hi,k matches that of the corresponding discrete state
variable ρk

i .
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3 Adjoint-Based Flow Optimization

3.1 Optimal Control Problem Formulation

In addition to our governing equations H (ρ,u) = 0, where we assume hk
i ∈ C1, we

introduce also a cost function C ∈ C1,

C : RN T × R
MT → R, (ρ,u) �→ C (ρ,u) ,

which returns a scalar that serves as a metric of performance of the state and control
values of the system. We wish to minimize the quantity C over the set of control para-
meters u, while constraining the state of the system to satisfy the governing equations
H (ρ,u) = 0, which is, again, the concatenated version of (14) or (15).We summarize
this with the following optimization problem:

min
u

C (ρ,u) , s.t. H (ρ,u) = 0. (16)

Both the cost function and governing equations may be not convex in this problem.

3.2 Calculating the Gradient

Wewish to use gradient information in order to find control values u∗ that give locally
optimal costs C∗ = C (ρ (u∗) ,u∗). Since there may exist many local minima for
this optimization problem (16) (which is not convex in general), gradient methods do
not guarantee global optimality of u∗. Still, nonlinear optimization methods such as
interior point optimization utilize gradient information to improve performance [53].
In a descent algorithm, the optimization procedurewill have to descend a cost function,
by coupling the gradient, which, at a nominal point (ρ′,u′) is given by:

duC
(
ρ′,u′) = ∂C(ρ,u)

∂ρ

∣∣∣∣
ρ′,u′

dρ

du
+ ∂C(ρ,u)

∂u

∣∣∣∣
ρ′,u′

. (17)

Remark 3.1 For Eq. (17) to be valid, all required partial and full derivatives must be
well defined, including dρ

du . In some applications, this assumption does not necessarily
hold, either because f itself is not smooth or because gG is not smooth (and thus
H /∈ C1), as is the case for the LWR equation with concave fundamental diagrams.
There are several settings in which the conditions for differentiability are satisfied; see
in particular [9,54].

The main difficulty is to compute the term dρ
du . We take advantage of the fact that

the derivative of H (ρ,u) with respect to u is equal to zero along trajectories of the
system:

duH
(
ρ′,u′) = ∂ H(ρ,u)

∂ρ

∣∣∣∣
ρ′,u′

dρ

du
+ ∂ H(ρ,u)

∂u

∣∣∣∣
ρ′,u′

= 0. (18)
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The partial derivative terms, Hρ ∈ R
N T ×N T , Hu ∈ R

N T ×MT , Cρ ∈ R
N T , and

Cu ∈ R
MT , can all be evaluated (more details provided in Sect. 3.3) and then treated

as constant matrices. Thus, in order to evaluate duC
(
ρ′,u′) ∈ R

MT , we must solve a
coupled system of matrix equations.

Forward System If we solve for dρ
du ∈ R

N T ×MT in (18), which we call the forward
system:

Hρ
dρ

du
= −Hu, (19)

then we can substitute the solved value for dρ
du into (17) to obtain the full expression

for the gradient. Section 3.3 below gives details on the invertibility of Hρ , which guar-
antees a solution for dρ

du .

Adjoint System Instead of evaluating dρ
du directly, the adjoint method solves the fol-

lowing system, called the adjoint system, for a new unknown variable λ ∈ R
N T (called

the adjoint variable):

H T
ρ λ = −CT

ρ . (20)

Under certain additional conditions on the flux function and discretization scheme, the
adjoint system in Eq. (20) may be shown to converge to the continuous adjoint system
as the discretization steps go toward zero, as described in the following works [9,22,
30]. No such convergence results exist in our setting of using a Godunov discretization
with general n × m junctions. The expression for the gradient becomes:

duC
(
ρ′,u′) = λT Hu + Cu. (21)

We note that Eqs. (20) and (21) can be alternatively derived using the first-order
Karush–Kuhn–Tucker (KKT) conditions, coupled with the constraint qualification in
Eq. (16). Given we do not assume convexity of the underlying system, first-order KKT
conditions are necessary, but not sufficient conditions for optimality of u and λ. For
practical applications to nonconvex systems and for the purposes of this article, we
do not necessarily seek global or local optimality, but rather the direction of steepest
descent given in Eq. (21) in order to improve the performance of the system.We define
Dρ to be the maximum junction degree on the network:

Dρ = max
J∈J

(n J + m J ), (22)

and also define Du to be the maximum number of constraints in which a single control
variable, which is equivalent to:

Du = max
u∈u

∑
J∈J : u∈uk

J

(n J + m J ). (23)
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(a) (b) (c)

Fig. 3 Depiction of Dρ and Dv for an arbitrary graph. a The underlying graphical structure for an arbitrary
PDE network. Some control parameter u1 has influence over junctions A, B, and F , while another control
parameter u2 has influence over only junction C . b The center junction having the largest number of
connecting edges, thus giving Dρ = 5. c Control parameter u1 influences three junctions with sum of
junction degrees equal to six, which is maximal over the other control parameter u2, leading to the result
Du = 6. Note that in (c), the link going from junction A to junction B is counted twice: once as an outgoing
link AB and once as in incoming link BA

Note that
{
u ∈ uk

J : J ∈ J }
is a k-dependent set. By convention, junctions are either

actuated or not, so there is no dependency on k, i.e., if ∃k s.t. u ∈ uk
J , then ∀k, u ∈ uk

J .
Using these definitions, we show later in Sect. 3.4 how the complexity of computing
the gradient is reduced from O(Dρ N MT 2) to O(T

(
Dρ N + DuM

)
) by considering

the adjoint method over the forward method. A graphical depiction of Dρ and Du are
given in Fig. 3.

Freeway networks are usually considered to have topologies that are nearly planar,
leading to junctions degreeswhich typically do not exceed 3 or 4, regardless of the total
number of links. Also, from the locality argument for control variables in Sect. 2.4, a
single control variable’s influence over state variables will not grow with the size of
the network. Thus, Dρ and Du are constant with respect to N T or MT for freeway
networks, and gradient computations can be considered linear for the adjoint method.

3.3 Evaluating the Partial Derivatives

While no assumptions are made about the sparsity of the cost function C , the net-
worked structure of the PDE system and the Godunov discretization scheme allows
us to say more about the structure and sparsity of Hρ and Hu.

Partial Derivative Expressions Given that the governing equations require the evalua-
tion of a Riemann solver at each step, we detail some of the necessary computational
steps in evaluating the Hρ and Hu matrices. If we consider a particular governing
equation hk

i (ρ,u) = 0, then we may determine the partial term with respect to ρl
j ∈ ρ

by applying the chain rule:

∂hk
i

∂ρl
j

= ∂ρk
i

∂ρl
j

− ∂ρk−1
i

∂ρl
j

+ �t

Li
f ′

(
RSJD

i

(
ρk−1

JD
i

,uk−1
JD

i

)
i

)
∂

∂ρl
j

(
RSJD

i

(
ρk−1

JD
i

,uk−1
JD

i

)
i

)
(24)

− �t

Li
f ′

(
RSJU

i

(
ρk−1

JU
i

,uk−1
JU

i

)
i

)
∂

∂ρl
j

(
RSJU

i

(
ρk−1

JU
i

,uk−1
JU

i

)
i

)
,
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or if we consider the composed Riemann flux solver gG
J in (11):

∂hk
i

∂ρl
j

= ∂ρk
i

∂ρl
j

− ∂ρk−1
i

∂ρl
j

+ �t

Li

(
∂

∂ρl
j

(
gG

JD
i

(
ρk−1

JD
i

,uk−1
JD

i

))
i
− ∂

∂ρl
j

(
gG

JU
i

(
ρk−1

JU
i

,uk−1
JU

i

))
i

)
.

(25)

A diagram of the structure of the Hρ matrix is given in Fig. 4a. Similarly for Hu, we
take a control parameter ul

j ∈ u and derive the expression:

∂hk
i

∂ul
j

= +�t

Li
f ′

(
RSJD

i

(
ρk−1

JD
i

,uk−1
JD

i

)
i

)
∂

∂ul
j

(
RSJD

i

(
ρk−1

JD
i

,uk−1
JD

i

)
i

)
(26)

− �t

Li
f ′

(
RSJU

i

(
ρk−1

JU
i

,uk−1
JU

i

)
i

)
∂

∂ul
j

(
RSJU

i

(
ρk−1

JU
i

,uk−1
JU

i

)
i

)
,

or for the composed Godunov junction flux solver gG
J :

∂hk
i

∂ul
j

= �t

Li

(
∂

∂ul
j

(
gG

JD
i

(
ρk−1

JD
i

,uk−1
JD

i

))
i
− ∂

∂ul
j

(
gG

JU
i

(
ρk−1

JU
i

,uk−1
JU

i

))
i

)
. (27)

Analyzing (24), the only partial terms that are not trivial to compute are
∂

∂ρl
j

(
RSJD

i

(
ρk−1

JD
i

,uk−1
JD

i

)
i

)
and ∂

∂ρl
j

(
RSJU

i

(
ρk−1

JU
i

,uk−1
JU

i

)
i

)
. Similarly for (26),

the only nontrivial terms are ∂

∂ul
j

(
RSJD

i

(
ρk−1

JD
i

,uk−1
JD

i

)
i

)
and ∂

∂ul
j

(
RSJU

i

(
ρk−1

JU
i

,

uk−1
JU

i

)
i

)
. Once one obtains the solutions to these partial terms, then one can con-

struct the full Hρ and Hu matrices and use (20) and (21) to obtain the gradient value.
As these expressions are written for a general scalar conservation law, the only steps in
computing the gradient that are specific to a particular conservation law and Riemann
solver are computing the derivative of the flux function f and the partial derivative
terms just discussed. These expressions are explicitly calculated for the problem of
optimal ramp metering in Sect. 4.

3.4 Complexity of Solving Gradient via Forward Method Versus Adjoint
Method

This section demonstrates the following proposition:

Proposition 3.1 The total complexity for the adjoint method on a scalar hyperbolic
network of PDEs is O(T

(
Dρ N + DuM

)
).
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(a) (b)

Fig. 4 Structure of the Hρ matrix. aOrdering of partial derivative terms determined first by time, then cell
index. b Sparsity structure of the Hρ matrix. All blocks where l 
= k − 1 are zero besides identity blocks
on the diagonal

We can show the lower-triangular structure and invertibility of Hρ by examining (13)
and (14). For k ∈ {1, . . . , T − 1}, we have that hk

i is only a function of ρk
i and of

the state variables from the previous time-step k − 1. Thus, based on our scheme
in Sect. 2.4 for ordering variables by increasing time-step and ordering constraints
by corresponding variable, we know that the diagonal terms of Hρ are always 1 and
all upper-triangular terms must be zero (since those terms correspond to constraints
with a dependence of future values). These two conditions demonstrate both that Hρ is
lower-triangular and is invertible due to the ones along the diagonal. Additionally, if we
consider taking partial derivatives with respect to the variable ρl

j , then we can deduce
from Eq. (14) that all partial terms will be zero except for the diagonal term, and those
terms involving constraints at time j +1 with links connecting to the downstream and
upstream junctions JD

j and JU
j respectively. To summarize, Hρ matrices for systems

described in Sect. 2.4 will be square, invertible, lower-triangular, and each column
will have a maximum cardinality equal to Dρ in (22). The sparsity structure of Hρ is
depicted in Fig. 4b.

Using the same line of argument for the maximum cardinality of Hρ , we can bound
the maximum cardinality of each column of Hu. Taking a single control variable ul

j ,
the variable can only appear in the constraints at time-step j + 1 that correspond to a
link that connects to a junction J such that ul

j ∈ ul+1
J . These conditions give us the

expression for Du in (23), or the maximum cardinality over all columns in Hu.
If we only consider the lower-triangular form of Hρ , then the complexity of

solving for the gradient using the forward system is O((N T )2 MT ), where the dom-
inating term comes from solving (17), which requires the solution of MT separate
N T × N T lower-triangular systems. The lower-triangular system allows for forward
substitution, which can be solved in O((N T )2) steps, giving the overall complexity
O((N T )2 MT ). The complexity of computing the gradient via the adjoint method is
O((N T )2 + (N T ) (MT )), which is certainly more efficient than the forward method,
as long as MT > 1. The efficiency is gained by considering that (20) only requires the
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solution of a single N T × N T upper-triangular system (via backward-substitution),
followed by the multiplication of λT Hv , an N T × N T and an N T × MT matrix
in (21), with a complexity of O((N T )2 + (N T ) (MT )).

For the adjoint method, this complexity can be improved upon by considering
the sparsity of the Hρ and Hu matrices, as detailed in Sect. 3.4. For the backward-
substitution step, each entry in the λ vector is solved by at most Dρ multiplications,
and thus the complexity of solving (20) is reduced to O(Dρ N T ). Similarly, for the
matrix multiplication of λT Hv , while λ is not necessarily sparse, we know that each
entry in the resulting vector requires at most Du multiplications, giving a complexity
of O(DuMT ). Furthermore, if a sparse implementation of the Hρ and Hu matrices are
used, then memory usage will also scale linearly with the number of state and control
variables.

4 Applications to Optimal Coordinated Ramp Metering on Freeways

4.1 Formulation of the Network Model and Explicit Riemann Solver

Model Consider a freeway section with links I = {1, . . . , 2N } with a linear
sequence of mainline links = {2, 4, . . . , 2N } and connecting on-ramp links =
{1, 3, . . . , 2N − 1}. At discrete time t = k�t ,0 ≤ k ≤ T − 1, mainline link 2i ∈
I, i ∈ {1, . . . , N } has a downstream junction JD

2i = JU
2(i+1) and an upstream junction

JU
2i = JD

2(i−1), while on-ramp 2i − 1 ∈ I, i ∈ {1, . . . , N } has a downstream junc-

tion JD
2i−1 = JU

2i = JD
2(i−1) and an upstream junction JU

2i−1. The off-ramp directly

downstream of link 2i has, at time-step k, a split ratio βk
2i representing the ratio of

cars which stay on the freeway over the total cars leaving the upstream mainline of
junction JD

2i . The model assumes that all flux from on-ramp 2i − 1 enter downstream
mainline 2i . Since JU

2 is the source of the network, it has no upstream mainline or
off-ramp, and similarly JD

2N has no downstreammainline or on-ramp (βk
2N = 0). Each

link i ∈ I has a discretized state value ρk
i ∈ R at each time-step k ∈ {0, . . . , T − 1},

that represents the density of vehicles on the link. These values are depicted in Fig. 5a.
Junctions that have no on-ramps can be effectively represented by adding an on-ramp
with no demand while junctions with no off-ramps can be represented by setting the
split ratio to 1.

The vehicle flow dynamics on all links i (mainlines, on-ramps, and off-ramps) are
modeled using the conservation law governing the density evolution (1), where ρ is
the density state, and f is the flux function (or fundamental diagram) f (ρ). In the
context of traffic, this model is referred to as the Lighthill–Whitham–Richards (LWR)
model [43,44]. The fundamental diagram f is typically assumed to be concave and
has a bounded domain

[
0, ρmax

]
, and a maximum flux value Fmax is attained at a

critical density ρc : f (ρc) = Fmax. We assume that the fundamental diagram has a
trapezoidal form parameterized by a free-flow speed v, congestion wave speedw, max
flux Fmax, critical density ρc, and max density ρmax; see Fig. 5b. For the remainder
of the article, we instantiate the conservation law in (1) with the LWR equation as it
applies to traffic flow modeling.
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(a)

(b)

Fig. 5 Freeway networkmodel and associated fundamental diagram. a Freeway networkmodel. A junction
JD2i−1 = JD2(i−1) = JU2i at time k has associated densities (ρk

2(i−1), ρ
k
2i , ρ

k
2i−1, β

k
2(i−1)) for the upstream

mainline, downstream mainline, onramp and offramp split ratio, respectively. b Trapezoidal fundamental
diagram

As control input, an on-ramp 2i − 1 ∈ I, i ∈ {1, . . . , N } at time-step k ∈
{0, . . . , T − 1} has a metering rate uk

2i−1 ∈ [0, 1] which limits the flux of vehi-
cles leaving the on-ramp. Intuitively, the metering rate acts as a fractional decrease in
the flow leaving the on-ramp and entering the mainline freeway. The domain of the
metering control is to force the control to neither impose negative flows nor send more
vehicles than present in a queue. Its mathematical model is expressed in (33).

For notational simplicity, we define the set of densities of links incident to JU
2i =

JD
2(i−1) at time-step k as ρk

JU
2i

=
{
ρk
2(i−1), ρ

k
2i−1, ρ

k
2i

}
. The off-ramp is considered to

have infinite capacity, and thus has no bearing on the solution of junction problems.
Initial conditions are handled as in (13), while for k ∈ {1, . . . , T − 1}, the mainline
density ρk

2i using the Godunov scheme from (14) is given by:

hk
2i (ρ,u) = ρk

2i −ρk−1
2i + �t

L2i

(
gG

JD
2i

(
ρk−1

JD
2i

, uk−1
2i+1

))
2i

− �t

L2i

(
gG

JU
2i

(
ρk−1

JU
2i

, uk−1
2i−1

))
2i

= ρk
2i − ρk−1

2i + �t

L2i

(
gk−1
2i,D − gk−1

2i,U

)
= 0, (28)

where we have introduced some substitutions to reduce the notational burden of this
section: gk

i,D is the Godunov flux at time-step k exiting a link i at the downstream

boundary of the link, and gk
i,U is the Godunov flux entering the link at the upstream

boundary. We also make the assumption that on-ramps have infinite capacity and a
free-flowvelocityv2i−1 = L2i−1

�t to prevent the rampcongestion fromblockingdemand
from ever entering the network. Since the on-ramp has no physical length, the length
is chosen arbitrarily and the “virtual” velocity chosen above is chosen to replicate the
dynamics in [55]. We can then simplify the on-ramp update equation to be:
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hk
2i−1(ρ,u) = ρk

2i−1 − ρk−1
2i−1 − �t

L2i−1

((
gG

JU
2i

(
ρk−1

JU
2i

, uk−1
2i−1

))
2i−1

− Dk−1
2i−1

)
(29)

= ρk
2i−1 − ρk−1

2i−1 − �t

L2i−1

(
gk−1
2i−1,D − Dk−1

2i−1

)
= 0, (30)

where Dk−1
2i−1 is the on-ramp flux demand, and the same notational simplification has

been used for the downstream flux. This formulation results in “strong” boundary con-
ditions at the on-ramps which guarantees all demand enters the network. Details on
weak versus strong boundary conditions can be found in [2,55]. The on-ramp model
in (29) differs from [55] in that we model the on-ramp as a discretized PDE with
an infinite critical density, while [55] models the on-ramp as an ODE “buffer”. While
bothmodels implement strong boundary conditions, the discretized PDEmodelmakes
the freeway network more aligned with the PDE network framework presented in this
article.

Riemann Solver For the ramp metering problem, there are many potential Riemann
solvers that satisfy the properties required in Sect. 2.2. Following themodel of [55], for
each junction JU

2i , we add two modeling decisions: (1) the flux solution maximizes the
outgoing mainline flux gk

2i,U and (2) the flux solution attempts to satisfy gk
2(i−1),D =

p2(i−1)gk
2i−1,D subject to (1), where p2(i−1) ∈ R+ is a merging parameter for junction

JD
2(i−1). Since (1) allows multiple flux solutions at the junction, (2) is necessary to

obtain a unique solution. This leads to the following system of equations that gives
the flux solution of the Riemann solver at time-step k ∈ {1, . . . , T − 1} and junction
JU
2i for i ∈ {1, . . . , N }:

δk
2(i−1) = min

(
v2(i−1)ρ

k
2(i−1), Fmax

2(i−1)

)
(31)

σ k
2i = min

(
w2i

(
ρmax
2i − ρk

2i

)
, Fmax

2i

)
(32)

dk
2i−1 = uk

2i−1 min

(
L2i−1

�t
ρk
2i−1, Fmax

2i−1

)
(33)

gk
2i,U = min

(
βk
2(i−1)δ

k
2(i−1) + dk

2i−1, σ
k
2i

)
(34)

gk
2(i−1),D =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δk
2(i−1), if

p2(i−1)gk
2i,U

βk
2(i−1)(1+p2(i−1))

≥ δk
2(i−1) [Case 1]

gk
2i,U−dk

2i−1

βk
2(i−1)

, if
gk
2i,U

1+p2(i−1)
≥ dk

2i−1 [Case 2]
p2(i−1)gk

2i,U

(1+p2(i−1))βk
2(i−1)

, otherwise [Case 3]

(35)

gk
2i−1,D = gk

2i,U − βk
2(i−1)g

k
2(i−1),D. (36)

For notational simplicity, at the edges of the range for i , any undefined state values
(e.g., ρk

0 ) are assumed to be zero by convention. Equations (31) and (33) determine the
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(a) (b) (c)

Fig. 6 Godunov junction flux solution for ramp metering model at junction JU2i . The rectangular region
represents the feasible flux values forβ2(i−1)g2(i−1),D and g2i−1,D as determined by the upstreamdemand,

while the line with slope 1
β2(i−1)

represents feasible flux values as determined by mass balance. The

β2(i−1)g2(i−1),D term accounts for only the flux out of link 2 (i − 1) that stays on the mainline. The flux
solution, represented by the red circle, is the point on the feasible region that minimizes the distance from
the priority line β2(i−1)g2(i−1),D = p2(i−1)g2i−1,D. a Case 1: Priority violated due to limited upstream
mainline demand entering downstreammainline. bCase 2: Priority violated due to limited on-ramp demand
entering downstreammainline. c Case 3: Priority rule satisfied due to sufficient demand from both mainline
and on-ramp

maximum flux that can exit link 2(i − 1) and link 2i − 1 respectively. Equation (32)
gives themaximumflux allowed into link 2i . The actual flux into link 2i , shown in (34),
is given as the minimum of the “demand” from upstream links and “supply” of the
downstream link. See [55] for more details on the model for this equation. The flux
out of link 2(i −1) is split into three cases in (35). The solutions are depicted in Fig. 6,
which demonstrates how the flux solution depends upon the respective demands and
themerging parameter p2(i−1). Finally, Eq. (36) gives the flux out of the on-ramp2i−1,
which is the difference between the flux into link 2i and the flux out of link 2 (i − 1)
the remains on the mainline. For k = 0, the update equation is given by a pre-specified
initial condition, as in (13). Note that the equations can be solved sequentially via
forward substitution. Also, we do not include the flux result for off-ramps explicitly
here since its value has no bearing on further calculations, and we will henceforth
ignore its calculation. To demonstrate that indeed the flux solution satisfies the flux
conservation property, the off-ramp flux is trivially determined to be βk

2(i−1)g
k
2(i−1),D.

4.2 Formulation of the Optimal Control Problem

Optimal Coordinated Ramp Metering Combining (13) with (28) and (29) gives a
complete description of the system H (ρ,u) = 0, ρ ∈ R

2N , u ∈ R, where:

ρ2Nk+i :=ρk
i , 1 ≤ i ≤ 2N , 0 ≤ k ≤ T − 1,

uNk+i :=uk
2i , 1 ≤ i ≤ N , 0 ≤ k ≤ T − 1.

The objective of the control is to minimize the total travel time on the network,
expressed by the cost function C :
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C (ρ,u) = �t
T∑

k=1

2N∑
i=1

Liρ
k
i . (37)

The optimal coordinated rampmetering problem can be formulated as an optimization
problem with PDE network constraints:

min
u

C (ρ,u) , s.t. H (ρ,u) = 0, 0 ≤ u ≤ 1, ∀u ∈ u. (38)

Standardmethods exist for the handling of geometric constraints on u in descent meth-
ods [such as the box constraints on u in Eq. (38)], such as projection methods [40]
and barrier methods [10,56,57].

Applying the Adjoint Method To use the adjoint method as described in Sect. 3, we
need to compute the partial derivative matrices Hρ , Hu, C̃ρ and C̃u. Computing the
partial derivativeswith respect to the cost function and box log-barrier terms is straight-
forward:

∂C̃

∂ρk
i

= �t Li , 1 ≤ i ≤ 2N , 0 ≤ k ≤ T − 1,

∂C̃

∂uk
2i

= ε

(
1

1 − uk
2i

− 1

uk
2i

)
, 1 ≤ i ≤ N , 0 ≤ k ≤ T − 1.

To compute the partial derivatives of H , we follow the procedure in Sect. 3.2. For
an upstream junction JU

2i ∈ J and time-step k ∈ {1, . . . , T − 1}, we only need to

compute the partial derivatives of the flux solver gG
JU
2i

(
ρk

JU
2i
, uk

2i−1

)
with respect to

the adjacent state variables ρk
Ji
and ramp metering control uk

i . We calculate the partial
derivatives of the functions in (31)–(36) with respect to either a state or control variable
s ∈ ρ ∪ u:

∂δk
2(i−1)

∂s
=

{
v2(i−1), if s = ρk

2(i−1), viρ
k
2(i−1) ≤ Fmax

2(i−1)

0 otherwise
,

∂σ k
2i

∂s
=

{
−w2i , if s = ρk

2i , w2i
(
ρmax
2i − ρk

2i

) ≤ Fmax
2i

0 otherwise
,

∂d

∂s
=

⎧⎪⎨
⎪⎩

uk
2i−1, if s = ρk

2i−1, ρ
k
2i−1 ≤ Fmax

2i−1

min
(
ρk
2i−1, Fmax

2i−1

)
, if s = uk

2i−1

0 otherwise

,

∂

∂s
gk
2i,U =

⎧⎨
⎩βk

2(i−1)
∂δk

2(i−1)
∂s + ∂dk

2(i−1)
∂s , if βk

2(i−1)δ
k
2(i−1) + dk

2i−1 ≤ σ k
2i

∂σ k
2i

∂s otherwise
,

123



752 J Optim Theory Appl (2015) 167:733–760

∂

∂s
g2(i−1),D =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂δk
2(i−1)
∂s , if

gk
2i,U p2(i−1)

1+p2(i−1)
≥ δk

2(i−1)

βk
2(i−1)

1
βk
2(i−1)

(
∂
∂s gk

2i,U − ∂dk
2i−1
∂s

)
, if

gk
2i,U

1+p2(i−1)
≥ dk

2(i−1)

p2(i−1)

βk
2(i−1)(1+p2(i−1))

∂
∂s gk

2i,U otherwise

,

∂

∂s
g2i−1,D = ∂

∂s
gk
2i,U − βk

2(i−1)
∂

∂s
g2(i−1),D.

These expressions fully quantify the partial derivative values needed in (25) and (27).
Thus we can construct the Hρ and Hu matrices. With these matrices and Cρ and Cu,
we can solve for the adjoint variable λ ∈ R

2N T in (20) and substitute its value into (21)
to obtain the gradient of the cost function C with respect to the control parameter u.

5 Numerical Results for Model Predictive Control Implementations

Todemonstrate the effectiveness of using the adjoint rampmeteringmethod to compute
gradients,we implemented the algorithmonpractical scenarioswith field experimental
data. The algorithm is useful as a gradient computation subroutine inside any descent-
method optimization solver that takes advantage of first-order gradient information.
Our implementation makes use of the open-source IpOpt solver [53], an interior point,
nonlinear program optimizer. To serve as comparisons, two other case scenarios were
run:

1. No control: the metering rate is set to 1 on all on-ramps at all times.
2. Alinea [46]: a well-adopted, feedback-based ramp metering algorithm commonly

used by practitioners. Alinea is computationally efficient and decentralized, mak-
ing it a popular choice for large networks, but does not take estimated boundary
flow data as input. Since Alinea has a number of tuning parameters, we perform
a modified grid-search technique over the different parameters that scales linearly
with the number of on-ramps, and select the best-performing parameters. A full
grid-search approach scales exponentially with the number of on-ramps, which is
computationally infeasible for moderate-sized freeway networks.

All simulations were run on a 2012 commercial laptop with 8 GB of RAM and a
dual-core 1.8 GHz Intel Core i5 processor.

Remark 5.1 We also implemented gradient descent using a finite differences approach
similar to [41], which requires an O(T 2N M) computation for each gradient step. The
method was shown to be infeasible for real-time applications, taking over 1min to
compute a gradient step for a four link network over six time-steps. We thus do not
consider finite differences in our subsequent numerical studies.

5.1 Implementation of I15S in San Diego

We constructed a model of a 19.4-mile stretch of the I15 South freeway in San Diego,
California between San Marcos and Mira Mesa. The network has N = 125 links, and
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(a)

(b)

(c)

Fig. 7 Density and queue profile of no-control simulation of I15 freeway model (a). In 80min, congestion
pockets form on the freeway and queues form on the on-ramps, eventually clearing after 120min. aModel
of 19.4 mile (125 link), 9 on-ramp section of I15 South in San Diego, California. bDensity profile. The units
are the ratio of a link’s vehicle density to a link’s jam density. c On-ramp queue profile in units of vehicles

M = 9 on-ramps, with boundary data specified for T = 1800 time-steps, for a time
horizon of 120min given �t = 4s. The network is shown in Fig. 7a. Link length data
was obtained using the Scenario Editor software developed as part of the Connected
Corridors project, a collaboration betweenUCBerkeley andPATHresearch institute in
Berkeley, California. Fundamental diagram parameters, split ratios, and boundary data
were also obtained using calibration techniques developed by Connected Corridors.
Densities resulting in free-flowspeedswere chosen as initial conditions on themainline
and on-ramps. The data used in calibration were taken from PeMS sensor data [58]
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during a morning rush hour period, scaled to generate congested conditions. The
input data were chosen to demonstrate the effectiveness of the adjoint ramp metering
method in a real-world setting. A profile of themainline and on-ramps during a forward
simulation of the network is shown in Fig. 7 under the described boundary conditions.

5.2 Finite-Horizon Optimal Control

Experimental Setup The adjoint ramp metering algorithm is compared to the reactive
Alinea scheme, for which we assume that perfect boundary conditions and initial con-
ditions are available. The metric we use to compare the different strategies is reduced

congestion percentage, c̄ ∈]−∞, 100], which we define as c̄ = 100
(
1 − cc

cnc

)
, where

cc, cnc ∈ R+ are the congestion resulting from the control and no-control scenarios,
respectively. We use the metric for congestion as defined in [59]; for a given section
of road S and time horizon T , the congestion is given as

c (S, T ) =
∑

(s∈S,τ∈T )

max

[
TTT(s, τ ) − VMT(s, τ )

vs
, 0

]
, (39)

where vs is the free-flow velocity, VMT is total vehicle miles traveled, and TTT is
total travel time over the link s and time-step τ . Since it is infeasible to compute the
global optimum for all cases, a reduced congestion of 100% serves as an upper bound
on the possible amount of improvement.

Results Figure 8a, b shows the difference in density and on-ramp queue lengths
between the no-control and adjoint-based controller simulations. The adjoint method
was successful in appropriately deciding which ramps should be metered in order to
improve throughput for the mainline. Running time analysis shows that the adjoint
method can produce beneficial results in real-time applications. Figure 8c details the
improvement in the adjoint method as a function of the overall running time of the
algorithm. After just a few gradient steps, the adjoint method outperforms the Alinea
method. Given that the time horizon of 2h is longer than the period of time one can
expect reasonably accurate boundary flow estimates, more practical simulations with
shorter time horizons should permit more gradient steps in a real-time setting. While
the adjoint method leads to queues with a considerable number of cars in some on-
ramps, this can be addressed by introducing barrier terms into the cost function that
limit the maximum queue length. The Alinea method tested for the I15 network had
no prescribed maximum queue lengths as well, but was not able to produce signifi-
cant improvements in total travel time reduction, while the adjoint method was more
successful.

5.3 Model Predictive Control

To study the performance of the algorithm under noisy input data, we embed both the
adjoint rampmetering algorithm and the Alinea algorithm inside of a model predictive
control (MPC) loop.
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Fig. 8 Space–timevehicle density profiles and running time comparison.View in color. aDensity difference
( veh.m ) between the control and no-control scenario, normalized by jam density. b Queue difference profile
in units of vehicles. c Comparison of reduced congestion versus simulation time between adjoint method
and Alinea
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Experimental Setup The MPC loop begins at a time t by estimating the initial condi-
tions of the traffic on the freeway network and the predicted boundary fluxes over a
certain time horizon Th . These values are noisy, as exact estimation of these parameters
is not possible on real freeway networks. The estimated conditions are then passed to
the ramp metering algorithm to compute an optimal control policy over the Th time
period. The system is then forward-simulated over an update period of Tu ≤ Th , using
the exact initial conditions and boundary conditions, as opposed to the noisy data used
to compute control parameters. The state of the system and boundary conditions at
t +Tu are then estimated (with noise), and the process is repeated. A nonnegative noise
factor, σ ∈ R+, is used to study how the adjoint method and Alinea perform as the
quality of estimated data decreases. If ρ is the actual density for a cell and time-step,
then the density ρ̄ passed to the control schemes is given by:

ρ̄ = ρ · (1 + σ · R), (40)

where R is a uniformly distributed random variable with mean 0 and domain
[−0.5, 0.5]. The noise factor was applied to both initial and boundary conditions.
Two different experiments were conducted:

1. Real-time I15 South: MPC is run for the I15 South network with Th = 80min
and Tu = 26min. A noise factor of 2% was chosen for the initial and boundary
conditions. The number of iterations was chosen in order to ensure that each MPC
iteration finished in the predetermined update time Tu .

2. Noise Robustness: MPC is for over a synthetic network with length 12 miles and
boundary conditions over 75min. The experiments are run over a profile of noise
factors between 1 and 8000%.

Results Real-Time I15 South The results are summarized in Fig. 9a. The adjoint
method applied once to the entire horizon with perfect boundary and initial condition
information serves as a baseline performance for the other simulations, which had
noisy input data and limited knowledge of predicted boundary conditions. The adjoint
method still performs well under the more realistic conditions of the MPC loop with
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Fig. 9 Summary of model predictive control simulations. The results indicate that the adjoint method
has superior performance for moderate noise levels on the initial and boundary conditions. a Reduced
congestion. b Reduced congestion with increasing sensor noise for network with synthetic data
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noise, resulting in 2% reduced congestion or 40 car-hours in relation to no control, as
compared to the 3% reduced (60 car-hours) congestion achieved by the adjointmethod
with no noise and full time horizon (Th = T ). In comparison, the Alinea method was
only able to achieve 1.5% reduced congestion (30 car-hours) for both the noisy and
no-noise scenarios. The results indicate that, under a realistic assumption of a 2%
noise factor in the sensor information, the algorithm’s ability to consider boundary
conditions results in an improvement upon strictly reactive policies, such as Alinea.

Robustness to Noise Simulation results on the synthetic network with varying
levels of noise are shown in Fig. 9b. The adjoint method is able to outperform the
Alinea method when the noise level is less than 80%, a reasonable assumption for
data provided bywell-maintained loop detectors. As the initial and boundary condition
data deteriorate, the adjoint method becomes useless. Since Alinea does not rely on
boundary data, it is able to produce improvements, even with severely noisy data. The
results indicate that the adjoint method will outperform Alinea under reasonable noise
levels in the sensor data.

6 Conclusions

This article has detailed a simple framework for finite-horizon optimal controlmethods
on a network of scalar conservation laws derived fromfirst discretizing the network via
the Godunov method, then applying the discrete adjoint to this system. Furthermore,
we show that for this class of problems, the sparsity pattern allows the problem to
be implemented with only linear memory and linear computational complexity with
respect to the number of state and control parameters. We demonstrate the scalability
of the approach by implementing a coordinated ramp metering algorithm using the
adjoint method and applying the algorithm to the I-15 South freeway in California.
The algorithm runs in a fraction of real-time and produces significant improvements
over existing algorithms. A key benefit of the framework is its generality to other
network control problems, particularly traffic systems. Variable speed limit control
and parameter calibration [14] can be formulated in the same adjoint framework as
rampmetering, with only a fewmodifications to the partial derivativematrices. As part
of future work, we hope to demonstrate the wider applicability of the discrete adjoint
method in traffic systems by developing variable speed limit and optimal rerouting of
traffic algorithms based on the presented framework. For real-time applications, the
numerical methods presented scaled well to a single freeway of real-world size. To
enable larger-scale coordination of control schemes, more work needs to be done into
the parallelization of adjoint-based approaches. As future work, we are investigating
decentralized, coordinated control schemes over physical networks via the adjoint
method. Such an approach would allow sub-networks to efficiently compute local
policies using our presented framework, while constructing communication schemes
across the sub-networks to enable performance of the combined networks to converge
to a global optimum.
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