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Abstract—The rise of congestion across the United States and
the increasing adoption of mobile routing services have enabled
drivers with the ability to find the fastest routes available in urban
road networks. Arterial roads and side streets originally designed
for local traffic are impacted by the influx of selfishly routed
drivers, garnering much recent media attention and civic debate.
Classic flow-based game theoretic models provide the framework
for simulating the behavior of routed and non-routed drivers
on a road network. We developed an interactive policy decision
support system called the Routing Impact Detection, Evaluation,
and Response Decision Support System (RIDER DSS) as a tool for
policymakers and practitioners to hone in on areas most impacted
by routing apps and assess potential policy actions to mitigate the
effects of cut-through traffic on a local and regional scale. In a case
study of Baxter Street in the Los Angeles Basin we demonstrate
how the RIDER DSS can relate the percentage of app users in a
network to the distribution of traffic flow on side streets.

I. INTRODUCTION

A. Motivation and Context

Congestion is on the rise in urban areas across the United
States. Each year, American auto commuters spend 42 hours
in peak hour traffic, amounting to a yearly cost of $960 per
person [1]. As suburbanization remains the dominant trend in
the growth of urban areas, the demand for road travel is rapidly
outstripping the capacity of the nation’s regional and local
transportation infrastructure [2]. Total vehicle miles traveled
(VMT) in the U.S. rose 8% from 2012 to 2017, with a 4.2%
increase in VMT per capita over the same period [3].

In addition, the growth of the smartphone industry has
equipped individuals with unprecedented access to informa-
tion via mobile internet services, including real-time traffic
information and routing guidance. Seventy-seven percent of
American adults own smartphones today (up from 35% in
2011) and, as of December 2016, Google Maps and Apple
Maps were among the top 15 most popular mobile apps in
the U.S., with 102 million and 53.9 million unique monthly
users, respectively [4],[5]. The rapidly growing real-time traf-
fic information industry includes competitors such as Apple,
Google, HERE, INRIX, TomTom, and Waze, all of which
strive to offer highly responsive and reliable routing services
through routing applications on smartphones and/or aftermarket
devices in connected vehicles, guiding drivers along the fastest
routes available on public roads. The use of routing apps by
ridesourcing drivers working for companies such as Lyft and
Uber is also contributing to the dramatic increase of app-guided
traffic in urban areas. In San Francisco, for example, there are

over 45,000 registered ridesourcing drivers mostly using the
same routing app (Waze/Google) [6].

While app-based routing is perceived as beneficial by in-
dividuals whose travel times are seemingly minimized, the
resulting allocation of selfishly routed traffic is being blamed
for a significant increase in congestion on local, low-capacity
road networks [7]. During peak hours, traffic is routed from
highways onto local roads ranging from arterials to residential
streets, often greatly exceeding the design capacity of those
facilities. Communities impacted by the influx of cut-through
traffic suffer from numerous negative externalities, including
excessive noise, air pollution, wear and tear to roads and
sewage lines- not to mention degraded neighborhood safety and
quality of life [8],[9]. In response, residents have employed tac-
tics of installing counterfeited road blockage signs, falsifying
hazard reports to crowdsourced routing apps such as Waze, and
even equipping elderly pedestrians with routing app-enabled
smartphones to influence estimated average travel speeds. All
in all, citizens can do little more than voice their concerns to
local government and the media.

City officials and policymakers have been slow to respond,
however. In Los Angeles, the most congested city in the U.S., a
yearlong study completed in December 2017 revealed flows of
more than 900 cars an hour on streets scarcely 20 feet wide,
built for 2,000 cars a day [1],[8]. Eighty-six percent of that
traffic was found to be cut-through traffic, yet city officials’
attempts to convince companies like Waze to stop diverting
traffic from highways to local streets have been unfruitful.
Many cities are considering traffic calming techniques such
as speed humps, road diets (road capacity reduction), semi-
diverters (barricades to two-way traffic), small traffic circles,
or redesigning the road networks altogether. However, these
measures are expensive and could result in degraded road
capacity for locals. In an effort to put a stop to the influx of
rerouted commute traffic, the borough of Leonia, New Jersey
installed ”Do Not Enter” signs in January 2018 effective during
commute hours on 60 residential streets, with a $200 fine for
violators [10]. Soon after the signs went into effect, a lawsuit
was filed against the city, citing that the road closures caused
traffic to be rerouted into neighboring communities.

Regional policies such as high-occupancy vehicle lanes
(HOV), high-occupancy toll lanes (HOT), spatial and/or tem-
poral road use pricing, cordon tolling, and digital impact fees
have potential for reducing both cut-through traffic and hyper-
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congestion by incentivizing high-occupancy mode use and
reduced travel demand during peak travel times [11]. Pricing
policies are politically sensitive, requiring careful analyses and
compelling messaging to garner public support. Public officials,
policymakers, and transportation planners would benefit from
a standardized method for visualizing and quantifying the
externalities of routing apps in congested urban networks.

B. Background

Selfish routing is a phenomenon of noncooperative networks
in which users of a network choose to travel from their origin
to destination along a path that minimizes their individual
latency, or cost function [12]. Such noncooperative behavior
is exhibited by drivers on a road network and can be studied
using a game-theoretic approach in which the resulting traffic
flows represent a Nash equilibrium [13]. A Nash equilibrium,
also referred to as a user equilibrium or Wardrop equilibrium
in traffic theory, is achieved when unilateral deviation by any
user from its path would result in no improvement to that user’s
latency [14]. Nash equilibria are well studied in economic
theory and have been shown to be socially suboptimal [12].

In traffic modeling, a user’s latency is typically a function
of the travel time of each arc along a path in the network.
In reality, users have varying degrees of access to information
about network travel times, thus constraining their behavior
with boundedly rational decision-making, which may result in
suboptimal choices due to the lack and/or price of information
[15],[16],[17]. Thai et al., present a static heterogeneous traffic
assignment problem with two classes of users: routed users
that follow travel time minimizing directions from a routing
app, and non-routed users that make routing decisions based
on a multiplicative cognitive cost model that accounts for the
relative convenience of choosing high capacity road segments
for a driver with limited information [7]. Thai et al. demonstrate
the rationality of the multiplicative cognitive cost model for
routing under conditions of low traffic demand as well as
its suboptimality during peak hours, thereby exhibiting the
attractiveness of app-based routing. Application of their model
in a static traffic assignment for the Los Angeles road network
with varying percentages of routed users reveals that the selfish
routing enabled by apps causes a 300% increase in VMT
on low-capacity roads. Cabannes et al. propose the restricted
path choice model, a refinement of the cognitive cost model
in which non-routed users’ routing options are restricted to a
subset of all possible paths between their origin and destination
in the network [18].

C. Contributions and Outline

We present a traffic routing model-based decision support
system (DSS) that leverages the realism achieved by flow-
based game theoretic traffic assignment models to provide
practitioners and policymakers with the ability to assess the
impacts of selfish routing on local and regional networks. The
Routing Impact Detection, Evaluation, and Response (RIDER)
DSS is a realistic, computationally efficient modeling and
simulation resource that contributes to the improvement of
the state of the art in travel modeling and transportation
planning by enabling policy makers to assess and respond to
the externalities produced by selfish routing in urban networks.

The RIDER DSS is equipped with multiple routing models to
allow for the evaluation of mltiple paradigms of routed and
non-routed travel behavior as well as policy scenarios in which
access to particular roads is restricted and/or subject to tolls,
such as digital impact fees.

In section II, we detail the architecture of the RIDER
DSS. Section III demonstrates a use case of the RIDER DSS
in the Los Angeles basin. In section IV we discuss further
applications of the RIDER DSS as well as several planned
improvements for future iterations of the software.

II. THE RIDER DSS

The RIDER DSS is an interactive visualization and scenario
analysis dashboard that leverages static heterogeneous traffic
assignment models with routed and unrouted users to assess
the impacts of routing apps in dense urban networks and
evaluate feasible policy scenarios. In this section we detail
the architecture of the RIDER DSS, the main components of
which are displayed in Figure 1. As in many modern model-
based DSS frameworks, the RIDER DSS includes four main
components: a model base, a solver, a database, and a user
interface [19],[20]. We begin by presenting the formulations
of the models included in the model base, then define the
algorithmic base, or solver of the DSS. Next, we describe
the database architecture and finally discuss the performance
metrics and visualization modules in the user interface.

A. The Model Base and Solver

The DSS employs the static heterogeneous traffic assignment
model presented by Thai et al. [7]. The current implementation
of the DSS includes routed and non-routed users, although
variations of these two user classes could be incorporated. For
the remainder of this article, we refer to routed users as app
users and unrouted users as non-app users. App users are routed
using the shortest path model and non-app users are routed
using either the cognitive cost model or the restricted path
choice model [18].

1) Mathematical formulation and notation: A road network
is modeled as a directed graph G = (V,A), where V is the set
of all vertices v ∈ V connected by the set of all directed arcs
A. Each origin-destination (OD) pair w = {s, t} ∈ W such
that W ∈ V × V corresponds to a quantity of user demand
per unit time dw = dnr

w + drw where dnr
w ∈ RW

+ is the demand
of non-app users and drw ∈ RW

+ is the demand of app users.
Users choose the minimum cost route p ∈ Pw with respect to
their latency function `p(·), where Pw is the set of all paths
from s to t.

The state of the network is defined by a vector of total route
flows f = [fp]p∈P ∈ RP where P = ∪w∈WPw is the set of
all paths in the network. The total route flow f is the sum of the
route flows of app users, fr = [fr

p ]p∈P , and of non-app users,
fnr = [fnr

p ]p∈P such that f = fr + fnr = [fr
p + fnr

p ]p∈P .
A flow vector is feasible if for all w ∈ W ,

∑
p∈Pw

fp = dw,
fp ≥ 0,∀p ∈ Pw. In matrix form, fr and fnr are feasible if
they are in the sets X r and Xnr , respectively, given by:

X r := {fr ∈ RP : fr � 0,Λfr = dr} (1)

Xnr := {fnr ∈ RP : fnr � 0,Λfnr = dnr} (2)
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Fig. 1. Flowchart of the RIDER DSS

where Λ is the OD-path incidence matrix. The latency `p(·)
of each path p ∈ P is given by `p(f) =

∑
a∈p ca(xa) where

ca(xa) is the travel cost of arc a. We assume the travel cost
of arc a depends only on the sum of the flows of vehicles on
the arc xa =

∑
p∈P I(a ∈ p)fp, where I(B) is the indicator

function of the Boolean B. The total arc flow is x = xr +
xnr = [xra + xnr

a ]a∈A where the arc flow vectors of the app
users and non-app users are denoted by xr = [xra]a∈A and
xnr = [xnr

a ]a∈A, respectively. Arc flow vectors xr and xnr

are feasible if they belong to the following sets respectively:

Kr := {xr ∈ RA : ∃ fr ∈ X r, xr = ∆fr} (3)

Knr := {xnr ∈ RA : ∃ fnr ∈ Xnr, xnr = ∆fnr} (4)

2) Nash equilibrium: Both app users and non-app users
are routed to minimize their associated latency functions. The
resulting equilibrium flows describe a Nash equilibrium in
which no individual user can achieve a faster travel time by
switching paths. The equilibrium flows are thus the feasible
flows fr and fnr such that ∀w ∈ W

∀p ∈ Pw, f
r
p > 0 =⇒ `rp(f) = min

q∈Pw

`rq(f) (5)

∀p ∈ Pnr
w , fnr

p > 0 =⇒ `nr
p (f) = min

q∈Pnr
w

`nr
q (f) (6)

where the latency function of app users, `rp, is defined by the
shortest path model while that of the non-app users, `nr

p is
defined by either the cognitive cost model or the restricted
path choice model, all three of which are described below.
Users can specify which of the two latter models to apply to
the non-app users. Since routing apps consider all public road
segments, the path choice set for app users is simply the set of
all paths from s to t, Pw. The path choice set for non-app users
is dependent on the routing model used, thus we specify Pnr

w

in the subsections for each of the models. All three models
depend on a measure of travel time on arc a, ta(xa), which
is a function of the arc flow, free-flow travel time, and scaling
parameter accounting for the effects of congestion on arc a.

3) Shortest path model: App users’ latency function is given
by

`rp(f) =
∑
a∈p

ta(xa), ∀p ∈ P (7)

4) Multiplicative cognitive cost model: The arc set is parti-
tioned into a low-capacity arc set Alo := {a ∈ A : ca < clo}
and a high-capacity arc set Ahi := {a ∈ A : ca ≥ clo}
based on the capacity ca of each arc and an arbitrary capacity
threshold clo, which can be defined in the dashboard. Thus the
arc cost function for non-app users is

cnr
a (xa) =

{
C · ta(xa) if a ∈ Alo

ta(xa) if a ∈ Ahi
(8)

and the route latency function is

`nr
p (f) =

∑
a∈phi

ta(xa) + C
∑
a∈plo

ta(xa) (9)

where C > 1 is a constant representing a non-app user’s
preference for high-capacity road segments over low-capacity
road segments when choosing a route and phi and plo are the
high- and low-capacity road segments in path p, respectively.
In this model, the path choice set of non-app users is not
restricted, thus Pnr

w := Pw.
5) Restricted path choice model: The second option for

non-app user routing is the restricted path choice model, which
reduces the available path choice set for a particular class of
users. For the implementation of this model in the RIDER DSS,
we consider that the non-app users have limited information
about the real-time traffic conditions on the network, and thus
are restricted to the path that minimizes the total travel time
under free flow conditions. The latency function is thus the
same as the shortest path model

`nr
p (f) =

∑
a∈p

ta(xa), ∀p ∈ Pnr
w (10)

where the path choice set is restricted to Pnr
w :=

{argmin
q∈Pw

∑
a∈p ta(0), ∀p ∈ Pw}.
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6) Frank-Wolfe: We use the theory of variational inequality
[21] to solve for the equilibrium flows described in (1) and (2)
with the Frank-Wolfe algorithm (FW) [22]. The equilibrium f
can be described as a feasible solution (fr, fnr) ∈ Kr ×Knr

of the following variational inequality problem

`r(f)T gr + `nr(f)T gnr ≥
`r(f)T fr + `nr(f)T fnr, ∀(gr, gnr) ∈ Kr ×Knr (11)

The network equilibrium is computed for every integer per-
centage of app users α ∈ {0, .01, .02, ..., .99} such that

dw = (1− α)dnr
w + αdrw ∀w ∈ W (12)

7) Average Marginal Regret: The equilibrium flows result-
ing from the heterogeneous traffic assignment model differ by
some amount from the user equilibrium that would result from
universal access to real time information. In these proceedings,
Cabannes et al. present the average marginal regret, a metric
for quantifying the difference between the actual costs of
the equilibrium flow in a heterogeneous traffic assignment
and the costs of the theoretical Wardrop equilibrium [23].
The average marginal regret for the network, R(f), is the
weighted arithmetic mean of the instantaneous marginal regret
R(f, p) = `p(f) − ˙̀

p(f) over every path p ∈ Pw for all
w ∈ W such that ˙̀

p(f) = argmin
p∈Pw

`p(f) is the minimum

latency for path p ∈ Pw. It follows that the average marginal
regret is given by:

R(f) =
1

‖d‖1

∑
p∈P

fp · R(f, p) (13)

where ‖d‖1 =
∑

w∈W dw.

B. User Defined Input

1) Network attributes: To instantiate the RIDER DSS for
a particular road network, the user must provide the network
configuration, including the set of nodes in the network with
the corresponding latitude and longitude pairs, the arc set, and
arc characteristics such as the free flow travel time and the
scaling parameter for each arc.

2) Model parameters: The user must upload the total travel
demand dw for each O-D pair w in units of vehicles per time.
The user can toggle between the two available non-app user
route choice models. For the cognitive cost model, the user can
specify the capacity threshold for low versus high-capacity road
segments, clo, and the cognitive cost constant, C.

C. Database

The DSS database stores the user-defined input and results
from the model base in a NodeJS static server with ExpressJS
middleware in REST API convention. The data required for
the visualization modules in the user interface is rendered in a
geoJSON format.

D. User Interface

The user interface of the RIDER DSS is a modular dash-
board with three types of expandable modules that can be
toggled on or off: network visualization, model parameters,
and key performance indicators (KPIs). The dashboard runs
in a web browser using a ReactJS framework. This front-end

framework was chosen because of a strong user community
that provides technical support and a certain reliability that the
technology will continue to be accessible in the foreseeable
future.

1) Network visualization: The Leaflet library is used to
create the network visualization module, which display at-
tributes of the traffic assignment on an interactive map of the
network. The user can choose which attributes or combinations
of attributes to display in each visualization module, including
but not limited to: arc flows, distributions of app user and non-
app user arc flows, arc capacities, and arc travel times. The
visualization module allows users to display attributes of all
equilibrium flows on the network, as well as those of specified
OD pairs.

2) Model parameters: Model parameters such as latency
functions, arc capacity thresholds, and the percentage of app
users can be updated using a model parameter module on the
dashboard. The app user percentage slider, for example, allows
the user to adjust the percentage of app users present in the
entire network using an integer sliding scale from 0 to 99%
app users. All other modules update in real time to reflect the
app user percentage selected by the slider.

3) Key performance indicators: The KPI module provides
measurements of the average marginal regret and total travel
time of the static traffic assignment.

III. CASE STUDY: THE LOS ANGELES BASIN

We demonstrate a case study using the RIDER DSS with
the network of the Los Angeles basin. In early 2018 residents
of Echo Park, Los Angeles County began reporting excessive
through traffic on Baxter St.-one of the steepest streets in
America (see Figure 2). Drivers unfamiliar with the 32% grade
of Baxter St. are in danger of collisions with difficult to
see oncoming traffic and brake failures- many vehicles even
spun out onto neighbors’ gardens [9]. The rerouting typically
occurred during peak hours, when Southbound vehicles on
Alessandro St. was routed onto N. Alvarado St. to avoid the
build up of traffic caused by the merging of both the Glendale
Freeway and Alessandro St. onto Glendale Blvd. The app users
were directed to turn left onto Baxter St. from Alessandro St. to
bypass the bottleneck by traveling down either N. Alvarado St.
or Lake Shore Blvd. instead of Glendale Blvd. In May 2018,
Echo Park converted the two blocks of Baxter St. on either side
of N.Alvarado St. into disjoint one-way roadways to prohibit
through traffic from driving uphill on Baxter St. For this case
study, we use the DSS to explore the phenomenon that caused
the build up of rerouted traffic on Baxter St., demonstrating
the ability of the RIDER DSS to identify areas likely to be
impacted by increasing routing app adoption.

A. Data Sources

The demand matrix of the Los Angeles Basin includes
96,077 OD pairs derived from the Census Transportation Plan-
ning Products database and the 2006-2010 5-Year American
Community Survey Data [24]. The road network parameters
are sourced from Open Street Maps (OSM), including 14,617
vertices and 28,376 arcs. Road capacities are defined by the
OSM category of each road (motorway, primary, secondary,
tertiary).
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Fig. 2. The RIDER DSS Dashboard displaying the demand distribution across the LA Basin network, and the demand distribution on Baxter
St. and N. Alvarado St. with 0, 50, and 99% app users (best viewed in color).

B. Computation

The case study was implemented on a computer with 16 GB
of RAM, with an intel i5-6600k processor. The computation
time for each app user percentage value α was 49 minutes,
resulting in a total computation time of 3.5 days to populate
the dashboard with a particular network specification. For the
pusposes of the case study, the dashboard is loaded with the
results of a single network specification.

C. Visualization

Figure 2 displays the RIDER DSS dashboard with three
modules: the app user percentage slider, the average marginal
regret KPI, and the overall network demand distribution map.
The demand distribution map shows the distribution of arc
flows as a proportion of the maximum arc flow on each road
segment. We zoom in on Baxter St. and N. Alvarado St. to
examine how the arc flow distribution changes with respect to
increasing app user percentages on the network. In the top right
window of Figure 2, there are no app users on the network,
and the distribution of flow on both Baxter and N. Alvarado
is relatively small. With 50% app users, there is an increase in
flow on N. Alvarado St. as well as on Baxter St. on both sides
of N. Alvarado St. Additionally, there is a slight decrease in
flow on the Glendale Freeway and an increase on Alessandro
St., as drivers are routed onto the shortcut. Lastly, with 99% app
users, the flow on the part of Baxter St. between Alessandro
and N. Alvarado St.s (the portion on which many accidents
were occurring) increases to maximum.

The conversion of the affected segments of Baxter St.
into one-way roadways has impeded drivers from taking the
dangerous shortcut. However, other shortcuts are available on
neighboring streets which has prompted the city to make three
additional changes to disrupt the flow of traffic on neighboring
streets. The RIDER DSS in its full capacity would enable
city’s such as Echo Park to take a more holistic approach to
forecasting and verifying the impacts of routing applications
at the local as well regional scale, and in taking action to

reducing those impacts and maintaining the quality of mobility
and safety on local streets.

IV. FUTURE WORK AND APPLICATIONS

Future work on the RIDER DSS includes the implementation
of additional model parameter and KPI modules in concert
with high performance computing (HPC) to enable the user to
tune various network and routing parameters directly through
the user interface and immediately view the impacts of the
resulting distribution of traffic.

A. Parallel Franke-Wolfe

The computational cost of calculating Nash equilibria with
the sequential FW is too high to be used in a practical setting.
As seen in the case study, determining the equilibrium flows for
one integer percentage of app users α ∈ {0, .01, .02, ..., .99}
on the LA Basin network takes 49 minutes, and a total time
of 3.5 days to compute the equilibria for all 100 percentage
values. This is not useful for real-time traffic operation nor
for a responsive policy scenario analysis tool. Hence, we
designed and implemented a parallel version of the FW that
can run on high performance computing resources to speed up
computation time.

A performance analysis found that the all-pairs shortest-path
computation step in the sequential FW accounts for more than
95% of the computation time. Hence, as shown in figure 3,
the parallel FW parallelizes the shortest-path calculation in
accordance with the number of computing cores available. Each
compute core can run several processes concurrently. The set of
OD pairs in the demand matrix is then divided equally among
all the processes running on the compute cores that solve for
the network equilibrium in parallel. Cabannes et al. found
that, on average, this parallel FW implementation reduced
the equilibrium computation time by a factor of 50 using 10
compute cores running 160 processes simultaneously on the
Cori supercomputer at the Lawrence Berkeley National Lab
(LBNL) [25],[18]. The computation time for one percentage
of app users was reduced from 22 minutes to 44 seconds.
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Fig. 3. Parallel Frank-Wolfe: Parallelized over origin-destination pairs

In our future work, we will extend the RIDER DSS software
to work with the parallel FW. The significant speed up in
computation time will enable the DSS to be used for respon-
sive policy scenario analyses and, eventually, real-time traffic
operation settings.

In addition, we plan to extend the functionality of the
user interface to allow users to alter the network parameters
by interacting with the model parameter and visualization
modules. For example, the capacity of an arc could be increased
or decreased to simulate the occurrence of a traffic incident,
the installation of a speed bump or additional traffic stop,
or a change in speed limit. A user could adjust the latency
functions for different classes of users or for particular arcs in
the network to model the effects of road pricing policies and
include heterogeneous values of time, if desired.

V. CONCLUSION

Classic flow-based game theoretic models simulate the rout-
ing behavior of mixed traffic consisting of routed and non-
routed users in a congested road network. The RIDER DSS
implements these models in a static traffic assignment, allowing
policymakers and practitioners to assess the impacts of routing
applications on urban mobility at a local and even regional
scale. Users can inspect particular corridors or pain points,
and are able to adjust the network parameters to reflect the
current network demands to visualize the allocation of traffic
under different scenarios of routing app adoption in the area.
In the future, the DSS will enable users to alter the network
to reflect policy actions and evaluate the network effects of
various alternatives.
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