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Transportation Networks: 

Application to Air Traffic Controlt 
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Abstract-we use an Eulerim network model of the airspace to simulate air 

traf6c in congested areal of airspace. Tho model relies on 1 set of coupled Erat 

order hyperbole p r l i a l  differential egustioos (F'DEs), obtained fmm the original 

Ligh lh i l l -Whi thnm-R~h~~*  (L.WR) trrffie modd. The JammhW"dt-TurkeI 

( J S l l i r  $elected among other #wmrrieal scheme to perform simulations, aod 

evidence of numerical eonvcrgroce is  assessed .gainit h o w 0  e.nnlytica1 aolutiaos. 

Linear numerical 6chemes are discarded because of their p w r  performaner, thus 

prohibiting the use of Linear optimhntioo for oontrofiog the network. Inrtesd, 

the adjoint problem of the Unenrkrd network contml pmblrm l a  compoted. The 

Constraints of thi  problem are enforced using 1 logarithmic barrier method. 

Simvlslloor are WO with real air traffic dau  to drmooitrsle the applicability of 

the method for traffic mnoagrmml. Sceoarios lnvoluing Irverd airpoiti ktwrcn 

Chicago and the East Coast are Investigated. 

I. INTRODUCTION 
In a companion paper [3], we have described how to model 
the National Airspace System (NAS) using an Eulerian 
framework, inspired by the work of Menon et al. [IS]. The 
result of this article was a model of airspace as a network 
of interconnected links, on which the aircraft density is 
governed by.a set of first order hyperbolic partial di/ferential 
equations (PDEs), coupled through boundary conditions. We 
validated this model and showed that it predicts accurate 
aircraft counts. In this paper, we first show how to apply 
standard numerical analysis tools to this system of PDEs, 
in order to perform numerical simulations when we do not 
have explicit analytical solutions available to us (which is 
the case in general). The major difficulty which we will 
show is that the solutions we construct are by essence 
discontinuous and have kinks, a very undesirable properly 
for numerical solutions of PDEs. We also show that the use 
of linear numerical schemes to approximate the solution of 
the PDE perform very poorly, which unfortunately precludes 
the use of standard linear optimization programs to control 
the system. 
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Instead, we show thatwe may use flow control techniques [SI, 
which are directly applicable to PDE-driven systems. We use 
an adjoint-based method, which enables us to compute the 
gradient of a cost function algebraically using the adjoint 
problem. We have to adapt the adjoint method to the case 
in which the system is described by a set of PDEs coupled 
through the boundary conditions, in presence of constraints. 
Unfortunately, this is a nonlinear control problem which does 
not provide proofs of convergence to a global optimal. How- 
ever, this method, as well as other flow control approaches 
[I l l ,  [2], [I], [7], [13], have been shown to work extremely 
well in practice in fluid mechanics. In addition, though we 
consider networks of PDEs, the dimension of each PDE 
is one, enabling online implementations, as solving a set 
of one dimensional PDEs may be done extremely quickly. 
Controlling transportation networks in general is extremely 
challenging and numerically difficult [PI, [16]. In the present 
case, the control consists in speed assignments and routing 
policies (i.e. determining optimal routes for the aircraft). As 
shown in [3], we use an Eulerian framework for this problem, 
despite the known difficulties inherent to PDE control [5], 
[l]. However, there are a few benefits of the above outlined 
approach over Lagrangian methods, which incorporate all 
trajectories of all aircraft: 

1) Most of the Lagrangian methods will end up posing a 
control problem as an integer optimization program which 
is intractable in real time because it is NP-complete. In 
addition, the solution provided by these methods often takes 
advantage of actuating single aircraft individually, which 
precludes the derivation of global policies, which we are 
interested in for this paper. Finally, this framework scales 
very well with the number of aircraft (the higher the number 
of aircraft is the better the more accurate the model becomes, 
without further computational complexity). 
2) The method presented below is very general and can be 
very easily adapted to specific classes of controllers, which 
are 'Air Traffic Controller friendly", i.e. it is possible to use 
this method to derive a control law in a required format, 
which is compatible with aircraft capabilities. 
3) This method can be applied to highway traffic with minor 
modifications [4], and we believe can be extended to other 
problems such as networks of irrigation channels [14]. 

This article is organized as follows. In Section 11, we show 
the relative benefits of several numerical schemes, and run 
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where notations are summarized in the table above. Please 
refer to [3] for more precision about the different variables 
used. In (l), Ni(.) represents the LWR operator. Even for 
a single link i, it is in general not possible to solve the 
system (1) analytically. In [3], we show an analytical solution 
based on the method of characteristics, which works in the 
case in which vi(zi,t) = vi(zi), i.e. the nominal velocity 
does not depend on time. When the velocity depends on 
time, numerical integration is needed. The solutions of the 
LWR PDE in the system (1) have very undesirable prop- 
erties for numerical integrations: they are by construction 
discontinuous (see the construction of pi in [3]); they can 
develop kinks if the velocity profiles are discontinuous. Ad 
hoc numerical schemes of the original LWR PDE have been 
the focus of recent research [9] in order to address similar 
difficulties encountered in the original LWR PDE; they have 
proved extremely efficient in the case of highway traffic. We 
have chosen to use three different schemes to compare their 
respective benefits. 

1) The well known La-Friedrichs scheme [lo]. This scheme 
is linear; we chose it motivated by the recent work [15], 
which make explicit use of the linearity of their discretization 
scheme in the control synthesis for their problem. 

numkr of links 
pet of source links 
ref of links into which alher links merge 
set of l i t h  ending in P fork 
ret of IinLE m q i n g  into link i (if i E M) 
1st of links merging inm the airpon (sink) 
indices of Ihc two links of a fork if link i E V 
length of link i 

airernR density on link i 
initial aircrab density on link i 
nominal vslcdy pmfils on link i: vi(.) : 10. Li] - R+ 
i d a w  at zi = 0 for link i (ifapplicable) 
pnim of 

aIc1sngth on link i: z i  E 10, Lil  

which Rows into link i l  (if applicable) 

2) A left-centered scheme, inspired by the Daganzo ' 
scheme [9] in light traffic: 

p;+' = p;(l- w, +&-,(W)) x 
=(=:;AT ~ 4=lri:)AT) i 

3) The Jameson-Schmidt-Turkel (JST) scheme. This scheme 
is nonlinear, and has very desirable properties for this work 
it captures shocks (which are present in the solutions we 
compute, as will be seen), and when the PDE has an entropy 
solution, which is the case for highway traffic in the original 
LWR setting, it converges to the entropy solution of the 
problem. Details of this scheme are available in [12]. 

Even if a numerical scheme is theoretically proved to con- 
verge to the analytical solution of a PDE, one usually does 
not know a priori the required gridsize to guarantee that the 
numerical solution is close to the analytical solution. Even if 
this type of validation is standard in numerical analysis [IO], 
it seems to be absent from literature using these schemes 
for highway or air traffic problems [15], [9]. We use the 
method developed in [3] to compute the analytical solution 
of three benchmark problems involving solutions with shocks 
and kinks. For each of the numerical schemes used, we 
compute the LZ error due to the discretization method, as 
a function of the number of grid points. The result is shown 
in Figure 1. This study leads to several conclusions. The 
Lax-Friedrichs scheme is very diffusive. Its behavior is very 
representative of linear schemes to approximate a hyperbolic 
PDE. Consequently, we do not think that it is a good idea to 
use linear numerical schemes to approximate the solution of 
the PDE, even if it would have the advantage of making the 
constraints linear in the resulting optimization program. The 
let? centered scheme is less diffusive, but fails to capture the 
kinks of the solution. However, it still provides good LZ 
convergence. The JST scheme captures shocks accurately 
because of its anti diffusive term, and thus gives the best 
results overall. It will be used for the rest of this study.' 
Note that capturing shocks is crucial: shocks represent the 
location of fronts of traffic jams, which we want to mck. 

111. NETWORK CONTROL VIA ADJOINT METHODS 

Consider solving the following problem: maximize the 
throughput (i.e. flux of landing aircraft) at a destination 
airport, while maintaining the density of aircraft everywhere 
lower than a given threshold. Let us call pmax,i the maximal 
allowed density on link i, wmax,;(,) and vmin,,(.) the max- 
imal and minimal achievable speeds on link i (which can 

'This validation is to the best of our knowledge the first which was 
achlally implemented to assess the accuracy of B e  approximation as a 
function of the discretization size. Note also that confusion often arises 
between scale cell size (defined previously by Dag" [SI, i.e. line element) 
and discretization size (whose mathematical definition is available in [IO]). 
These quantities are completely unrelated, as cell size is a physical length 
which pertains to the application (for example a ponion of highway m 
jetway). whereas the discretization length is an arbitrary small length 
chosen between gridpoints such that the discretization will approximate the 
continuous problem accurately. Typically, a cell should conUin at least a 
dozen grid points (in fact at least a hundred in the present simulations). 
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Fig. 1. Lz error due to the discretization method, as a function of the 
number o f  grid points for both schemes. The analytical solution presented 
in [SI is used for this comparison. Lax-Friedrichs scheme (solid), lamesan- 
Schmidt-Turkel scheme (-.), left-centered scheme (- -). 

depend on location). Using the notations of Section 11, the 
optimization problem thus reads: 

min: - J:p;(L;, t)w;(L.;, t )  dt 
s.t.: (1) 

wmin,;(ti) 5 .;(xi) 5 ~ m a x , i ( t i )  
Vie {I,... , N } , V t ,  E [O,L;],Vt E [O,T] 
0 5 a ( t )  5 1 vi E D,Vt E [O,T] 

The difficulty posed by the constraints can be avoided in 
practice by using a classical optimization technique called 
barrier [6], in which the cost is augmented by a logarithmic 
term, which prohibits vioiation of the constraints. 

min: 3 :=-xi:, rsaTpj(L;,t)w;(L,,t)dt + -& E L I  so ~,"i W ( p m a x  - p i (x i , t ) ) .  

-f Ei:;cnJ:log(Oi(t)(l -O i ( t ) ) )d t  
- ~ i ( ~ i , t ) ) ( ~ i ( ~ i , t )  - ~ m i n , i ) ) d t ; d t  

s.t.: (1) 
(3) 

We call H(w, 0, p )  the augmented cost function. When p, p 
and w are used without indices, it means that they'are vectors, 
i.e. w = [VI,. . . , WN]. Note that the two last constraints in 
the optimization program (2) have disappeared into the cost 
function. This constrained optimization problem is easier 
to solve in practice. It is asymptotically equivalent to the 
problem of interest when M -+ +ca. We use an adjoint 
method to algebraically compute the gradient of the cost 
function. This method was extensively [SI in flow control. 
We now adapt the adjoint method to the case in which we 
have a set of PDEs coupled through the boundary conditions, 
and subject to constraints. The adjoint method computes 
the gradient of the cost function H(w,p ,p)  when p is an 
implicit function of w and p via the dynamics (1). Let 

us denote 9 the cost function of the two variable w and 
p: .7 : (w,p) + J(w,@) = H ( v , p , p )  where p is the 
solution of the PDE system (1). We compute the linearized 
(l), which we will use to compute the gradient of the cost 
function in the optimization program (3). We denote by ' the 
linearized quantities around a nominal value denoted by : 
pi = pi  + pi. We call Ni(.) the linearized LWR operator, 
and q; = p,w,. In order to abbreviate the notation, we will 
write qi = p:Bi + p;w: and q; = p;B;. We omit the time and 
space dependence when they are obvious. We are NOT using 
Einstein's notations. The linearized (1) reads: 

I p;(o,t)ti;(o) +a(o,t)w:(o,t) = o  Vi  E S 
The first variation of 3 is obtained from (3): 

3' = - J: p p i ,  t)B;(L;, t )  +Pi(Li ,  t)tJi(ti,  t )  
<.;cc 

C_ 

An integration by parts leads to the following identity for 
any two functions p: and p:. 

which can be rewritten using the standard inner product 
denoted (., .), for the domain [0, L,] x [O,T]: 

(P:IxP% = ( N : P : I P L  + b z  (6) 

We will denote by (., .)[o,Tl the standard inner product in 
[O, TI. N; is called the adjoint operator of Ni. In order to 
express the first variation of .7 as a function of the w: and @: 
only, we choose an adjoint density field p: that cancels all 
the terms containing pi in the cost function. First, in order 
to eliminate the term & cc, &! s,"i pm:\(-2;i;;)z,,t)dx;dt, 
we choose p: such that 

This is a first order linear hyperbolic PDE, which is well- 
posed if p ,  is known and both the boundary conditions at one 
location and the initial conditions at one time are specified. 
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Fig. 2. Network model shown in 131. We now add B divergence link in 
order io be able lo show that we are able to control the density of aircraft 
by splitting the Row. For this simulation, we restrict ourselves to the box 
including ORD. The new additional link is shown with a dashed line. We 
call 01 the portion of Row which stays on link 1 (called I bis) and 1 - 01 
the ponion which goes into the new link (link 6). 

This allows us to enforce two other conditions for p; in order 
to cancel all the terms containing pi.  We can choose: 

p:(Z; ,T) = o  
p ; ( L i , t )  = -1 

P:(Li,t) = a ( t ) P : , ( O )  + (1 - D&))p;*(O) 

V i €  11,". ,N} ,VZ i  E [0,Li] 
vi E F, Vt  E [O,T] 

vz ED, vt E [O,T] 

p : ( O , t ) = p ; ( l j , t ) V i ~ M ,  V jEEU( i ) ,  V t E  [O,T] 

(9) 
I ,  

These conditions have been chosen by necessity of the 
algebraic derivation, in order to cancel appropriate terms in 
the perturbation of the cost function? After some algebra, 
using (&9), we are able to express the first variation J' of 
J as a function of the first variations control variables only 
(ut and 0:). as well as nominal and adjoint quantities, which 
we can evaluate. The result reads: 

IV. APPLICATION TO CONTROLLER DESIGN 

In this section, we demonstrate the effectiveness of the 
method by applying it to the air traffic model built in [3]. 
Please refer to [3] for a description of airspace. Figure 2 
shows the area which we will control (enclosed by a box). 
The inflows into the box are thus now 4;" ne\u and qf 
as shown in Figure 2. We want to impose the following 
constraint: for all links, the density should be below a 
threshold pmm which we impose. We allow the flow to be 
split into a new link (link 6), in order to aid satisfaction of the 
maximal density constraints. We call p1 the corresponding 
split factor: f l ~  is the fraction of the flow which stays on l i  
1 (called 1 bis); 1 -PI is the fraction which is routed through 
link 6. This new link might use another amval into the airport 
(it enters the arrival airspace from an other direction)." We 
simulate the following three scenarios: 
Scenario 1: normal traffic. (Real data) We take ETMS 
data, from which we extract initial conditions and inflows, 
as explained in [3]. We impose a restriction on the density 
and control the flow. 
Scenario 2: heavy traffic. (Modified real data) We take the 
same data as for the previous case, and add additional aircraft 
in order to overload even more the network. 
Scenario 3: congested network. We generate data with very 
high densities of aircraft. This situation does not use ETMS 
data; it is generated randomly. 

Figure 3 shows the decrease in cost for the three scenarios 
as a function of the total number of iterations (i.e. iterations 
on M and gradient advances). As can be seen in this Figure, 
the more congested the situation is, the higher the cost is. 
The evolution of the cost with iterations exhibits two distinct 
behaviors, as often with barrier methods [6]: large jumps 
corresponding to the increases in M, and shallower decreases 
corresponding to the gradient advances. Convergence is 

of the results for the third case. An animation (in form 

g ' = C ( p , % + g ( L - -  "<-"min.,) 141 
clearly observed for the three scenarios. We display some 

where again (,, .); denotes the inner product for the do- 
main (O,L;] x [O,T] and (.,.)pT~ for [O,T]. The functions 
v i ( . , . )  and Pi(.) generated by this method might be ill- 
behaved and thus be inappropriate for practical Air Traffic 
Control applications. We can alleviate this difficulty by 
projecting the descent direction p;z + l/M(l/(umm,; - 
oi )  - l/(v; - vmin,i)) into a vector space & of appropriate 
functions, for example the set of continuous functions with 
bounded derivative, or the set of continuous piecewise affine 
functions. 

'The algebra which led to the "go4 choice" (9) is available from the 
authors upon request. In addition, a physical interpretation of the boundary 
and terminal conditions of the adjoint can be given. The first condition is 
terminal and stipulates that the sensitivity of the solution to penurbations 
of the system at t = T is zero. The second conditions accounts for the 
sensitivity of the solution at the sink by achlating directly there, one 
decreases the objective function. The third condition at every merging node 
says that the sensitivity is the same for all branches connected to the node, at 
that point. The last condition says the same at the diverging nodes, weighted 
by the mean bi which represents the portion of Row choosing the respective 
links outgoing from the node. 

of an .avi movie file) Corresponding to each of the three 
scenarios is available at [18]. We now describe in detail 
the scenario corresponding to Case 3. We run a one hour 
simulation. Figure 3 shows the aircraft density on all links 
at various instants, in the absence of control: the velocity 
is the mean velocity profile determined for each link in [3], 
and no aircraft is allowed into link 6 (i.e. .= 1). The 
initial density is shown in the top left comer. The inflow 
into links 1 and 3 is such that at time t = 27, the density 
threshold (represented by the horizontal line on each subplot) 
is violated until time t = 45. At time t = 55, it is violated 
again, until the end of the experiments. Figure 4 shows the 
same experiment when link 6 is now opened to traffic, and 
velocity control is enabled. As can be seen, about half of the 

'Note that using 01 is equivalent to using tuming proponions in road 
t r a c ,  and might not be the best way to represent network traffic. It could 
be bener to define an assignment proportion, i.e a coefficient indexed 
by destination. This might be implemented in the future (as a pan of 
the conlrol strategy), using a framework such as the one developed by 
Papageorgiou 1171. 
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Fig. 3. Top left: Decrease of the cost as a function of the iterations for the three scenarios. The increases in M are clearly visible (steps), while the 
gradient descent is more subtle. Congefted traffic (solid); heavy traffic (- -); normal t r a c  (-.). Top middle: Decrease ofthe true cost as a function ofthe 
iterations. The m e  cost is the cost J without the barrier terms. The method does not guarantee the monotonicity of the decrease but only the convergence. 
Top right: Evolution ofthe 01 parameter as B function oftime. Botlom: Evolution of the velocity fields as a function of time for the different links. Each 
of the plots corresponds lo a link. (see top lefI comer). The axis of each subplot are: zi (arclength along the link), t (time) and vi(=, ,  t), the velocity 
distribution. 

traffic incoming into link 1 is rerouted into link 6, and the 
other half into link 1 his. Figure 3 shows the variation of ,& 
with time. As can he seen, around t = 20 min., there is a 
peak of about 25% of aircraft routed into link 6, which settles 
to 50% at t = 30. The routing control enables avoidance of 
violation of maximal density shown in Figure 4. The first 
violation is avoided by velocity changes. 

The velocity profiles v,(z~, t )  are shown in Figure 3. Each 
OF the subplots corresponds to one of the links. For links 
5 and 6, one can clearly see the descent velocity profiles. 
Also, for link 6 (subfigure below), one can see a ridge. It 
corresponds to a’ set of aircraft which have to fly at high 

speed into the airport. One can also see similar ridges on the 
other subplots, which have the same interpretation. For any 
ridge, the Controller command could he to the corresponding 
set of aircraft: ‘<fly direct at 420 kts direct into [the next 
waypoint]”. Note that in the absence of control, the first 
violation of the aircraft density threshold occurs 33 minutes 
after the beginning of the experiment, almost at the end of 
the network, which i s  not intuitive. This shows the efficiency 
of the method, which is capable of generating the right 
routing and speed assignments to prevent undesirable events 
from happening much later. Finally, the simulations are also 
depicted on a US map in Figure 5 using the same density 
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Fig. 4. Top 6 subllgum: Evolution of the aircraft density on the different links in the absence of control. Each of the subplot shows the density 
distribution at a given time on the corresponding link BS in Figure 3 (the horizontal coordinate represents location, the vertical represents density). The 
horizontal line represents Le density threshold (all quantities are nondimensionslized by pmax. so that the threshold density is 1). As can be seen. the 
density threshold is violated in link 5 at t = 27, t = 39 and t = 59. Bottom 6 subfigures: Evolution of the aircraft density with control applied. Note 
lhat link 6 is now open, and used. This prevents the second violation of density threshold observed in Figure 4 (t = 59): some of the flow is directly 
muled fmm link 1 to link 6. The f i s t  violation seen in the tap 6 subfigures is avoided by speed changes. This figure is also available in form of a .avi 
file at [IS]. 

encoding as in [3]. One can see that before t = 27, all 
aircraft choose the direct route through link 5 to Chicago 
(it is shorter). After t = 27, the excessive amount of flow 
incoming into links 1 and 3 forces the flow to be split through 
links 1 bis and 6. 
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