
Efficient Learning Methods for Mixed Autonomy Traffic

by

Abdul Rahman Kreidieh

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Civil and Environmental Engineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Alexandre M. Bayen, Chair
Emeritus Professor In-Residence Alexander Skabardonis

Professor Claire Tomlin

Fall 2022

Efficient Learning Methods for Mixed Autonomy Traffic

Copyright 2022
by

Abdul Rahman Kreidieh

i

Abstract

Efficient Learning Methods for Mixed Autonomy Traffic

by

Abdul Rahman Kreidieh

Doctor of Philosophy in Engineering - Civil and Environmental Engineering

University of California, Berkeley

Professor Alexandre M. Bayen, Chair

Automated driving systems are expected to play a critical role in the future of transportation.
With fast reaction times, vehicle-to-vehicle communication, and the potential for socially
optimal driving behaviors, automated vehicles may serve a central role in improving driving
conditions within existing road networks, reducing the prevalence of traffic congestion and
enabling fast and energy-efficient driving. Generating behaviors that produce such effects
in real world settings, however, is no trivial task. In particular, when coupled with human
drivers in mixed-autonomy settings, coordination between human-driven and automated
vehicles becomes increasingly delicate, and motivates the need for new and advanced tools
for solving these tasks.

Through the research outlined in this document, we aim to identify efficient methods for
learning congestion-mitigating control strategies that can be employed by automated vehicles
in partially automated road networks. Recent advances in deep reinforcement learning have
highlighted the potential of said techniques in producing control strategies that match or
outperform classical approaches on a variety of decision making and control tasks. The
applicability of similar approaches to mixed-autonomy traffic control, however, is hindered by
a number of challenges. For one, exploration in these settings is difficult, as individual actions
may not influence the flow of traffic until multiple timesteps in the future. In addition, the
process of modeling and executing simulations of realistic traffic flow networks at the level of
individual vehicles is a difficult and computationally costly endeavor. Through techniques
such as hierarchical learning, imitation from experts, and robust learning in simplified tasks,
we hope to design data-efficient methods for generating control strategies for automated
vehicles that are transferable to the real world.

ii

To my parents, Jamal and Rima.

To my sister, Maya.

Thank you all for your support.

iii

Contents

1 Introduction 1
1.1 Early developments in vehicle autonomy . 1
1.2 Machine learning in automated driving . 2
1.3 Thesis overview and contributions . 3

2 Review of Machine Learning Frameworks 6
2.1 Markov decision processes . 6
2.2 Reinforcement learning . 11
2.3 Imitation learning . 15

3 Learning Traffic Regulation Policies in Simulation 17
3.1 Microscopic traffic flow models . 17
3.2 Reinforcement learning in mixed-autonomy traffic 21
3.3 Benchmarks for RL in mixed-autonomy traffic 26
3.4 Chapter Summary . 31

I Learning Across Long Time Horizons 33

4 Inter-Level Cooperation in Hierarchical Reinforcement Learning 34
4.1 Introduction . 34
4.2 Related work . 36
4.3 Preliminaries . 37
4.4 Cooperative hierarchical reinforcement learning 40
4.5 Experiments . 43
4.6 Chapter Summary . 48
4.7 Derivation of cooperative manager gradients 49
4.8 Cooperative HRL as goal-constrained optimization 53
4.9 Environment details . 54
4.10 Algorithm details . 56

iv

II Exploiting Expert Demonstrations 59

5 Learning Energy-Efficient Driving Behaviors by Imitating Experts 60
5.1 Introduction . 61
5.2 Related Work . 62
5.3 Experimental Setup . 65
5.4 Numerical Results . 68
5.5 Chapter Summary . 72

6 Data-efficient Learning for Cooperative Driving through Expert Relabeling 74
6.1 Introduction . 74
6.2 Preliminaries . 76
6.3 Problem statement . 78
6.4 Expert control mechanism . 79
6.5 Experimental Setup . 82
6.6 Numerical Results . 89
6.7 Chapter Summary . 91
6.8 Appendix . 91

III Generalizing to Complex-to-model Dynamics 98

7 Dissipating Stop-and-go Waves in Closed and Open Networks via Deep
Reinforcement Learning 99
7.1 Introduction . 99
7.2 Preliminaries . 101
7.3 Experimental Setup . 103
7.4 Numerical Results . 107
7.5 Chapter Summary . 110

IV Final Remarks 111

8 Conclusion and Future Prospects 112

Bibliography 115

v

Acknowledgments

First and foremost, I want to thank my advisor, Alexandre Bayen, for his mentorship and for
guiding me through my PhD. His commitment and continuous support has made this PhD
possible and shaped me into a better researcher. Thank you also to my committee members,
Alexander Skabardonis and Claire Tomlin for their support and guidance. And finally, in
terms of mentors, thank you Steven Glaser for affording me the opportunity of exploring the
realm of research within Berkeley during my undergraduate years, and for his support and
encouragement to pursue my Masters, and eventually PhD, here.

I am grateful to have had the opportunity to collaborate with an amazing group of
students, faculty, and researchers during my PhD. For the work in this thesis, I want to
thank Cathy Wu, Eugene Vinitsky, Zhe Fu, Glen Berseth, Kathy Jang, and Nathan Litchlé.
I would also like to thank all of the undergraduate students I worked with during my PhD
including Yibo Zhao, Samyak Parajuli, Gilbert Bahati, Brandon Trabucco, Kanaad Parvate,
and Nishant Kheterpal. In addition, thank you to my other labmates as well for the fun Friday
and weekend lunches, the lab retreats to Maui and Yosemite, and all the interesting and
joyful conversations: Alexander Keimer, Yashar Zeiynali Farid, Alben Rome Bagabaldo, Joy
Carpio, Théophiles Cabannes, Fangyu Wu, Fang-Chieh Chou, Yiling You, Marsalis Gibson,
Ashkan Yousefpour, Jessica Lazarus, Arwa AlAnqary, Sulaiman Almatrudi, Saleh Albeik,
Shuxia Tang, and others I may have have missed. And thank you to all the member of the
CIRCLES consortium, who are far too numerous to list without me missing one, for playing a
role in possibly the most ambitious and largest project I will ever being a part of, and for all
the important lessons you taught me along the way. Despite a turbulent few years, we still
managed to deploy 100 automated vehicles simultaneously in an attempt to reduce traffic
congestion. After all those years of hard work, the largest traffic experiment of its kind to
date, and a job well done!

Finally, I’d like to thank my parents, Jamal Kreidieh and Rima Mehio, and my sister,
Maya, for all their years of love and support. I am truly blessed to have a support structure in
my family that ensured I would never go wanting neither financially nor emotionally. Thank
you also to all the people unnamed here whose interactions and incident encounters made my
time here fuller and taught me much about the richness of human experiences. And thank
Anna for all the trips we took across the United States, for the fun times we had together,
and for exposing me to a part of this world that I was otherwise blind to.

1

CHAPTER 1

Introduction

1.1 Early developments in vehicle autonomy

Automated driving systems have long been a topic of fascination and debate. Interest in
vehicle autonomy dates back to the 1920s and 30s, when radio-controlled “phantom autos”
took to the streets, captivating audiences and drawing thousands of spectators in cities across
the United States [85, 1]. Excitement towards autonomy would then grow and dissipate
over the next few decades, spurred in part by visions of expressways connecting the country
and allowing drivers to travel safely and easily without loss of speed [14, 108]. This vision
would culminate in various experiments conducted in 1950s and 60s, whereby carmakers
used inductive wires and coils placed on the road and coupled with simple feedback loops
to guide vehicles in a driverless manner. These demonstrations, while garnering attention,
where infeasible at scale, and as such, automated vehicles were relegated to popular culture
once again.

Vehicle autonomy would not truly see a renaissance until the 1980s, whereby advancements
in sensing modalities and information processing allowed for researchers to encode more
intricate behaviors into their cars. Onboard devices including cameras and radar systems
were coupled with, at the time, advanced machine learning tools for feature extraction, edge
detection, and motion capture to allow vehicles to perform simple yet astonishing feats
such as road following and obstacle avoidance [41, 171]. These events marked a pivot in
automated vehicle technology, suggesting that machine learning, as opposed to standard
control mechanisms alone, would play an important role in the advancement of the field. This
trend would then continue throughout the 1990s and early 2000s, with seminal competitions
such as the DARPA Grand [23] and Urban [24] challenges pushing the state-of-the-art in
machine learning for terrain analysis, and demonstrating that such systems can enable vehicles
to navigate long distances in unstructured landscapes with no human feedback.

CHAPTER 1. INTRODUCTION 2

1.2 Machine learning in automated driving

Today, machine learning systems have permeated nearly every challenge surrounding auto-
mated driving. Deep learning, in particular, has become an increasingly popular tool. In
comparison to similar machine learning methods reliant on handcrafted features for data
analysis, deep neural networks allow for the automation of the feature generation procedure,
with representations of input observations learned and stored internally within a model’s
parameters [90]. This approach, when coupled with the abundance of data and compute
resources in recent years, began to outperform its counterparts in a variety of vision [84] and
language-processing [67] tasks, and quickly found its way to other problems as well.

In the context of automated driving, deep learning methods have become the standard
through which vehicles perceive and understand their surroundings. High-dimensional inputs
such as those provided by HD cameras or LiDAR are segmented via a variety of tools (e.g [53,
134, 37, 133, 210]) into canonical “objects” whose categorizations, be they other vehicles,
pedestrians, or terrain, may readily be identified. This provides automated vehicles a scenic
understanding of their environment and is then used to either predict the movements of agents
surrounding a given vehicle [4, 206, 91, 140], or coupled with feedback control strategies to
dictate safe and effective ways for said vehicle to maneuver towards its destination [125]. For
a more thorough review of each such technique, we refer the readers to [56].

More pressing to the present document, however, deep learning and artificial intelligence
methods have similarly begun to directly define how vehicles act and navigate within their
surroundings, thereby negating the need for extensive rule-based controllers or additional
perception and prediction models. This paradigm, whereby sensory information is directly
mapped to control outputs, is often termed end-to-end learning, and appears in a variety
of different forms [211]. Most prominently, researchers and practitioners have attempted to
exploit supervised learning techniques, particularly in the context of imitation learning, to
map sensory inputs to steering and throttling commands performed by human drivers in
similar situations. This approach has a long history of use dating back to the 1980s with
the autonomous car ALVINN [132], and has, as with other machine learning applications,
benefited greatly in recent years from an abundance of human-labeled data [34, 11, 62].

In addition, reinforcement learning techniques have also begun to see a growth in popularity.
Reinforcement learning (RL), described in Chapter 2, is a class of machine learning algorithms
that, through interactions with an environment, attempts to learn the parameters of a policy
that optimize its performance on a given sequential decision making task. These methods,
coupled with the expressive capabilities of deep neural networks, have produced remarkable
results on a variety of control and strategy-driven tasks [114, 152, 94], thereby motivating
similar research in the context of automated driving. Today, research into RL for automated
driving is conducted primarily in simulation settings (e.g. [43]) with few exceptions [76].
Studies in this regard look to applications such as car-following [40, 208], lane changing [193,
112, 69], and merging [192, 61], with an emphasis on learning behaviors that are both
comfortable [70] and safe [149, 190] for passengers. The vision here: the deployment of fleets

CHAPTER 1. INTRODUCTION 3

of vehicles that would facilitate a more productive use of the transit time and reduce the ill
effects of driving inattentiveness or stress.

A far less appreciated aspect of driving in machine learning systems, however, has been
the implications of such systems on the mobility or efficiency of existing road networks.
Automated vehicles, as with a multitude of robotics applications, do not exist and react to
their environment in isolation, but rather their environment reacts back, often in strange and
unexpected ways. For automated vehicles, these effects may readily be seen in factors such as
traveling time [165] and fuel-economy [187], particularly as the market penetration rate for
said devices progresses over time. As such, design choices and algorithms used to define how
automated vehicles act must be approached with apprehension. For instance, RL methods
that solve simply for comfort or safety may be insufficient when looking to the long-term
ramifications of such maneuvers on the emergence and propagation of congested states of
traffic. This dilemma is the primary focus of this document, and is discussed in further detail
below.

1.3 Thesis overview and contributions

In this document, we aim to determine whether RL methods are suitable for deriving control
strategies capable of improving the state of traffic in typical road networks. We begin in
Chapter 2 by introducing the prominent machine learning tools and algorithms used to
solve different mixed-autonomy traffic control problems. Then, in Chapter 3, we discuss
some of the physical and dynamical phenomena that result in the emergence of congested
states of traffic, and present tools developed by myself and others designed to efficiently and
flexibly integrate simulations of such phenomena with state-of-the-art RL algorithms. From
the straightforward adaptation of RL, we identify several factors that hinder the efficacy
of such algorithms in defining truly high-performing traffic control policies. Within this
document, we narrow our focus to two main challenges, listed below:

Challenge I: Sparse/delayed feedback. In mixed-autonomy traffic control settings,
meaningful events occur over prolonged periods of time as oscillations in traffic states
propagate slowly through a network. As a result, actions by AVs often have a delayed effect
on metrics of improvement or success and, at times, require hundreds of steps to meaningfully
affect the reward or feedback signals assigned to learning policies. The delayed nature
of this feedback exacerbates the credit assignment problem within mixed-autonomy tasks,
making reasoning on whether a specific action contributed to or mitigated the propagation
of congestion difficult. This, in practice, prevents standard RL techniques from generating
meaningful policies without relying on reward engineering. Reward engineering, however, can
be challenging to finetune and often results in undesirable learned responses.

Challenge II: Cost of modeling and simulating human drivers. In addition to the
difficulties of exploration and credit assignment, the process of both modeling and simulating

CHAPTER 1. INTRODUCTION 4

large-scale transportation networks presents a unique set of challenges from a reinforcement
learning perspective. These challenges take on two forms. First, we find that readily available
tools for simulating traffic are generally inefficient at producing numerous instantiations of a
given road network. This is problematic from a machine learning perspective, as algorithms
often require millions of interactions with a simulation environment to produce potentially
meaningful results. As such, simulating traffic alone becomes one of the largest bottlenecks
when exploring new and interesting problems. Next, as the size of explored networks in-
creases, creating and finetuning models that accurately reproduce the dynamics of such a
network becomes increasingly more intricate. This, once again, is potentially problematic, as
inaccurate reconstructions of traffic exacerbate the sim-to-real gap within machine learning
problems and, as a result, may invalidate any policies learned in such a simulation.

After introducing the above challenges, we present solutions capable of addressing each in
practice. These solutions are the focus of the remainder of this document and consist of three
parts:

Part I: Learning across long time horizons. In this first part, we address the challenge
of learning through sparse or delayed feedback. To do so, we explore the use of hierarchies,
prominent models for enabling structured exploration in complex long-term planning problems.
For the class of problems explored here, however, we find that standard algorithms for the
concurrent training of policy layers within a hierarchy fail to effectively assign higher-level
latent goals, and instead quickly regress to greedier, locally optimal solutions. Drawing
connections between these and similar challenges in mixed cooperative-competitive multi-
agent RL problems, in Chapter 4 we introduce a simple yet effective technique for loss-sharing
among policy layers within a hierarchy. Finally, we demonstrate that such an approach
enables hierarchies to solve various challenging long-term control tasks more efficiently than
prior state-of-the-art approaches and without the need for explicit reward engineering.

Part II: Exploiting expert demonstrations. Next, we explore methods for enhancing
the data efficiency of learning procedures within large-scale traffic simulations. This solution,
similar to that above, draws from the challenges of credit assignment in standard RL
approaches. In particular, in large-scale networks consisting of multiple interacting agents,
exploration becomes increasingly delicate, as the objective an RL agent attempts to maximize
is heavily influenced by the behaviors of other learning agents within the environment. This
interaction has a destabilizing effect on learning and, in practice, often prevents or slows
down forward progression. To this, supervised learning procedures, and specifically imitation
learning, may serve a beneficial role. Unlike within RL, imitation learning procedures provide
more stable and direct targets for agents to achieve and are unaffected by the exploration-
exploitation dilemma. However, the choice of target behavior to imitate plays an important
role. In particular, imitating human driving behaviors, which has become the standard
in multiple driving applications, is likely insufficient to produce traffic regulating policies,

CHAPTER 1. INTRODUCTION 5

as humans themselves act as contributors to the proliferation of congestion. Instead, in
Chapters 5 and 6, we construct a set of expert policies that, in simulation, exploit knowledge
of global states of traffic to homogenize the movement of vehicles towards their desirable
uniform-flow equilibrium. We then demonstrate that imitation learning techniques can
successfully capture such behaviors solely using local observations and in a more data-efficient
manner.

Part III: Generalizing to complex-to-model dynamics. Finally, in the third part
of this document, we explore solutions to the remaining challenge described above, i.e. the
sensitivity of learned behaviors to variations in dynamical responses within simulated and
target networks. In Chapter 7, we consider two networks in which stop-and-go waves are
induced through different mechanisms. Within this problem setup, we demonstrate that
generalizable behaviors may be learned in simplified (ring road) representations of traffic by
introducing somewhat similar, albeit stochastic, perturbations to vehicle states within the
simpler problem. The findings here suggest that much research conducted in the absence of
intricate traffic models may be made transferable to complex road networks through simple
considerations into robustness and the dynamical mismatch between both problems.

Finally, in Chapter 8, we conclude by recapping some of the findings within this document
and present future research directions through which future studies into mixed-autonomy
systems may improve upon what is presented here.

6

CHAPTER 2

Review of Machine Learning Frameworks

In this chapter, we introduce the terminology and some of the operating principles behind
the machine learning algorithms explored within this document. In particular, we narrow
our focus to two general classes of algorithms: reinforcement learning and imitation learning.
These two fields of study have been at the center of a plethora of profound and substantive
leaps within the field of artificial intelligence in recent years. When coupled with large
quantities of data and highly expressive neural models of varying architectures [68, 84,
204, 182], these techniques have succeeded in producing behaviorally “intelligent” agents
capable of achieving a number of impressive feats. Prominent examples include achieving
human-level performance in games with delayed rewards [114], outplaying grand champions
in intellectually-demanding two-player games, [151, 152, 145], as well as solving a variety of
interesting control and navigation problems1. These achievements and more motivate much
of the work tackled within this study.

The remainder of this chapter is composed of three sections. In Section 2.1, we introduce
Markov decision processes, the mathematical framework through which sequential decision-
making processes are understood in the context of reinforcement learning. Next, in Section 2.2
we introduce reinforcement learning (RL), and present the mathematical concepts surrounding
the some of the most commonly used RL algorithms. Finally, in Section 2.3 we present
imitation learning, a method for the supervised learning or optimal behaviors, and introduce
a popular algorithm for addressing training instabilities arising from domain mismatches in
demonstration data.

2.1 Markov decision processes

Markov decision processes (MDPs), at a high level, provide a mathematically intuitive framing
for interactive sequential decision-making problems. They define the manner through which
states and actions from the perspective of a reward-maximizing agent are linked to one

1Examples of some of the control and navigation tasks that have been solved by machine learning systems
are provided throughout this document when relevant.

CHAPTER 2. REVIEW OF MACHINE LEARNING FRAMEWORKS 7

States

Agent/Policy

Actions

Rewards

State-transition

s1

π

a1

r1

s2

π

a2

r2

sT−1

π

aT−1

rT−1

. . . sT

Figure 2.1: A graphical representation of the relationships between states, actions, and
rewards within a Markov decision process.

another and evolve as time progresses. The feedback assigned to these agents in the form of
rewards then serves to distinguish preferable and poor-performing (states, actions) pairs, a
factor which is then exploited by learning agents as they search for optimal goal-reaching
behaviors.

Formally put, a discrete-time MDP [17] is defined by the tuple (S,A, T , r), where
S is a (discrete or continuous) state space, A a (discrete or continuous) action space,
T : S × A × S → R+ a state-transition probability satisfying the Markov property, and
r : S → R a reward function. Within an MDP, an agent receives sensory inputs in the
form of states st ∈ S from the environment and then interacts with its environment by
performing actions at ∈ A within it. These actions are defined by a policy πθ : S ×A → R+

parameterized by θ, and influence the distribution of next states via the state-transition
probability p(st+1|st, at). This interaction then produces a new state st+1 ∼ p(st+1|st, at)
with which the agent once again interacts with and repeats the process for a predefined
time horizon of length T . The resulting sequence of (state, action) pairs form a trajectory τ ,
defined as:

τ = (s1, a1, s2, a2, . . . , aT−1, sT) (2.1)

and within which individual nodes are graphically linked to one another as in Figure 2.1.
The Markovian relationship between timesteps allows us to define simple representations of
the probability pθ(τ) of witnessing a given trajectory conditioned of the actions specified by
πθ. In particular, they allow us to factor the effects of individual (state, action) pairs on the
distribution of entire trajectories, producing a Markov chain of the form:

pθ(τ) = ρ(s1)
T∏
t=1

πθ(at|st)p(st+1|st, at) (2.2)

CHAPTER 2. REVIEW OF MACHINE LEARNING FRAMEWORKS 8

where ρ(s1) is the distribution of initial states. This factorization is used in a number of RL
algorithms presented later on.

From here, distributions of preferable behaviors may be identified indirectly from the
distributions of trajectories they produce. To do so, trajectories are assigned preference
dependent on the discounted sum of the sequence of rewards {rt = r(st, at) | t = 1, 2, . . . , T}
assigned to (state, action) pairs within them. The objective function J(θ) for such a problem
is then:

J(θ) = Eτ∼pθ(τ)

[
T∑
t=1

γtr(st, at)

]
(2.3)

where actions at ∼ πθ(at|st) are sampled from πθ, and 0 ≤ λ ≤ 1 is a discount factor.
Finally, we define the optimal behavior for a policy πθ within an MDP as the set of

parameters θ∗ that satisfy the condition:

θ∗ = argmax
θ

J(θ) (2.4)

2.1.1 Example: Mixed-autonomy ring road

Markov decision processes appear in multiple different forms in the context of mixed-autonomy
traffic and traffic flow regulation as a whole. We present here one such formulation for a
standard mixed-autonomy traffic problem. This example is adapted in part from the work
of Wu et al. [202]. We describe the solution to this MDP once employed in an RL loop in
Chapter 3.2.2.

Consider a platoon of N vehicles placed sequentially in a single lane circular track of
circumference L (Figure 2.2). This is conceptually a reconstruction of the seminal Sugyiama
ring experiment [156]. In this setting, drivers, when instructed to drive at a fixed speed, fail
to consistently maintain such speeds for long periods of time. Instead, small fluctuations in
speeds by individual drivers compound and expand as those behind them break harder to
maintain safe driving conditions. This event, repeated ad infinitum, results in the formation
of stop-and-go oscillations typical to many highway networks (Figure 2.3). The reasoning
behind why drivers may break harder that their predecessors, however, arises largely from
human factors in driving2, and as such may be addressed by AVs in the near future.

We wish to replicate the above behavior in simulation so that agents may interact with the
problem and attempt to answer the question: What can an AV do to dissipate stop-and-go
congestion? With this question arises a number of design decisions that must be made around
the dynamics of individual vehicles what learning agents sense and how they interact with
their surroundings. These are all choices that must, in part at least, be defined within our
MDP. We present one possible formulation of the MDP below.

2We describe this phenomenon further in Chapter 3.1.1.

CHAPTER 2. REVIEW OF MACHINE LEARNING FRAMEWORKS 9

x = 0

x1, v1

x2, v2

..
.

vAV

vl

hAV

Human (unobserved)

Human (observed)

Automated vehicle

Figure 2.2: An illustration of the mixed-autonomy ring road environment.

States In the absence of additional lanes or perturbation induced by on-ramps or off-ramps,
the state of the network at time t may in its simplest form be defined in its entirety by the
positions xt

i and speeds vti of every vehicle i at timestep t. The full state is then:

st =
[
xt
1, v

t
1, x

t
2, v

t
2, . . . , x

t
N , v

t
N

]T (2.5)

In many settings, however, inputs of this type are impractical to assign to learning
agents, as vehicles are incapable of realistically perceiving the state of all other vehicles in
their vicinity. Instead, agents in real-world settings must condition their actions on local,
delayed, and/or noisy observations ot as opposed to the full state st. This is the premise
behind partially observable Markov decision processes, or POMDPs3, and yields some of the
most critical challenges when attempting to learn practical mixed-autonomy traffic control
strategies. We delve further into these challenges in the following chapter.

For the purposes of this problem, we choose to denote the observation ot as the state of
the ego vehicle as that of the vehicle immediately preceding it:

ot =
[
vtAV , v

t
l , h

t
AV

]T (2.6)

where vtAV is the speed of the automated vehicle, vtl is the speed of its lead vehicle, and ht
AV is

the space gap between the two. For simplicity, we will generically refrain from distinguishing
between states and observations throughout this document.

3In addition to the typical components that define an MDP, POMDPs also consist of two additional
attributes, namely Ω, a set of observations, and O : S × Ω→ R+, an observation probability distribution.

CHAPTER 2. REVIEW OF MACHINE LEARNING FRAMEWORKS 10

Actions We aim to identify the longitudinal (car-following) behaviors that automated
vehicles can adopt to maintain idealized driving conditions within ring roads. Accordingly, we
define the actions agents perform within this environment as a bounded vector at ∈ RNAV

[amin,amax]

denoting the desired acceleration by each AV, where NAV = 1 is the number of vehicles
controlled by the agent and amin and amax are bounds on the assigned accelerations.

State-transition The dynamics, or state-transition, of ring road problems have been
widely studied previously and as such may be readily defined from prior work. Typically, the
dynamics of ring road problems are represented via systems of ODEs, which when discretizing
in time, result in a state transition function defined as:{

xt+1
i = xt

i + vti∆t+ 1
2
ut
i∆t2

vt+1
i = vti + ut

i∆t
, i ∈ {1, . . . , N} (2.7)

where ∆t is a simulation step size and ut
i is the external force, or acceleration, induced by

each vehicle i. This acceleration response for simulated “human” drivers must be chosen such
that, in the absence of autonomy, perturbations propagate and grow between adjacent human
drivers until stop-and-go oscillations form. A popular model for recreating such behaviors is
the Intelligent Driver Model, or IDM [174]. Following this model, the acceleration response
for any human-driven vehicle i is defined by its bumper-to-bumper space headway hi, velocity
vi, and relative velocity with the preceding vehicle ∆vi as:

ut
i = fIDM(vi,∆vi, hi) = a

[
1−

(
vi
v0

)δ

−
(
s⋆(vi,∆vi)

hi

)2
]
+ ϵ (2.8)

where ϵ is an exogenous noise term designed to mimic stochasticity in human driving behaviors
and s⋆ is the desired headway of the vehicle denoted by:

s⋆(vi,∆vi) = s0 + max
(
0, viT +

vi∆vi

2
√
ab

)
(2.9)

and s0, v0, T , δ, a, b are fixed parameters.
Figure 2.3 depicts the spatio-temporal behavior of IDM-controlled vehicles on the ring

road, where N is set to 22 and L is set to 260 m. Within this figure (called a time-space
diagram) each line segment represents the trajectory following by an individual vehicle in
relation to a fixed origin point, and is colored in accordance with the speed the vehicle drove
at a given time. Seen here, vehicles following this model do succeed at reconstructing the
type of congestion expected within ring roads, with the dark diagonal regions that appear
further in time depicting the heart and the stop-and-go wave once it has formed.

Finally, to model the behavior of a single automated vehicle interacting the above
dynamical system, we replace the response of the AV with the action at ∼ πθ(at|ot) assigned
by the policy πθ. The acceleration response for this vehicle is then

ut
AV = at (2.10)

CHAPTER 2. REVIEW OF MACHINE LEARNING FRAMEWORKS 11

Figure 2.3: Human-driven ring road dynamics

Rewards For the present task, we are
interested in generating driving behav-
iors that divert vehicles from their os-
cillatory / stop-and-go behavior and to-
wards a more homogeneous state of traf-
fic. This desirable state, at its limit,
is termed the uniform flow equilibrium,
and for a system of human-driven vehi-
cles following a car-following model f is
defined as the point at which move at
a constant speed v∗ and with constant
spacing h∗, such that:

f(v∗, 0, h∗) = 0 (2.11)

Reward functions are the primary means through which positive behaviors such as these
may be incenticized within a learning procedure. The process of assigning appropriate reward
functions, however, in nontrivial in many settings. One common tradeoff that emerges here
is that between the density of a given reward and the optimally of behaviors it produces.
Dense rewards, in particular, offer more direct feedback that accelerate learning within most
common learning algorithms, but may result in negative externalities within the learned
behavior if not attended to carefully. We will return to this topic in the following chapter,
and note that this is a point of concern for this problem as well. However, for this task, we
note that optimal, uniform-flow, states of traffic are achieved when all vehicles are moving
very fast and none are accelerating greatly. We may accordingly define an appropriate reward
function for this problem as:

r(st, at) =
N∑
i=1

vti + c1 · |at| (2.12)

where c1 is a fixed parameter.

2.2 Reinforcement learning

Having defined Markov decision processes, a framework through which sequential decision-
making problems may be framed, we now turn our attention to reinforcement learning (RL),
the class of algorithms through which these problems may be solved. As previously stated,
the objective of an RL agent within an MDP is to find the parameters for a policy πθ for
which interactions with the MDP attain the largest possible expected return. In RL, this
is done through a process akin to trial-and-error, a process that is generally composed of
two steps. In the first step, agents, initialized with some choice of parameters4, navigate

4The choice of initial parameters within such a training procedure is a nontrivial and active topic of
research [54, 87, 6]. We refrain from discussing this further as it is outside the scope of this research.

CHAPTER 2. REVIEW OF MACHINE LEARNING FRAMEWORKS 12

Environment

Agent πθ

action
at

reward
rt

state
st

Figure 2.4: An illustration of reinforcement learning.

and explore their environment in a attempt to assign values distinguishing which states and
actions produce higher expected returns. Next, information gathered in the previous step is
used to define directions in the parameter space for which expected returns are predicted to
be preferable, and a gradient update step is taken is taken in that direction, i.e.

θ ←− θ + α · ∇θJ(θ) (2.13)

where α is the gradient step size, often referred to as the learning rate. The process is then
repeated until predefined final conditions are met.

Several methods have been proposed to efficiently estimate the gradient within Eq. (2.13).
These methods are differentiated along a wide variety of categories, including via whether
prior experiences are recycled [114, 150, 103, 52, 60] or disposed of [199, 147, 146] between
gradient update steps, as well as on whether models of the dynamics of the world are generated
to help augment the learning procedure [160, 39, 93, 72]. We present below some of the most
prominent algorithms employed throughout this document. A more detailed description of
each algorithm may be found in the citations provided, and for a more thorough overview of
RL, we refer the reader to the following book by Sutton and Barto [161].

2.2.1 Policy gradient methods

Policy gradient methods (also referred to as direct policy gradient or on-policy methods)
provide a straightforward approach for estimating gradients for the objective function from
collections of trajectories collected on-policy with respect to πθ. In particular, expanding the
expectation in Eq. (2.3), policy gradient methods try to produce estimates for the term:

∇θJ(θ) =

∫
∇θpθ(τ)r(τ)dτ (2.14)

where r(τ) is the cumulative discounted return of a trajectory τ . The challenge here arises
from the presence of the dynamics term pθ, a term that is generally unavailable and may
difficult to model for arbitrary problems. To compute this gradient in a model-free fashion,
Williams et al. [199] demonstrate that, through some reparametrization and an exploitation

CHAPTER 2. REVIEW OF MACHINE LEARNING FRAMEWORKS 13

of the definition of probabilities of a trajectories within an MDP, the dynamics component
p may be disentangled and removed from the remainder of the estimate, resulting in an
equivalent representation of the form:

∇θJ(θ) = Eτ∼pθ(τ)

[(
T∑
t=1

∇θ log πθ(at|st)

)(
T∑
t=1

γtr(st, at)

)]
(2.15)

The gradient from here is then typically computed via Monte Carlo estimation. That is:

∇Jθ(θ) ≈
1

NT

NT∑
i=1

(
T∑
t=1

∇θ log πθ(ai,t|si,t)

)(
T∑
t=1

γtr(si,t, ai,t)

)
(2.16)

where NT is the total number of executed trajectories between gradient update steps. This
policy gradient algorithm is called “REINFORCE”. Further details on this algorithm may be
found in the following citation [199].

Trust Region and Proximal Policy Optimization The above policy gradient algorithm
provides a strong benchmark for estimating gradients in the direction of optimal policies, but
exhibits several underlying limitations when applied to complex problems. One prominent
restriction within this algorithm surrounds the validity of assigned gradients for large step
sizes α. This is an important factor within any optimization procedure and plays a critical
role within policy gradient methods. Importantly, due to the on-policy nature under which
gradients are estimated, assigned gradients may be locally valuable within the vicinity of θ,
but become increasingly less relevant once pushed farther beyond this point. Moreover, if
excessively large step sizes are taken, important behaviors learned from prior policy updates
may be forgotten and then must be relearned, a factor which further hinders the efficiency of
this learning procedure.

Most popularly, the above challenge is addressed through the use of trust region constraints.
In particular, more advanced policy gradient methods restrict the effects of large learning rates
by constraining the mismatch between the behavior of a policy πθ prior to and after individual
policy update. The distance between these two models is quantified via the Kullback–Leibler
(KL) divergence, and results in an optimization problem of the form:

argmax
θ

J(θ)

subject to Eτ∼pθ(τ) [DKL (πθold(·|st), πθ(·|st))] ≤ δ
(2.17)

where θold is are the parameters prior to a given policy update and δ is a maximum constraint
imposed on the KL divergence. This optimization problem, under idealistic settings does
ensure monotonically improvements to the expected return between policy updates, but is
difficult and costly to compute. To this, multiple algorithms have been proposed to solve
efficiently solve the above problem, and solutions to this are at the core of the contributions of
both the Trust Region Policy Optimization (TRPO) [147] and Proximal Policy Optimization
(PPO) [146] algorithms, which are used frequently within this document. We refer the reader
to the provided citations for more detail on each algorithm.

CHAPTER 2. REVIEW OF MACHINE LEARNING FRAMEWORKS 14

2.2.2 Actor-critic methods

Another prominent class of reinforcement learning algorithms are what are known as actor-
critic methods. Actor-critic methods, in comparison to direct policy gradient methods before
them (Section 2.2.1), solve two key problems: 1) the need for a stochastic policy πθ(a|s),
and 2) the need for on-policy samples to compute policy gradients. Instead, actor-critic
methods recycle prior experiences, storing them within replay buffers of varying attributes,
and sampling them whenever new policy updates need to be performed. As a result, methods
of this form, also referred to as off-policy RL methods, often perform more sample-efficiently
than their on-policy counterparts, but rely more heavily on function approximators to compute
appropriate policy gradients, and as such must be handled with care.

Actor-critic algorithms, similar to most RL algorithms, follow a two-step approach of
estimating the values of different trajectories and then updating the choice of actions by a
policy in the direction of higher gains. In this first step, termed the value iteration phase,
agents use samples collected both on-policy an off-policy to improve the predictive accuracy
of an action-value function, or critic, Qϕ(s, a). This function, at its optimum, defines the
cumulative discounted return an agent would expect to experience if it were to take an action
a within a starting state s, i.e.

Qπ(s, a) = Eτ∼pθ(τ)

[
T∑
t=1

γtr(st, at)

∣∣∣∣∣s1 = s, a1 = a

]
(2.18)

The estimates of the critic in the second, or policy iteration, step is then used to shift the
distribution of actions by the policy, or actor, πθ to those which are predict to produce higher
expected returns. We present the details behind both steps below.

Value iteration We begin by introducing the process through which approximated action-
value functions may be generated within an offline RL paradigm. Specifically, we here are
interested in attempting to parameters ϕ for a function Qϕ that approximately matches the
distribution of expected returns from a true Q-function Qπ. The objective is then to find the
parameters ϕ that minimize the loss function:

L(ϕ) = Est,at∼pθ

[
(Qϕ(s, a)−Qπ(s, a))2

]
(2.19)

Within the context of RL, estimates of this form are typically performed through a process
termed temporal difference (TD) learning. To incrementally update the predictive accuracy of
Qϕ, TD learning procedures exploit the recursive relationship between action-value estimates
(state, action) pairs ordered sequentially in time. This relationship is know as the Bellman
equation, and for deterministic actors results in a sequence of nested functions of the form:

Qπ(st, at) = Est,at,st+1∼pθ [r(st, at) + γ ·Qπ(st+1, πθ(st+1)] (2.20)

From here, reasonable updates to the predictive accuracy of Qϕ are achieved by boot-
strapping prior action-value estimates within this nested function, and utilizing experienced

CHAPTER 2. REVIEW OF MACHINE LEARNING FRAMEWORKS 15

(state, actions) pairs to ground predictions to returns witness via interactions with the
environment [195]. The updated objective function for the approximate Q-function then
becomes:

L(ϕ) = Est,at,st+1∼pθ

[
(Qϕ(st, at)− yt)

2] (2.21)

where
yt = r(st, at) + γ ·Qϕ′(st+1, πθ′(st+1)) (2.22)

and θ′ and ϕ′ are delayed target parameters for the actor and critic policies, respectively, and
are used to stabilize the training procedure [103].

Policy iteration Once differentiable estimates for the Q-function have been assigned,
gradients for the objective function may be defined by computing the gradient of the Q-
function for different actions and applying the chain rule to propagate these gradients across
the choice of policy parameters as well. The gradient applied to the policy is then:

∇θJ(θ) = Es∼pθ

[
∇aQϕ(s, a)|a=πθ(s)∇θπθ(s)

]
(2.23)

The proof behind this derivation may be found here [150] and is at the core of the DDPG [103]
and TD3 [52] algorithms, both of which are used regularly throughout this document.

2.3 Imitation learning

Finally, we introduce imitation learning, a process for learning optimal sequential-decision
making behaviors from expert demonstrations. Imitation learning techniques, unlike within
reinforcement learning, do not rely on reward functions or other signals to evaluate the
validity of individual actions. Instead, in imitation learning (Figure 2.5), policies are provided
with labeled examples of desirable or optimal responses for given sensory inputs and attempt
to derive mappings from states to actions that generally match them. More concretely put,
consider a policy πθ parametrized by θ, and let D = {(si, ai)}Ni=1 denote a dataset of (state,
action) demonstrations provided by an expert policy πE. In this setting, the objective of an
IL algorithm is find the optimal parameters θ∗ that solve the supervised learning problem:

θ∗ = argmin
θ

[Esi,ai∼D [L(πθ(si), ai)]] (2.24)

where L(·, ·) is a distance metric used to compute the difference between predicted and
expert actions. For continuous action problems, this loss is typically something similar to a
mean-squared error, while for discrete action problems cross-entropy losses are generally used.

Data Aggregation (DAgger) Imitation learning, while similar to other supervised learning
techniques, is importantly different as a result of the consecutive nature of prediction, or
actions, within tasks. As a result, predictions by a policy are conditioned to past predictions

CHAPTER 2. REVIEW OF MACHINE LEARNING FRAMEWORKS 16

Environment Expert πE

Demonstrations D
Agent πθ

action
at

state
st

Figure 2.5: An illustration of imitation learning.

and subsequently negate the assumption of independent and identically distributed (IID)
samples within standard supervised learning. This causes standard supervised learning to
suffer from a phenomenon known as covariate shift, whereby errors by an agent compound as
it executes its policy. The effects of this are not uncommon within imitation learning, and
occur primarily when demonstrations provided by an expert are sparse or insufficiently diverse.
Prominent examples within the field of driving include policies, trained to imitate the driving
behaviors of humans, drifting off-road after prolonged periods of time [132, 21] or failing to
maintain safe car-following distances [11]. To mitigate this, on-policy techniques in IL such
as DAgger [136, 137] correct for covariate shift by iteratively sampling states {si}Ns

i=1 from
the agent’s policy and providing corrective labels within these states from the expert {ai}Ns

i=1.
The new samples are then aggregated to the original dataset D = D ∪ {(si, ai)}Ns

i=1 and the
optimization procedure is repeated. We employ this technique when deriving decentralized,
locally observable policies in Part II of the document.

17

CHAPTER 3

Learning Traffic Regulation Policies in Simulation

Having previously defined reinforcement learning and other techniques for generating sequen-
tial decision-making behaviors in simulation, we now turn our focus to the main problem
of interest: traffic congestion. In particular, in this chapter we explore methods for recon-
structing human-driven factors leading to the proliferation of congestion in simulation, and
use such simulations to attempt to answer the question: What behaviors may automated
vehicles adopt to dissipate congestion in mixed-autonomy settings?

The following chapter is composed of three sections. In Section 3.1, we introduce the
microscopic traffic flow models and tools used to simulate human-driven factors in congestion.
Next, in Section 3.2 we discuss how such tools may be readily integrated with existing
RL algorithms, and provide results demonstrating the efficacy of RL in solving a difficult
mixed-autonomy traffic control task. Finally, in Section 3.3 we present initial attempts at
standardizing some key problems in mixed-autonomy traffic, and benchmark the performance
of common RL algorithms in solving such tasks. The results from this final section point to
important challenges when attempting to adapt RL to the domain to traffic control. We end
by introducing two prominent challenges, and for the remainder of this document present
models and algorithms that mitigate them in practice.

The content in the last two sections in this chapter is adapted largely from [202, 184].

3.1 Microscopic traffic flow models

Traffic flow models describe the dynamical interplay between multiple agents within a given
network. They provide concrete mathematical framings that define the rationale through
which agents navigate their surroundings in an effort to reach a desired destination. Examples
of common decision-making behaviors captured by such models include car-following, lane
changing, route assignment, and others1. Models of this form yield a number of underlying
benefits to the transportation community. As a means of reconstructing past or typical events
in traffic, they provide a venue through which our understanding of the contributing factors

1To delve deeper into this topic, we refer the readers to the following book by Treiber and Kesting [177].

CHAPTER 3. LEARNING TRAFFIC REGULATION POLICIES IN SIMULATION 18

to congestion may be unified and tackled in a systematic manner. Examples include the
phenomenon of capacity drop near highway on- and off-ramp merges [32, 89] from which theory
into optimal ramp metering strategies may be defined [127, 128], as well as other negative
effects resulting from suboptimal lane changing and car-following behaviors. Conversely, as
a means of predicting future events, models of this form may also be used in a closed-loop
manner to identify behaviors that achieve desirable short-term objectives. Examples in this
context include model-predictive or optimal control strategies that solve for safety [75, 190]
or other metrics often synonymous with some form of efficiency or mobility [97, 57, 181].

In this document, we focus primarily on microscopic simulations of traffic, that is,
simulations of traffic at the level of individual vehicles. These are in contrast to macroscopic
models [102, 135, 129, 8, 207], within which the evolution of traffic is modeled as aggregate
quantities (notable flows, densities, and average speeds) defined across spatial sections within
a network. The aggregation of vehicles states across segments introduces a gas-kinematic
interpretation of traffic whereby individual vehicles are no longer disambiguated, but rather
move as fluids in a pipe. This perspective reduces the computational burden of such models,
but hinders their fidelity in modelling the effects of individual driving choices on future states
of traffic. Conversely, advancements in compute have reached a point whereby many driving
behaviors may be explored relatively quickly in microscopic simulation settings and extracted
via data-driven methods based on the system-level responses they produce. We will return
to the machine learning components in the following section, but begin now by introducing
some of the models and tools used within this study.

3.1.1 Car-following models

Car-following models define the longitudinal motion of vehicles driving behind one another
in a single lane. Within car-following models, the acceleration ai of a vehicle i is typically
defined as a function ai = f(si, vi, vl) of the speed of the ego vehicle vi, the speed of the
lead vehicle vl = vi−1, and the space gap between the two si = xi+1 − xi − li, where li is the
length of vehicle i. Figure 3.1 provides a visual interpretation for each of these terms. The
functional form f(·) is also referred to as an acceleration or follow-the-leader model, and is
designed to capture common human factors and incentives in driving, including maintaining
a safe driving distance proportional to the agent’s speed, driving at, or attempting to drive
at, some fixed desired speed, and responding to local fluctuations in traffic conditions with
some reaction time or delay. Examples of prominent car-following models include Newell’s
car-following model [121], the Optimal Velocity Model (OVM) [10, 74], the Intelligent Driver
Model (IDM) [174, 3], among others.

Once a car-following model is defined across multiple vehicles, the motion of a string or
platoon of vehicles is provided by the coupled ordinary differential equations:{

ẋi(t) = vi(t)

v̇i(t) = f(si(t− τ), vi(t− σ), vl(t− κ))
i = 1, . . . , N (3.1)

CHAPTER 3. LEARNING TRAFFIC REGULATION POLICIES IN SIMULATION 19

xi(t)

vi(t)
si+1(t)

xi+1(t)

vi+1(t)
si+2(t)

xi+2(t)

vi+2(t)
si+3(t)

xi+3(t)

vi+3(t)
.

Direction of motion

Figure 3.1: Variables defining the motion of vehicles in single lane car-following settings.

where τ , σ, and κ are time delays, and N is the number of vehicles in the platoon. The
boundary conditions imposed on the leading vehicle (i = 1) may be defined in a number of
different manners. Most prominently, this is done either through the use of periodic boundary
conditions for circular (ring road) tracks whereby vehicle i = 1 follows vehicle i = N [30], or
via a simulated trajectory which i = 1 vehicle then follows [110, 189, 100].

A dynamical system of this form reaches its uniform flow steady-state equilibrium when
all vehicles drive at a constant speed v∗ and with uniform inter-vehicle spacing s∗. From
the perspective of the system of equations presented in Eq. (3.1), this is achieved when the
following condition is met:

f(s∗, v∗, v∗) = 0 (3.2)

for all vehicles within the network. This equilibrium state is characterized by fast driving
speeds and reduced instances of sharp accelerations, and as such is considered a desirable
state of traffic from the perspectives of mobility and energy-efficiency. In generic highway
settings, however, this equilibrium is typically unstable. Instead, small fluctuations arising
from heterogeneities in human driving behaviors produce higher amplitude oscillations by
following vehicles as they break harder to avoid unsafe settings. This process then repeats
itself, increasing the magnitude of such oscillations until, for large enough platoons, a stop-
and-go wave is formed, i.e a scenario in which drivers regularly and sharply transition between
what appear to be free-flow conditions to a state of highly dense and slow-moving traffic.
Figure 3.2 provides a visual depiction of such a response. The phenomenon leading to these
every-growing oscillations is known an string instability. A formal mathematical definition of
of this phenomenon can be found in the following article [164].

The phenomenon of string unstable driving can be witnessed both numerically and
empirically in a variety of different network structures. In ring road settings, for instance, stop-
and-go oscillations within well-defined car-following models present themselves as stable limit
cycles that bifurcate from the uniform-flow equilibrium when conditions become sufficiently
dense2 [122, 124, 123]. The formation of stop-and-go waves within ring roads is an important
component of car-following behaviors, as it points directly to the role humans play in
the proliferation of traffic congestion. In particular, it points to the notion that, even in
the absence of external disturbances such as those induced by various network-imposed
bottlenecks, humans themselves may still shift their aggregate behaviors to one representative

2We provide numerical results demonstrating the formation of stop-and-go waves in ring roads in
Chapter 2.1.1.

CHAPTER 3. LEARNING TRAFFIC REGULATION POLICIES IN SIMULATION 20

..
.

Time
0

5

10

15

20

25

30

Sp
ee

d

Figure 3.2: Sample string unstable behavior, modeled as a response to a leading vehicle
profile (in red) captured under real-world driving conditions [100]. Oscillations by following
vehicles continuously grow in magnitude, pointing to the phenomenon resulting in stop-and-go
congestion on typical highways.

of traffic congestion. This behavior was empirically reconstructed by the seminal ring road
experiment conducted by Sugiyama et al. in 2008 [156] as well, further highlighting the
prevalence of string instabilities in human driving, and demonstrating that the emergence of
stop-and-go oscillations from such a behavior is no mere simulation artifact.

The notions of string (and similar) instabilities and the effects they have on the growth
and propagation of congestion plays an important role in constructing traffic-smoothing
policies in simulation, which will be returned to frequently throughout this document.

3.1.2 Additional dynamics and simulation tools

Car-following models alone are often incapable of capturing the richness and diversity of
traffic. Instead, in networks with multiple lanes or spatial variations in network structure,
other models are needed. In general, most remaining dynamical interactions are captured via
lane-changing models for lateral movements and other decision models for discrete-choice
situations such as route assignment or navigating into, for instance, an intersection. Models
such as these often follow similar structures but share far less consensus in the research
community. Lane change models, for one, are typically categorized under discretionary lane
changes for decisions involving local improvements in utility, e.g. moving to a faster lane,
and mandatory lane changes when such action are needed to maintain a given route, e.g. to
reach an off-ramp. These responses are replicated via a plethora of techniques, ranging from
incentive-based models [88, 77, 141], game-theoretic formulations of interactions between
adjacent vehicles [167, 191], and, more recently, predictive models trained to mimic large
quantities of human data [91, 143, 206]. Similarly, many other decisions are typically modeled

CHAPTER 3. LEARNING TRAFFIC REGULATION POLICIES IN SIMULATION 21

as some variation of a discrete choice model [18] and applied spatially when an agent is near
the location where a decision needs to be made.

To reproduce the above and other unmentioned dynamical responses in simulation, we in
this document rely mainly on existing microscopic traffic simulation tools. Tools of this nature
are varied and widespread within the transportation community, and include proprietary
tools such as Aimsun [27], Matsim [186], and Vissim [46], as well as open-source software
such as SUMO (Simulation of Urban MObility) [80]. Traffic microsimulators have been
broadly accepted in the transportation community as an acceptable prelude to the empirical
evaluation of several complex automated tasks such as cooperative adaptive cruise control
(CACC) [111] and mixed-autonomy traffic flow control [155], and crucially provide powerful
and flexible methods for configuring network structure and control inputs based on user
preference. In this document, we use the simulator SUMO due in large part to its flexibility
and ease of access and integration across multiple platforms.

3.2 Reinforcement learning in mixed-autonomy traffic

Microscopic traffic flow models and simulation tools provide a rich and exciting landscape for
the analysis of different traffic control mechanisms, but are limited in the avenues they offer
for search and optimization. Instead, through typical control theoretic studies researchers
trade the complexity of traffic flow models (and, thus, their realism) for the tractability of
analysis, with the ultimate goal of designing optimal and practical controllers.

Reinforcement learning, as discussed in the previous chapter, has been very effective at
solving similarly complex and seemingly intractable problems in other domains. However,
previously, no frameworks have existed for the evaluation of the efficacy of reinforcement
learning under a variety of traffic control paradigms. In this Section, we introduce, Flow, an
open-source framework with aims to combine state-of-the-art microsimulations of traffic with
modern reinforcement learning tools. In Section 3.2.1 we introduce the internal structure
and components within Flow that enable the flexible composition of different traffic control
problems. Then, in Section 3.2.2, we demonstrate the efficacy of such a tool in solving a
widely studied mixed-autonomy traffic control problem.

3.2.1 Flow: A modular learning framework

Flow (see Figure 3.3) is a modular learning framework which enables the composition of
diverse mixed autonomy traffic scenarios for study with deep reinforcement learning. Scenarios
conform to a MDP interface, and are composed of several reusable modules used to define
various components of the MDP. In particular, Flow is comprised of the following modules:

Network The network specifies the physical road layout, in terms of roads, lanes, length,
shape, roadway connections, and additional attributes. Example include multi-lane circular
tracks, or the structure described by importing a map from OpenStreetMap (see Figure 3.4

CHAPTER 3. LEARNING TRAFFIC REGULATION POLICIES IN SIMULATION 22

Figure 3.3: Flow process diagram.

for examples of supported networks). Several of these examples will be used in demonstrative
experiments in Sections 3.2.2 and 3.3.

Actors The actors describe the physical entities in the environment which issue control
signals to the environment. In this document, actors are primarily characterized as automated
vehicles; however, other possible actors may include pedestrians, bicyclists, traffic lights,
roadway signs, toll booths, as well as other transit modes and infrastructure.

The behaviors of the actors are defined by control laws, function mapping from states
or observations to actions which, in turn, influences the transitions between states. All actors
require a control law, which may be pre-specified or learned. For instance, a control law
may represent a human driver, an autonomous vehicle, or even a set of vehicles. That is, a
single control law may be used to control multiple vehicles in a centralized control setting.
Alternatively, a single control law may be used by multiple actors in a shared parameter
control setting.

Observer The observer describes the mapping from environment state to features observed
by the actor(s). The output of the observer is taken as input to the control law, described
above. For example, while the state may include the position, lane, velocity, and accelerations
of all vehicles in the system, the observer may restrict access to only information about local
vehicles and aggregate statistics, such as average speed or length of queue at an intersection.

Dynamics The dynamics module consists of additional submodules which describe different
aspects of the system evolution, including vehicle routes, demands, stochasticity, traffic rules
(e.g., right-of-way), and safety constraints.

Metrics The metrics describe pertinent aggregated statistics of the environment. The
reward signal for the learning agent is a function of these metrics. Examples include the

CHAPTER 3. LEARNING TRAFFIC REGULATION POLICIES IN SIMULATION 23

Figure 3.4: Sample network modules supported by the Flow framework. Networks vary from
simple, closed-loop systems with relatively fixed dynamics to more complex, multi-modal
problems with predefined network structures provided via OpenStreetMap3.

overall (average) velocity of all vehicles and the number of (hard) braking events.

Initialization The initialization describes the initial configuration of the environment
at the start of an episode. Examples include setting the position and velocity of vehicles
according to different probability distributions.

Architecture and implementation

The implementation of Flow is open source and builds upon open source software to promote
access and extension. The open source approach further aims to support the further devel-
opment of custom modules, to permit the study of richer and more complex environments,
agents, metrics, and algorithms. The implementation builds upon SUMO [80] for vehicle and

3OpenStreetMap: https://www.openstreetmap.org/

https://www.openstreetmap.org/

CHAPTER 3. LEARNING TRAFFIC REGULATION POLICIES IN SIMULATION 24

(a) Follower Stopper [155] (b) Reinforcement learning [202]

Figure 3.5: Spatio-temporal response of different mixed-autonomy behaviors in a single lane
circular track with a circumference of 260 m.

traffic modeling, Ray RLlib [44, 99] for reinforcement learning, and OpenAI gym [22] for the
MDP.

As typical in reinforcement learning studies, an environment encodes the MDP. The
environment facilitates the composition of dynamics and other modules, stepping through the
simulation, retrieving the observations, sampling and applying actions, computing the metrics
and reward, and resetting the simulation at the end of an episode. A generator produces
network configuration files compatible with SUMO according to the network description.
The generator is invoked by the experiment upon initialization and, optionally, upon reset of
the environment, allowing for a variety of initialization conditions, such as sampling from a
distribution of vehicle densities. Flow then assigns control inputs from the different control
laws to the corresponding actors, according to an action assigner, and uses the TraCI
library to apply actions for each actor. Actions specified as accelerations are converted into
velocities, using numerical integration and based on the timestep and current state of the
experiment.

Finally, Flow is designed to be inter-operable with classical feedback and model-based
control methods for evaluation purposes. That is, the learning component of Flow is optional,
and this permits the fair comparison of diverse methods for traffic control. We demonstrate the
adaptability of Flow to both learn and hand-crafted control laws in the following subsection.

3.2.2 Example: Mixed-autonomy ring road

We now return to the example introduced in Chapter 2.1.1, where a single automated
vehicle (AV) attempts the dissipate the formation and propagation of stop-and-go waves
in variable-length ring roads. As discussed in Section 3.1.1, this oscillatory (stop-and-go)
behavior emerges largely from string unstable interactions between human drivers, which
cause perturbations in driving speeds to compound and grow over time. In this setting, AVs

CHAPTER 3. LEARNING TRAFFIC REGULATION POLICIES IN SIMULATION 25

must regulate their spacing in such a manner as to prevent the continued growth of such
oscillations.

To reconstruct the above problem in Flow, we assign the network, actors, observers,
and so on as described in the previous section and in accordance with the MDP structure
outlined in Section 2.1.1. Exact implementation details can be found at: https://github.
com/flow-project/flow-lab/tree/master/flow-framework. The AVs in our system then
execute actions following parameterized control laws whose values are trained using policy
gradient methods. For all experiments, we use the Trust Region Policy Optimization
(TRPO) [147] method for learning the control law, linear feature baselines as described in
Duan, et al. [44], discount factor γ = 0.999, and step size 0.01. Each of the results presented
here are collected from numerical experiments conducted on three Intel(R) Core(TM) i7-
6600U CPU @ 2.60GHz processors for six hours. A total of six million samples were collected
during the training procedure.

Performance

We compare the performance of the learned control strategy against human drivers’ behaviors
in fully human-driven settings as well as the behaviors of hand-craft control laws presented
in [155]. Videos and additional results for each controller are available at: https://sites.
google.com/view/ieee-tro-flow.

Figure 3.6 demonstrates the performance of the different learned and hand-crafted con-
trollers. Here, we begin to observe key findings pointing to the efficacy of RL methods in
solving mixed-autonomy traffic control tasks. In particular, we find that learned control
behaviors (in partially observed settings) match the optimal uniform-flow conditions very
closely for all explored densities, thereby eliminating congestion. This is true for both
densities in which the policy was trained as well as regions in which the policy is evaluated
in a zero-shot manner, pointing to the generalizability of the control law. The hand-crafted
controllers, on the other hand, only dissipate stop-and-go traffic at densities less than or
equal to their calibration density (less congested settings).

Next, Figure 3.5 shows the space-time curves for all vehicles in the system using a variety
of control laws. We observe that, in this particular density, while both control strategies
succeed in dissipating stop-and-go congestion, the FollowerStopper control law leaves much
smaller openings in the network (smaller headways) when compared to the learned control law,
as can be seen by the large white portion of the RL plot. The large gaps in this setting emerge
from the necessity for acceleration penalties within the reward function design. For this
particular reward configuration, we find that large small acceleration penalties do not provide
agents with strong enough short-term feedback to explore and identify the long-term benefits
of driving at uniform speeds, while large penalties uniformly generate the aforementioned
response. This delicate balance between exploration and reward function design motivates
the work outlined in Chapter 4.

https://github.com/flow-project/flow-lab/tree/master/flow-framework
https://github.com/flow-project/flow-lab/tree/master/flow-framework
https://sites.google.com/view/ieee-tro-flow
https://sites.google.com/view/ieee-tro-flow

CHAPTER 3. LEARNING TRAFFIC REGULATION POLICIES IN SIMULATION 26

0.08 0.085 0.09 0.095 0.1

2

4

6

Vehicle density (veh/m)

A
ve

ra
ge

ve
lo

ci
ty

(m
/s

) Stop-and-go stable limit cycle
Uniform flow unstable equilibrium

PI with saturation control law
FollowerStopper control law

Calibration density for PI control law
RL control law (ours)

Figure 3.6: The performance of the learned (RL) and hand-crafted (FollowerStopper and
PI Saturation) control laws for various vehicle densities are averaged over ten runs at each
evaluated density. Also displayed are the performance upper and lower bounds, derived from
the unstable and stable system equilibria, respectively.

3.3 Benchmarks for RL in mixed-autonomy traffic

In this section, we extend the numerical analysis conducted in Section 3.2.2 in an attempt
to better define the scope and capabilities of RL in solving diverse traffic control problems.
We introduce a number of benchmarks in Section 3.3.1 aimed at tackling different mixed-
autonomy tasks, and discuss some of the findings and limitations that emerge from such
benchmarks in Section 3.3.2.

3.3.1 Proposed benchmarks

We construct a suite of benchmarks aimed at tackling different problems within the context
of mixed autonomy traffic. These benchmarks, seen in Figure 3.7, are detailed below.

Figure eight: optimizing intersection capacity

The figure eight network (Figure 3.7a) acts as a closed representation of an intersection. In a
figure eight network containing a total of 14 vehicles, we witness the formation of queues
resulting from vehicles arriving simultaneously at the intersection and slowing down to obey
right-of-way rules. This behavior significantly reduces the average speed of vehicles in the
network. In a mixed-autonomy setting, a portion of vehicles are treated as CAVs with the
objective of regulating the flow of vehicles through the intersection in order to improve
system-level speeds. The components of the MDP for this benchmark are defined as follows:

• States: The state consists of a vector of speed and positions for each vehicle in the network,
ordered by the position of each vehicle, s := (vi, xi)i=0:k−1 ∈ R2k, where k is the number of

CHAPTER 3. LEARNING TRAFFIC REGULATION POLICIES IN SIMULATION 27

(a) Figure Eight (b) Grid (c) Merge

(d) Bottleneck

Figure 3.7: Network configurations for the various benchmarks presented. In each of the
figures, vehicles in red are automated (controlled by the RL agent), in blue are human-driven
and directly observed in the state space, and in white are human-driven an unobserved.

vehicles. Note that the position is defined relative to a pre-specified starting point.

• Actions: The actions are a list of accelerations for each CAV, a ∈ Rn
[amin,amax]

, where n is
the number of CAVs, and amin and amax are bounds on the accelerations.

• Reward: The objective of the learning agent is to achieve high speeds while penalizing
collisions. Accordingly, the reward function is defined as follows:

r = max
(
||vdes · 1k||2 − ||vdes − v||2, 0

)
/ ||vdes · 1k||2 (3.3)

where vdes is an arbitrary large speed used to encourage high speeds and v ∈ Rk is the
speeds of all vehicles in the network.

Merge: controlling shockwaves from on-ramp merges

The merge network (Figure 3.7c) highlights the effect of disturbances on vehicles in a highway
network. Specifically, perturbations resulting from vehicles arriving from the on-merge lead to
the formation of backwards propagating stop-and-go waves, thereby reducing the throughput
of vehicles in the network. In a mixed-autonomy setting, a percentage of vehicles in the main
highway are tasked with dissipating the formation and propagation of stop-and-go waves
from locally observable information. Moreover, given the open nature of the network, the
total number of CAVs within the network may vary at any given time. Taking these into
account, we characterize our MDP as follows:

CHAPTER 3. LEARNING TRAFFIC REGULATION POLICIES IN SIMULATION 28

• States: The state consists of the speeds and space gaps of the vehicles preceding and
following the CAVs, as well as the speed of the CAVs, i.e. s := (vi,lead, vi,lag, hi,lag, hi,lag, vi) ∈
RnRL . In order to account for variability in the number of CAVs (nCAV), a constant nRL

term is defined. When nCAV > nRL, information from the extra CAVs are not included in
the state. Moreover, if nCAV < nRL the state is padded with zeros.

• Actions: The actions consist of a list of bounded accelerations for each CAV, i.e. a ∈
RnRL

[amin,amax]
. One again, an nRL term is used to handle variable numbers of CAVs. If

nCAV > nRL the extra CAVs are treated as human drivers and their actions are updated
using a human-driver model. Moreover, if nCAV < nRL, the extra actions are ignored.

• Reward: The objective in this problem is, once again, improving mobility, either via the
speed of vehicles in the network or by maximizing the number of vehicles that pass through
the network. Accordingly, we augment the reward function presented in Eq. (3.3) as follows:

r = max
(
||vdes ·1k||2−||vdes− v||2, 0

)
/ ||vdes ·1k||2−α

∑
i∈CAV

max [hmax − hi(t), 0] (3.4)

The added term penalizes small headways among the CAVs, thereby discouraging dense
states that lead to the formation of stop-and-go traffic.

Grid: improving traffic signal timing schedules

The grid network (Figure 3.7b) is an idealized representation of a city with a structure similar
to Manhattan. This task highlights issues that arise in coordination of traffic light signals,
particularly questions of partial observability and the scaling of RL algorithms with action
dimension. Solutions to this problem will generate new traffic light control schemes that
minimize the average per-vehicle delay while inducing some measure of fairness.

Vehicles enter at the corners of the grid. For simplicity of the problem, vehicles travel
straight on their path. Each intersection has a traffic light that allows vehicles to flow either
horizontally or vertically. If the light is green, it transitions to yellow for two seconds before
switching to red for the purpose of safety.

The components of the MDP for this benchmark are defined as follows:

• States: Speed, distance to intersection, and edge number of each vehicle. The edges of the
grid are uniquely numbered so the travel direction can be inferred. For the traffic lights
we return 0,1 corresponding to green or red for each light, a number between [0, tswitch]
indicating how long until a switch can occur, and 0,1 indicating if the light is currently
yellow. Finally, we return the average density and speed of each edge.

• Actions: A list of numbers a = [−1, 1]n where n is the number of traffic lights. If ai > 0
for traffic light i it switches, otherwise no action is taken.

CHAPTER 3. LEARNING TRAFFIC REGULATION POLICIES IN SIMULATION 29

• Reward: The reward presented in Eq. (3.3) is once again used for this task. Here the use
of the 2-norm induces fairness, as a more equal distribution of speeds produces a larger
reward.

Bottleneck: maximizing throughput in a bottleneck structure

The bottleneck network (Figure 3.7d) is an idealized representation of the lane-reduction
bottleneck witnessed on Oakland-San Francisco Bay Bridge. On the Bay Bridge, 16 non-HOV
lanes narrow down to eight and subsequently to five. In our model, lanes are instead reduced
from 4N to 2N to N , where N is a scaling factor. This system exhibits the phenomenon
known as capacity drop [138], where the throughput of vehicles through the bottleneck
experiences a sharp drop in magnitude once the inflow of vehicles to it surpass a critical
value. Given this inflow-outflow relation, the goal of a learning agent within this task restrict
or otherwise modify the flow of vehicles within the bottleneck to avoid the triggering of a
capacity drop.

In what follows, we term each distinct segment of road an edge. For each edge, users can
specify for each edge whether it is observed and/or controlled, and how many segments it is
divided into: we refer to this as an edge-segment. Although the observation space, action
space, and reward can easily be modified, the provided environment operates on the following
MDP:

• States: The mean positions and speeds of human drivers for each lane for each edge segment.
The mean positions and speeds of the CAVs on each segment. The outflow of the system
in vehicles per/hour over the last 5 seconds.

• Actions: For a given edge-segment and a given lane, the RL action shifts the maximum
speed of all the CAVs in the segment from their current value. By shifting the max-speed
to higher or lower values, the system indirectly controls the speed of the RL vehicles.

• Reward: rt =
∑i=t

i=t− 5
∆t

nexit(i)
5

∆t∗nlanes∗500
where nexit(i) is the number of vehicles that exited the

system at time-step i. Colloquially, this is the outflow over the last 5 seconds normalized
by the number of lanes, nlanes and a factor of 500. This is to keep the scale of the reward
in line with the other benchmarks.

3.3.2 Numerical results and discussion

Experiments were conducted using gradient-based algorithms Trust Region Policy Optimiza-
tion (TRPO) [147] and Proximal Policy Optimization (PPO) [146] as well as the gradient-free
method Evolutionary Strategies (ES) [139] and an implementation of Augmented Random
Search (ARS) [107]. For ARS a linear policy is used. For ES we use a deterministic multi-layer
perceptron (MLP) with hidden layers (100, 50, 25) and tanh non-linearity whereas for PPO
and TRPO the MLP is outputs a diagonal Gaussian response. Moreover, in the PPO algo-
rithm, a (256, 256) MLP with tanh non-linearity is used to compute a value function baseline,

CHAPTER 3. LEARNING TRAFFIC REGULATION POLICIES IN SIMULATION 30

.

ARS

ES

TRPO

PPO

Legend

Figure 3.8: Learning curves for each benchmark. An iteration of training in each algorithm
consists of 50 rollouts/trajectories. The reported values are undiscounted cumulative returns.

whereas a linear feature baseline is used for the TRPO algorithm. Further implementation
details and a broader discussion on findings may be found here [184].

Figure 3.8 depicts the training performance of each algorithm for variations of the
aforementioned tasks4. The optimal return for each learning algorithm is provided in
Table 3.1 as well, alongside a human-driven baseline for comparative purposes. Given the
current performance of the different RL algorithms, there is an abundance of open questions
that remain for these benchmarks. For each of these problems, it remains to characterize
whether the optimal solution has been achieved. Towards this end, we provide some intuition
here that the optimal solution has not been achieved from the perspective of speed/delay of
the resultant traffic. For the figure eight, CAVs in a fully automated setting (figureeight2) do
not succeed in rearranging their spacing so as to pass through the intersection without pause
or collision, and in fact underperform policies trained in settings with fewer controllable
agents (figureeight0). The existence of a more optimal control strategy suggests that, as with
the ring road in Section 3.2.2, there is an exploration problem to be solved.

4Increasing numbers with each task denoting increasing difficult, generally through the inclusion of larger
networks or additional controllable agent, which increase sizes of both state and action spaces. Details
on each configuration are available here: https://github.com/flow-project/flow/tree/master/flow/
benchmarks

https://github.com/flow-project/flow/tree/master/flow/benchmarks
https://github.com/flow-project/flow/tree/master/flow/benchmarks

CHAPTER 3. LEARNING TRAFFIC REGULATION POLICIES IN SIMULATION 31

Benchmark ARS ES TRPO PPO Human

Figure Eight 0 7.31± 0.54 6.87± 0.08 8.26± 0.10 – 4.18± 0.09
Figure Eight 1 6.43± 0.01 – 5.61± 0.55 – 4.18± 0.09
Figure Eight 2 5.70± 0.01 5.96± 0.00 5.03± 0.23 – 4.18± 0.09
Merge 0 11.3± 0.31 13.31± 0.54 14.95± 0.12 13.66± 0.40 7.39± 0.55
Merge 1 11.06± 0.32 17.29± 0.40 13.74± 0.23 14.61± 0.47 7.39± 0.55
Merge 2 11.5± 0.54 17.36± 0.48 14.14± 0.24 14.54± 0.31 7.39± 0.55
Grid 0 270.2± 0.2 271.7± 0.6 296.2± 2.5 296.8± 5.3 280.8± 1.5
Grid 1 274.7± 1.0 274.3± 1.1 296.0± 2.0 296.2± 2.0 276.8± 1.7
Bottleneck 0 1265± 263 1360± 200 1298± 268 1167± 264 1023± 263
Bottleneck 1 1350± 162 1378± 192 1375± 61 1258± 200 1135± 319
Bottleneck 2 2284± 231 2324± 264 2131± 190 2143± 208 1889± 252

Table 3.1: Average optimal return and standard deviation based on performance metrics after
500 training iterations; average is over 40 rollouts. “–” indicates that the experiment did not
have a complete number of seeds and thus was not reported.

The brittleness of existing learning methods to problems of increasing size and complexity
is further evident within the other presented benchmarks. In the bottleneck benchmark for
instance, while policies are capable of arranging vehicles so as to merge smoothly through
lane reductions without sharp decelerations when networks are small (bottleneck0), they fail
to produce similar gains in bottlenecks with multiple the number of lanes (e.g bottleneck2,
for which the optimal reward should, in theory, be double to denote similar gains). Similarly,
for the grid, while we do not have a proof that we have not discovered an optimal solution
for the grid problems, visualizations of the solutions do not show the platooning that is
expected of optimal solutions to heavy traffic inflows. This is a heuristic argument and
further characterization of the optimum is worth pursuing. However, we note that, as seen in
Table 3.1, policies learned within the grid do not provide noticeable benefits to the mobility
of drivers.

Finally, we note that gradient-based methods in particular fail to meaningfully update
their behaviors after the first few iterations, as evidenced by the flat training curves within
the large grid and bottleneck benchmarks. This suggests that there still remain fundamental
advances to be made in learning policies that can tackle the large action and state spaces
that arise in trying to control city-scale road networks.

3.4 Chapter Summary

This chapter introduces the topic of microscopic traffic flow modelling and presents Flow,
a tool for integrating such models with state-of-the-art reinforcement learning algorithms.
It then provides some insights into the efficacy of RL algorithms in solving a multitude of

CHAPTER 3. LEARNING TRAFFIC REGULATION POLICIES IN SIMULATION 32

traffic control problems and introduces some challenges that emerge when adapting the two
together. Broadly speaking, these challenges include the following:

1. Policies struggle to find optimal solutions, particularly in partially observable problems
or tasks with high degrees of freedom. This, in certain settings, may be addressed
through reward engineering; however, optimal reward configurations are nontrivial to
assign and often result in negative externalities, as evidenced by the formation of large
gaps in the ring road task.

2. In addition, learning methods in difficult problems struggle early within the training
procedure, producing little or no gains after the first few iterations of training despite
performing on par with human models. This suggests that incrementally updating
policies with random starting parameters is insufficient in a multitude of mixed-autonomy
traffic control settings.

3. Finally, policies learned in larger scale problems often underperform those produced in
analogous simpler tasks. This, while once again pointing to issues of scale, also begs
the question: Can said policies in simpler problems be transferred to complex settings
to support or enhance learning?

We tackle each of these points in the remaining chapters of this document.

33

Part I

Learning Across Long Time Horizons

34

CHAPTER 4

Inter-Level Cooperation in
Hierarchical Reinforcement Learning

We begin in this chapter by exploring methods for enabling long term exploration in mixed
autonomy settings with sparse or under-specified reward functions. In particular, we focus
here on motivating such exploration through the use of hierarchies. Hierarchical reinforcement
learning techniques present promising methods for enabling structured exploration in complex
long-term planning problems. Such systems, however, struggle when concurrently training
all levels within a hierarchy, thereby hindering the flexibility and performance of existing
algorithms. In this chapter, we draw connections between these and similar challenges
in multi-agent RL, and hypothesize that increased cooperation between policy levels in a
hierarchy may help ameliorate hierarchical credit assignment and exploration when exposed
to ever-evolving and suboptimal lower-level policies. To validate this hypothesis, we introduce
a simple yet effective technique for inducing hierarchical cooperation via loss-sharing among
sub-policies. Experimental results on a variety of tasks demonstrate that inducing cooperation
results in stronger performing policies and increased sample efficiency on a set of difficult
long-time horizon tasks. In particular, we find that the coupling of both hierarchies and
cooperative learning between hierarchy layers allows automated vehicles to generate traffic
regulation policies without the need for auxiliary rewards functions that redirect learning in
undesirable ways. Finally, we demonstrate that policies trained using our method display
better transfer to new tasks, highlighting the benefits of our method in learning task-agnostic
lower-level skills.

This chapter is adapted from [83]. Videos and code are available at https://sites.
google.com/berkeley.edu/cooperative-hrl.

4.1 Introduction

To solve interesting problems in the real world, agents must be adept at planning and
reasoning over long time horizons. To achieve meaningful goals in robotics problems [130, 44],
for instance, agents must first compose lengthy sequences of actions to effectively navigate

https://sites.google.com/berkeley.edu/cooperative-hrl
https://sites.google.com/berkeley.edu/cooperative-hrl

CHAPTER 4. INTER-LEVEL COOPERATION IN HIERARCHICAL
REINFORCEMENT LEARNING 35

and explore their surroundings. Similarly, in many traffic control settings [201, 184], agents
must choose among actions that produce limited but cascading short-term effects on the
state of traffic that, if poorly chosen, may destabilize the system. These and similar settings
provide limited immediate feedback on the efficacy of individual actions or behaviors, and
as such have proven particularly challenging to standard reinforcement learning (RL) in the
absence of advanced exploration strategies.

Hierarchical reinforcement learning (HRL) techniques provide natural methods for inducing
structured exploration in these difficult, long-horizon tasks. By decomposing challenging tasks
into simpler sub-problems using a hierarchy of policies, such methods refine exploration from
the perspective of higher-level policies, enabling agents to search for optimal solutions across
a range of temporally extended sequences [162]. This simplifies learning for such policies
over large timescales, thereby allowing hierarchies, particularly with well-defined lower-level
behaviors, to outperform their non-hierarchical counterparts in a variety of interesting and
difficult problems [162, 86, 183, 117].

More recently, concurrent learning methods in HRL have garnered particular interest as a
means of improving the flexibility and performance of past approaches [95, 117, 9]. By jointly
optimizing distributions of useful subgoals by a higher-level policy and actions by the lower
level to achieve them, such methods are capable of overcoming suboptimalities that arise
from handcrafted or predefined lower-level policies [13] and provide increased flexibility when
such sub-policies are insufficiently robust to solve novel tasks [200]. However, simultaneously
learning multi-level hierarchical behaviors poses a significant challenge to existing algorithms.
Critically, challenges arise from the conditional relationship between the efficacy of individual
goals and a policy’s ability to achieve them. This, coupled with the ever-evolving nature of
lower-level policies, forces hierarchies to solve for optimal goals across a non-stationary target
as lower-level policies specialize to new subtasks. This dynamic, as we show in Section 4.5.3,
introduces significant biases to the credit assignment procedure when lower-level policies are
unable to reach high-efficacy subgoals, further destabilizing training.

Contribution. In this chapter, we demonstrate that motivating cooperation between
subagents of a hierarchy can address instabilities that arise from improper credit assignment
in concurrent HRL. This approach, as we discuss later, draws insight from the importance of
actively promoting positive information sharing in multi-agent, communicative systems [73,
45], and the effects of improved cooperation on the dynamics of learning in mixed cooperative-
competitive tasks [168]. To induce cooperation between levels of a hierarchy, our method
for Cooperative HiErarchical Reinforcement learning, or CHER, penalizes goal-assignment
behaviors beyond a lower-level policy’s degree of specialization. This penalty unifies the
objectives of both policies from the perspective of the higher level. We derive a gradient
for this joint objective by exploiting concepts similar to differentiable communication in
multi-agent RL [51].

Figure 4.1 depicts the effect of CHER on assigned waypoint goals in an agent navigation
task at different stages of training. Seen here, goals are restricted in different stages in
accordance with a low-level policy’s goal-reaching abilities and expand in the direction of
desirable paths as the training progresses. This reduction in the variability of assigned goals

CHAPTER 4. INTER-LEVEL COOPERATION IN HIERARCHICAL
REINFORCEMENT LEARNING 36

Apple (+1) Bomb (−1) High-level goal Agent trajectory

training iteration training iteration

(a) Standard HRL (b) Cooperative HRL

Figure 4.1: Learned higher-level goal distributions and lower-level agent trajectories from
normal HRL and our method in an environment whereby agents are incentivized to move
towards (green) apples and away from (red) bombs. Our agents develop more reasonable goal
proposals that allow low-level policies to learn goal reaching skills more quickly and navigate
more intricately through their environments. This improves hierarchical credit assignment,
thereby accelerating learning.

disambiguates under-performing from unachievable goals and producing a more informative
loss landscape for higher-level policies.

We evaluate the performance of CHER on a collection of HRL environments and two
previously unexplored mixed-autonomy traffic control tasks. These experiments provide
two useful insights on the role of cooperation in HRL. We find that CHER accelerates and
improves the asymptotic performance of learning in various tasks where more precise goals are
needed to overcome certain bottlenecks. Next, we find that CHER improves the transferability
of learned lower-level skills to novel tasks with differing objectives. This result highlights
an additional benefit of learning across a curriculum of dynamically expanding distributions
of goals, and suggests that similar cooperative methods could serve an important role in
learning task-agnostic policies to improve continual learning [29] in HRL.

4.2 Related work

We explore methods at the intersection of hierarchical RL, multi-agent RL, and communication
and cooperation across multiple interacting agents. We cover the most relevant topics in each
of these fields to this work.

4.2.1 Multi-agent reinforcement learning

The work presented in this chapter takes inspiration from studies of communication and
cooperation in multi-agent RL (MARL). In MARL, communication signals are shared among
agents as a means of influencing neighboring agents to achieve a common objective. These
messages take multiple forms, and may be shared directly through the observations [51, 115] or

CHAPTER 4. INTER-LEVEL COOPERATION IN HIERARCHICAL
REINFORCEMENT LEARNING 37

hidden layers of neighboring actors [157], as well as indirectly via a policy’s intentions [48, 78].
These messages, however, are devoid of meaning at the early stages of learning. Challenges,
as such, emerge due to the ambiguity of shared signals, with agents forced to balance between
sending and interpreting messages. HRL has not used similar signals and has focused on
one-directional channels with higher-level policies communicating goals to lower-level policies.
However, similar difficulties with communication persist, as lower-level policies fail to perform
relevant goals, and higher-level policies fail to distinguish undesirable goals from those in
which the lower level underperformed. The work presented here aims to provide an algorithmic
framework for encouraging the balancing of exploring and interpreting viable goals in HRL,
and will hopefully motivate future work on unifying solutions between MARL and HRL.

Several studies have attempted to address the challenge of stationarity and optimization
in MARL. These solutions have included centralized training paradigms [105, 49, 203],
regularization techniques for grounding communication in interpretable features [115], methods
for intrinsically motivating desirable interactions between agents [188, 45, 73], and many
others. Inline with intrinsically motivating positive interactions, our work is motivated by
Tampuu et al. [168], which observe that loss-sharing among agents in two-player games
encourages the formation of cooperative behaviors and reduces overestimation biases in
decentralized credit assignment. In contrast, we explore the effects of loss-sharing on policies
solving hierarchically coupled objectives whereby cooperation may produce inverse effects on
exploration. We discuss this further in Section 4.4.3.

4.2.2 Hierarchical reinforcement learning

Several studies have attempted to address training instabilities in concurrent HRL [9, 95, 117,
119, 59]. In particular, prior studies have tackled the problem of non-stationarity in HRL, a
challenge notably common to MARL [197, 25, 50] whereby the continually changing nature
of decision-making among policy levels restricts of usability of previously acquired samples
in value estimation. To tackle this problem, prior studies introduce varying techniques for
subgoal relabeling to samples at training time. In [117], for instance, goals at training time
are relabeled with goals that are most likely to produce the priorly stored sequence of actions.
Moreover, in the work of Levy et al. [95], non-stationarities are addressed by replacing a subset
of goals with states achieved in hindsight [5]. We compare our solution to concurrent HRL
training against these algorithms in Section 4.5 and find that CHER further improves sample
efficiency and policy quality in particularly complex tasks where more precise goal-assignment
behaviors are needed.

4.3 Preliminaries

Reinforcement learning problems are generally studied as a Markov decision problem (MDP)
[17], defined by the tuple: (S,A,P , r, ρ0, γ, T), where S ⊆ Rn is an n-dimensional state
space, A ⊆ Rm an m-dimensional action space, P : S ×A×S → R+ a transition probability

CHAPTER 4. INTER-LEVEL COOPERATION IN HIERARCHICAL
REINFORCEMENT LEARNING 38

Environment

πm

πw πw πw

st

· · ·gt

at st+1 at+1

· · ·

st+k at+k

goal

current speed

Figure 4.2: Explored hierarchical model. Left: A manager πm issues goals gt over k steps
to a worker πw. The worker then performs actions at to achieve them. Right: The goals
denote desired states for the worker to traverse. For AV control tasks, we define the goal as
the desired speeds for each AV. Moreover, for agent navigation tasks, the goals are defined as
desired joint positions and angles.

function, r : S → R a reward function, ρ0 : S → R+ an initial state distribution, γ ∈ (0, 1]
a discount factor, and T a time horizon. In a MDP, an agent is in a state st ∈ S in the
environment and interacts with this environment by performing actions at ∈ A. The agent’s
actions are defined by a policy πθ : S ×A → R parametrized by θ. The objective of the agent
is to learn an optimal policy θ∗ := argmaxθJ(πθ), where J(πθ) = Ep∼πθ

[∑T
i=0 γ

ir(si)
]

is the
expected discounted return.

Goal-conditioned HRL In this chapter, we explore the implications of inducing inter-
level cooperation on feudal, or goal-conditioned, hierarchical models in RL [38, 183, 117].
Within such a hierarchy (see Figure 4.2, left), a higher-level manager policy πm assigns goals
gt ∼ πm(st) to a universal [142] worker policy πw at the lower level. The worker policy then
performs primitive actions at ∼ πw(st, gt) to achieve these goals for a meta-interval k, at
which point a new goal is assigned.

The goals assigned by a manager denote a desired state, typically either within the original
state-space or a learned latent embedding of this space [118, 158]. This relationship is defined
via the worker’s goal-conditioned reward function rw(st, gt, st+1). For this chapter, we use a
reward function similar to the ones presented in [130, 183, 117], in which goals characterize
desired deviations in the state from the perspective of an agent. Figure 4.2 depicts examples
of such goals for the problems explored within this chapter1. For automated vehicle (AV)
control problems, we define the goal as the desired speeds for each AV. Moreover, for agent
navigation tasks, these goals consist of the agent’s desired position and joint angles. The
reward function used to instill such a behavior is rw(st, gt, st+1) := −||s′t + gt − s′t+1||2, where
s′t is the subset of the state for which goals are assigned. The objective of the worker is
to find the optimal parameters θ∗w := argmaxθ[Jw(θ)] that solve for the goal-conditioned

1We provide a more detailed description of the utilized goal-assignment strategies in Section 4.10.2.

CHAPTER 4. INTER-LEVEL COOPERATION IN HIERARCHICAL
REINFORCEMENT LEARNING 39

Algorithm 1 CHER
1: Initialize policy parameters θw, θm, memory D, and cooperative term λ
2: For dynamic updates of λ, initialize δ
3: while True do
4: for each t = 0, . . . , T do
5: if t mod k == 0 then
6: gt ← πθm(gt|st) ▷ Sample manager action
7: else
8: gt ← h(st−1, gt−1, st) ▷ goal-transition function
9: end if

10: at ← πθw(at|st, gt) ▷ Sample worker action
11: st+1, r

m
t ← env.step (at)

12: rwt ← rw(st, gt, st+1) ▷ Worker reward
13: end for each
14: θw ← θw + α∇θwJw ▷ Train worker
15: θm ← θm + α∇θm(Jm + λJw) ▷ Train manager
16: if δ initialized then
17: λ← λ+ α∇λ (λδ − λQw) ▷ Train λ
18: end if
19: end while

objective [120, 104]:
Jw = Es∼pπ

[∑k
t=0 γ

trw(st, gt, st+1)
]

(4.1)

We consider a concurrent training procedure for the manager and worker policies. In
this setting, as the worker solves for optimal goal-conditioned behaviors, the manager jointly
searches the space of viable goals and receives a rewards rm(st) extrinsically defined by the
underlying task. The objective for the manager policy is to learn an optimal distribution of
states to goals θ∗m := argmaxθ[Jm(θ)], where Jm is defined in accordance with the original RL
objective as:

Jm = Es∼pπ

[∑T
t=0 [γ

trm(st)]
]

(4.2)

Notably, within this optimization procedure, value is unassigned to the goal-reaching
abilities of worker policies to different goals. This factor, however, plays an important role on
credit assignment in concurrent HRL, introducing biases to credit assignment when goals are
performed suboptimally performed that misdirect exploration and slow down or hindering
learning when such biases remain uncorrected. The absence of such direct feedback motivates
the method proposed in the present chapter, which we detail in Section 4.4.

CHAPTER 4. INTER-LEVEL COOPERATION IN HIERARCHICAL
REINFORCEMENT LEARNING 40

4.4 Cooperative hierarchical reinforcement learning

In this section, we introduce CHER, a method for promoting inter-level cooperation via
loss-sharing in HRL. CHER promotes cooperation by propagating losses that arise from
random or unachievable goal-assignment strategies. As part of this algorithm, we also present
a mechanism to optimize the level of cooperation and ground the notion of cooperation in
HRL to measurable variables. The final form of this method is depicted in Algorithm 1.

4.4.1 Promoting cooperation via loss-sharing

Non-cooperative or selfish objectives in otherwise cooperative multi-agent problems may
destabilize the dynamics of learning within these problems. We explore this idea in the context
of multi-agent systems in Section 4.2.1. We hypothesize that similar disparate objectives in
goal-conditioned hierarchies form non-cooperative interactions between goal-assigning and
goal-achieving policies, and that these interactions hinder a higher-level policy’s ability to
estimate the value of goals assigned. To validate this hypothesis, we develop a method for
enforcing cooperation in goal-conditioned hierarchies by introducing loss-sharing paradigms
based on those presented in [168]. In particular, we focus on the effects of loss-sharing on
the goal-assignment strategies of higher-level policies, noting that the objective of a worker
policy is, by definition, to cooperate with assigned goals. In line with this, we introduce a
weighted form of the worker’s return rw(st, gt, st+1) to the original higher-level task-specific
reward function rm(st). The new cooperative reward is:

r′m = rm(st) + λrw(st, gt, st+1) (4.3)

where λ is a fixed parameter used to balance the effects on cooperation and exploration, and
is discussed further in Section 4.4.3. The cooperative objective function for the manager
policy is then:

J ′
m = Es∼pπ

[∑T
t=0 γ

t [rm + λrw(st, gt, st+1)]
]
= Jm + λJw (4.4)

4.4.2 Cooperative gradients via differentiable communication

In this section, we derive an expression for the gradient of the cooperative expected returns:

∇θmJ
′
m = ∇θm (Jm + λJw) = ∇θmJm + λ∇θmJw. (4.5)

We derive this solution for deterministic policy gradients algorithms [150], in part for their
demonstrated performance and sample-efficiency over other methods [52, 60]. We leave
derivations of this objective for other RL methods for future work. Following the results of
[150], we can express the first term in Eq. (4.5) as:

∇θmJm = Es∼pπ

[
∇aQm(s, a)|a=πm(s)∇θmπm(s)

]
(4.6)

where Qm is the manager’s Q-function, or critic.

CHAPTER 4. INTER-LEVEL COOPERATION IN HIERARCHICAL
REINFORCEMENT LEARNING 41

Environment

πm

πw

∇θmJw

st

· · ·gt

at st+1 at+1

· · ·
st+i at+i

Figure 4.3: At training time, goal states
are replaced with direct outputs from the
manager.

We would next like to compute the derivative
of Jw with respect to θm. This objective, how-
ever, is typically conditioned solely on θw, and
as such is non-differentiable with respect to θm.
To compute this gradient, we adopt a trick that
redefines the goal states gt from the perspective
of the worker policy as direct connections from
the output of the manager policy πm. As seen in
Figure 4.3, this exposes the choice of actions by
the worker policies to decisions made explicitly by
the manager, thereby allowing gradients to flow
between the two. The differentiable variant of assigned subgoals is defined as follows:

Definition 1 (Differentiable goal). The goal gt provided to the input of the worker policy
πw(st, gt) may be defined as the direct output from the manager policy gt whose transition
function is:

g(st; θm) =

{
πm(st) if t mod k = 0

h(st−1, gt−1(θm), st) otherwise
(4.7)

where k is the meta-interval and h(·) is a goal-transition function. For settings where
assigned goal remains static between update intervals, this function is h(gt) = gt. In the
work of [117], however, which we attempt to replicate, assigned (relative) goals are updated
to maintain a unique absolute position for assigned goals via a goal-transition function
h(st, gt, st+1) = st + gt − st+1.

Having defined the goal-state as a function of the manager policy’s parameters θm, we
now introduce this term to worker’s objective function:

Jw(θw, θm) = Es∼pπ

[∑k
t=0 γ

trw(st, gt(st; θm), st+1)
]

(4.8)

Finally, we are capable of computing the gradient of the cooperative component of the
objective:

Theorem 1 (Cooperative gradient). The solution to the deterministic policy gradient for the
worker expected return with respect to goals assigned by a manager policy is:

∇θmJw = Es∼pπ

[
∇θmgt∇g

(
rw(st, g, πw(st, gt)) + πw(st, g)∇aQw(st, gt, a)|a=πw(st,gt)

)∣∣∣∣
g=gt

]
(4.9)

where Qw(s, g, a) is an approximation of the expected worker returns.
Proof. We provide a derivation for this gradient expanding on the work of [150] in Section 4.7.

This gradient consists of two terms. The second term computes the gradient of Qw with
respect to the assigned goals, and may be computed via standard autodifferentiation tools.

CHAPTER 4. INTER-LEVEL COOPERATION IN HIERARCHICAL
REINFORCEMENT LEARNING 42

Moreover, the first term computes the gradient of the worker-specific reward. This reward is a
design feature, and as such, may be explicitly computed. When combined with Eq. (4.6), this
provides a framework for regulating the anticipated loss by a worker policy via the assigned
goals.

4.4.3 Cooperative HRL as constrained optimization

Finally, we discuss the role of cooperation and the weighting term λ on balancing exploration
in HRL. This is an important point of differentiation from prior studies on the effects of
differentiable communication in fully-cooperative multiagent problems [51]. In contrast,
goal-assignment and goal-reaching objectives in HRL are disparate, and become adversarial
when goals that produce high extrinsic rewards are difficult to achieve. Cooperation within
hierarchies as such introduces competing objectives to higher-level learning as policies balance
the standard incentive for exploring goals with high expected returns and the cooperative
incentive for disambiguating the effects of an agent’s goal-reaching abilities on credit assign-
ment. In Eq. (4.4), this balance is regulated via λ, with higher values for λ deceasing the
task objectives importance and therefore the manager’s exploration.

Controlling the balance within cooperative HRL given the unknown scale of the worker’s
and manager’s reward functions is complex. To combat this challenge we derive an objective
function analogous to Eq. (4.5) that we shown in subsection 4.5.3 improved training efficiency
and convergence. We observe that λ acts similar to a Lagrangian term within constrained
optimization [19]. Accordingly, maximizing the objective in Eq. (4.5) equivalently solves the
constrained optimization problem:

maxπm

∑T
t=0 E [r(st)] s.t.

∑T
i=t−E [rw(si, gi, si+1)] ≤ δ ∀t (4.10)

where δ under the original cooperative HRL formulation would be a function of λ. For fixed
values of δ, we see here that loss-sharing within hierarchies restricts higher-level exploration
to the set of goals for which expected lower-level returns fall within a fixed range, with
smaller values for δ producing smaller sets. For waypoint finding goals similar to those
presented in this chapter, this is equivalent to constraining goal assignment to within a
desirable spatiotemporal distance from the agent, a distance that expands as lower-level
policies learn to move to farther waypoints.

To exploit the interpretability of the δ term for hyperparameter selection, we posit that
values for λ may be dynamically assigned to ensure goals adhere to a desirable δ constraint
while learning cooperative goal-assignment behaviors. We derive this dual optimization
procedure in Section 4.8, and demonstrate how values for δ may be assigned and their effects
explored in Section 4.5.4.

CHAPTER 4. INTER-LEVEL COOPERATION IN HIERARCHICAL
REINFORCEMENT LEARNING 43

(a) Highway

(b) Ring Road (c) Ant Gather (d) Ant Four Rooms (e) Ant Maze

Figure 4.4: Training environments explored here. We compare the performance of various
RL algorithms on two traffic control tasks (a, b) and three ant navigation tasks (c, d, e).

4.5 Experiments

In this section, we present the performance of our method over various continuous control
tasks. These experiments aim to determine two things: (1) How does cooperation in HRL
impact the development of goal-assignment strategies and overall learning? (2) Does the use
of cooperation result in a more structured goal conditioned lower-level policy that transfers
better to other tasks?

4.5.1 Environments

We study the effects of our algorithm on a variety of difficult long-term planning tasks, see
Figure 4.4. These consist of three agent navigation tasks [162, 47, 117] (Figures 4.4c to 4.4e), in
which a quadrupedal agent tries to achieve certain long-term goals, and two mixed-autonomy
traffic tasks [202] (Figures 4.4b to 4.4a) in which a subset of vehicles act as automated vehicles
and attempt to attenuate congestion in the form of stop-and-go traffic. These tasks require a
high degree of temporal reasoning from agents as they navigate their surroundings over small
timescales and explore viable states which provide (often delayed) positive feedback over
large timescales, and as such are ideal for the exploring the effects of hierarchical learning.
Further details on each environment is provided in Section 4.9.1.

CHAPTER 4. INTER-LEVEL COOPERATION IN HIERARCHICAL
REINFORCEMENT LEARNING 44

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps 1e6

1.4
1.6
1.8
2.0
2.2
2.4

Re
wa

rd

×103

(a) Ring Road

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps 1e6

0.0
0.2
0.4
0.6
0.8
1.0

Re
wa

rd

×104

(b) Highway

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

0.0

1.0

2.0

3.0

4.0

Re
wa

rd

×101

(c) Ant Gather .

TD3
HRL
HIRO
HAC
CHER (fixed λ)
CHER (dynamic λ)

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

0.0

2.0

4.0

6.0

8.0

Re
wa

rd

×10 1

(d) Ant Four Rooms

0.0 0.5 1.0 1.5 2.0 2.5
Steps 1e6

0.0
0.2
0.4
0.6
0.8
1.0

Re
wa

rd

×101

(e) Ant Maze [16,0]

0.0 0.5 1.0 1.5 2.0 2.5
Steps 1e6

0.0
0.2
0.4
0.6
0.8
1.0

Re
wa

rd

×101

(f) Ant Maze [16,16]

0.0 0.5 1.0 1.5 2.0 2.5
Steps 1e6

0.0
0.2
0.4
0.6
0.8
1.0

Re
wa

rd

×101

(g) Ant Maze [0,16]

Figure 4.5: Training performance of the different algorithms, averaged across 10 runs.

4.5.2 Prior algorithms

We evaluate our proposed algorithm against each of the prior methods defined below. The
hyperparameters used for each of these methods and CHER are provided in Section 4.10.1.

TD3 We first compare our method against a flat (non-hierarchical) fully connected network
that is trained using the TD3 algorithm [52] with similar hyperparameters.

HRL Next, we compare our algorithm against a hierarchical policy following a more stan-
dard optimization scheme (see Section 4.3). This is analogous to the CHER algorithm with
λ set to 0.

Finally, to provide a fair comparison of our algorithm against the state-of-the-art, we
compare our method to two popular approaches to concurrent HRL. These two algorithms,
named HIerarchical Reinforcement learning with Off-policy correction, or HIRO [117], and
Hierarchical Actor-Critic, or HAC [95], are presented in Section 4.2.2. Implementation
details for each of the HIRO and HAC algorithms are provided in Sections 4.10.3 and 4.10.4,
respectively.

4.5.3 Comparative analysis

Figure 4.5 depicts the learning performance of each explored algorithm on the studied tasks.
Here we find that CHER succeeds in both accelerating learning and increasing the asymptotic
performance of learned policies in many scenarios. These benefits emerge, as we see in

CHAPTER 4. INTER-LEVEL COOPERATION IN HIERARCHICAL
REINFORCEMENT LEARNING 45

Figure 4.6, in a large part from more the presence of more informative goal-assignment
behaviors provide by CHER. For instance, in the Ant Gather task (Figure 4.6b), while
standard HRL methods produce highly entropic goal-assignment policies that often lie on
the periphery of the map, CHER on the other hand is capable of assigning goals that more
closely match an agent’s desired trajectory, thereby enhancing the agent’s ability to intricately
navigate its surroundings. This increased level of control allows the agent to more readily
avoid coming in contact with loss-incurring bomb, and produces more regulated movements
by the agent which prevent the agent from losing its balances. Video demonstrations of these
comparisons may be found in the supplementary material.

We see similar benefits to agents trained via CHER in the traffic control tasks. Here, im-
provements emerge from corrections by CHER to biases early in hierarchical credit assignment.
In the Ring Road setting, for instance, managers trained using standard HRL (Figure 4.6a,
top) overestimate the efficacy of assigning high desired speeds when such goals are only
loosely correlated with the actions of a lower-level agent. These biases remain uncorrected
for the duration of training, and result in the formation of aggressive driving behaviors, that,
similar to human driving, contribute to the formation of stop-and-go traffic. In contrast, by
accounting for the disparities in assigned and achieved goals, CHER succeeds in assigning
desired speeds that more closely match states achieved by the agent, and ultimately, the
desired equilibrium speed of the network. This behavior dampens the frequency and severity
of stop-and-go traffic (see Figure 4.6a) and improves vehicle throughput. A similar, more
profound variant of this behavior is learned in the Highway setting, and can be seen in
Figure 4.7.

Finally, we note that within the Ant Maze task, no noticeable benefit is witnessed from
CHER. This, once again, may be understood by looking to the behaviors learned by goal-
assignment and goal-reaching policies using cooperative and non-cooperative objectives. Seen
in Figure 4.6d, while goals assigned by CHER do more closely dictate the agent’s movements,
the absence of restrictive bottlenecks within this task allows the wide-varying goals assigned by
standard HRL to achieve similar trajectories. This is in contrast to the Ant Gather problem,
for instance, where small fluctuations in an agent’s position may determine whether it comes
in contact with an apple or a bomb. This suggests that regularizing around cooperative
interactions strengthens learning particularly when stronger understandings of the efficacy of
small changes to goals is needed.

4.5.4 Cooperation tradeoff

In this section, we delve deeper into the balance that emerges between cooperation and
exploration, and conceptually demonstrate how this balance may be tuned via the parameter δ
(Section 4.4.3) with some prior knowledge. As mentioned in Section 4.4.3, the δ term constrains
the manager policy to assign goals within a lower-level policy’s degree of specialization, and in
particular with respect to the expected returns a specific goal may produce. This constraint
shares a relationship with aspect of the lower-level reward function and overall training
procedure that can be exploited to define ranges of appropriate values for δ. We demonstrate

CHAPTER 4. INTER-LEVEL COOPERATION IN HIERARCHICAL
REINFORCEMENT LEARNING 46

High-level goal Agent trajectory

Standard
HRL

.

CHER
(ours)

. (a) Ring Road (b) Gather (c) Four Rooms (d) Maze

Figure 4.6: Agent and goal trajectories for some of the environments studied here. The
high-level goals learned via CHER more closely match the agents’ trajectories as they traverse
the various environments. This results in improved dynamical behaviors by the agent in a
majority of the tasks.

(a) Human baseline (b) CHER controller (c) Average speed

Figure 4.7: Performance on the Highway environment. a) In the absence of autonomy,
downstream congestion results in the propagation stop-and-go waves, seen as the diagonal
lines. b) The policy learned via CHER allows AVs to form gaps sufficiently large to prevent
stop-and-go waves from propagating. c) This improves the speeds of vehicles when compared
to other methods.

CHAPTER 4. INTER-LEVEL COOPERATION IN HIERARCHICAL
REINFORCEMENT LEARNING 47

this here for the Ant Gather task. In this task, we notice that expected worker returns under
the standard HRL approach (where no explicit cooperation is enough) converge to a value
of about −600 (see Figure 4.8g). This informs us that choices of δ are unlikely to produce
dynamic values of λ that will enhance cooperation or affect training. As such, we may assign
a lower bound to δ of −600. This, coupled with the upper limit of 0 due to the non-positive
nature of the goal-conditioned reward, provides us with bounds to explore the choice of this
hyperparameter over.

Figures 4.8i to 4.8f depict the effect of varying choices of δ on the performance of the
policy. For simplicity, we define the chosen values in relation to the upper and lower
bounds defined above. For example, a δ value of −450 is equated to a cooperation ratio of
(−600+ 450)/(−600− 0) = 0.25, or 25%. As expected, we see that as the level of cooperation
increases, the goal-assignment behaviors increasingly consolidate near the path of the agent,
until such a point as to disincentivize forward movement. We note however, that as seen
in Figures 4.8i, the increasingly informative nature of the assigned goals and the stability
associated with such cooperation begins to boost learning, producing behaviors within the
vicinity of 75% that outmatch all others. This demonstrates the significance of maintaining
a balance between the two. The benefits are also relatively stably maintained within this
vicinity, suggesting that the use of appropriate bounds via the δ approach may help reduce
sensitivities in the parameter tuning procedure.

Finally, we validate that our approached succeeds in achieving the constraints as assigned
by the δ parameter. Figures 4.8g and 4.8h depict the agent’s ability to achieve the assigned δ
constraint and the dynamic λ terms assigned to achieve these constraints, respectively. For
most choices of δ, CHER succeeds in defining dynamic λ values that match the constraint,
demonstrating the efficacy of the designed optimization procedure. For very large constraints,
in this case for δ = −50, no choice of λ can be assigned to match the desired constraint,
thereby causing the value of λ to grow exponentially. This demonstrates a sort of upper
bound for the constraint, after which any goal that does not very closely match the agents
trajectory is impractical. This ultimately degenerates into a behavior of assigning goals that
match the current state, which we see occurs in Figure 4.8f.

4.5.5 Transferability of policies between tasks

Finally, we explore the effects of promoting inter-level cooperation on the transferability of
learned lower-level policies between tasks. We here are motivated by the work of [64], which
demonstrates that training goal-reaching policies via curricula of increasingly difficult goals
accelerates the process of learning diverse skills. As seen in Figure 4.1, our method similarly
assigns goals that gradually expand coverage while focusing on trajectories that yield high
environmental rewards. As such, similar benefits to generalizability of lower-level skills may
emerge here.

To study this, we look to the Ant environments in Figure 4.4 and choose to learn a policy
in one environment (Ant Gather) and transfer the learned skills by the worker policy to two
separate environments (Ant Maze and Ant Four Rooms). The initial policy is trained within

CHAPTER 4. INTER-LEVEL COOPERATION IN HIERARCHICAL
REINFORCEMENT LEARNING 48

Apple (+1) Bomb (−1) High-level goal Agent trajectory

(a) 0% (b) 50% (c) 66.7% (d) 75% (e) 83.3% (f) 91.7%

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

1000

800

600

400

200

0

W
or

ke
r Q

-M
ea

n

(g) Worker expected returns

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

10 6
10 5
10 4
10 3
10 2
10 1
100
101
102

(h) Evolution of dynamic λ

0.0 0.2 0.4 0.6 0.8 1.0
Cooperation ratio

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

M
ax

 re
wa

rd

Standard HRL
Optimal cooperation
Exploration disincentivized

(i) Effects of cooperation

Figure 4.8: Effect of varying degrees of cooperation for the Ant Gather environment. We plot
the performance of the optimal policy and sample trajectories for various cooperation ratios
(see the subcaptions for a-f). Increasing degrees of cooperation improve the agent’s ability
to assign desired goals that match the agent’s trajectory, which subsequently improves the
performance of the policy. Large degrees of cooperation, however, begin to disincentivize the
agent from moving.

the Ant Gather environment for 1 million steps utilizing either the HRL, HIRO, or CHER
algorithms, and weights of the worker policy are then transferred to a novel task and fixed.
The manager policy is then retrained to exploit these predefined skills for the new task.

Figure 4.9 depicts the transfer setup and performance of the learned policy in reaching
the three corners of each new task. We find that goal-reaching policies trained via CHER
are more capable of generalizing to the distributions of goals required to solve novel tasks,
attributing to improvements to the success rate of agents particularly when they move to the
most difficult to reach corners. This suggests that inducing inter-level cooperation in HRL
encourages the formation more robust goal-reaching abilities, a factor that provides benefits
to multi-task and lifelong learning.

4.6 Chapter Summary

This chapter proposes connections between multi-agent and hierarchical RL that motivate a
novel method of inducing cooperation in hierarchies. We introduce a loss-sharing paradigm
that encourages cooperative interactions between goal-assignment and goal-reaching policies,
and present a technique for deriving the gradient of such a loss via differentiable goal states.
We find that the introduction of cooperation provides a number of underlying benefits when

CHAPTER 4. INTER-LEVEL COOPERATION IN HIERARCHICAL
REINFORCEMENT LEARNING 49

HRL worker CHER worker HIRO worker

Transfer πw

Retrain πm

[16,0]

0 1 2 3 4 5
Steps 1e6

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s R

at
e

[20,0]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps 1e6

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s R

at
e

[16,16]

0 1 2 3 4 5
Steps 1e6

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s R

at
e

[0,20]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps 1e6

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s R

at
e

[0,16]

0 1 2 3 4 5
Steps 1e6

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s R

at
e

[20,20]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps 1e6

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s R

at
e

Figure 4.9: Transferability of policies learned via CHER. The policies learned when utilizing
the CHER worker significantly outperform HIRO for a wide variety of evaluation points,
highlighting the benefit of CHER in learning a more informative and generalizable policy
representations.

concurrently optimizing goal-conditioned hierarchies. For one, we find that CHER improves
the sample-efficiency and asymptotic performance of learned policies for the majority of
explored problems. As we demonstrate, these benefits emerge in part from more informative
and precise goal-assignment maneuvers, which produce more intricate and stable behaviors
from the perspective of lower-level policies. This behavior also enhances the generalizability
of learned lower-level skills when transferred to novel tasks, thereby supporting improved
multi-task and lifelong learning.

As a topic of future work, we hope to exploit the effects of promoting inter-level cooperation
in multi-level and hierarchies and option-critic [9] style algorithms. Moreover, in the context
of promoting positive interactions between levels of a hierarchy, we are also interested in
the effects of different forms of intrinsic motivation. Rewards that, for instance, promote
novelty [15, 169] or empowerment [45, 73] between levels may help target goal-assignment
in such a way as to further promote exploration while augmenting the effects of increased
inter-level cooperation.

4.7 Derivation of cooperative manager gradients

In this section, we derive a solution for the derivative of the worker expected return Jw
with respect to the manager parameters θm. Here, we aim to produce a solution for the
deep deterministic formulation of the RL objective. Under this formulation, the estimate for
the expected goal-conditioned return for a given initial condition st is approximated via a
worker value function Vw(st) trained alongside the actor. The expected return Jw across a
distribution of initial states ρ(·) is then approximated as Jw =

∫
S ρ0(st)Vw(st, g(st; θm))dst,

CHAPTER 4. INTER-LEVEL COOPERATION IN HIERARCHICAL
REINFORCEMENT LEARNING 50

where g(st; θm) a differentiable variant of the assigned goal as defined in Eq. (4.7). For the
purposes of simplicity, we express this final term as gt from now on. The derivative of the
objective is then:

∇θmJw = ∇θm

∫
S
ρ0(st)Vw(st, gt)dst =

∫
S
ρ0(st)∇θmVw(st, gt)dst (4.11)

We begin by computing the partial derivative of the worker value function with respect
to the parameters of the manager:

∇θmVw(st, gt) = ∇θmQw(st, gt, πw(st, gt))

= ∇θm

(
rw(st, gt, πw(st, gt)) +

∫
G

∫
S
γpw(s

′, g′|st, gt, πw(st, gt))Vw(s
′, g′)ds′dg′

)
= ∇θmrw(st, gt, πw(st, gt)) + γ∇θm

∫
G

∫
S
pw(s

′, g′|st, gt, πw(st, gt))Vw(s
′, g′)ds′dg′

(4.12)

where G and S are the goal and environment state spaces, respectively, and pw(·, ·|·, ·, ·) is
the probability distribution of the next state from the perspective of the worker given the
current state and action.

Expanding the latter term, we get:

pw(s
′, g′|st, gt, πw(st, gt)) = pw,1(g

′|s′, st, gt, πw(st, gt))pw,2(s
′|st, gt, πw(st, gt)) (4.13)

The first element, pw1, is the probability distribution of the next goal, and is deterministic
with respect to the conditional variables. Specifically:

pw,1(g
′|st, gt, πw(st, gt)) =

{
1 if g′ = gt+1

0 otherwise
(4.14)

The second element, pw,2, is the state transition probability from the MDP formulation of
the task, i.e.

pw,2(s
′|st, gt, πw(st, gt)) = p(s′|st, πw(st, gt)) (4.15)

Combining Eq. (4.13)-(4.15) into Eq. (4.12), we get:

∇θmVw(st, gt) = ∇θmrw(st, gt, πw(st, gt))

+ γ∇θm

∫
G

∫
S

(
pw,1(g

′|s′, st, gt, πw(st, gt))pw,2(s
′|st, gt, πw(st, gt))Vw(s

′, g′)ds′dg′
)

= ∇θmrw(st, gt, πw(st, gt))

+ γ∇θm

∫
G∩{gt+1}

∫
S
1 · p(s′|st, πw(st, gt))Vw(s

′, g′)ds′dg′

+ γ∇θm

∫
(G∩{gt+1})c

∫
S
0 · p(s′|st, πw(st, gt))Vw(s

′, g′)ds′dg′

= ∇θmrw(st, gt, πw(st, gt)) + γ∇θm

∫
S
p(s′|st, πw(st, gt))Vw(s

′, gt+1)ds
′

(4.16)

CHAPTER 4. INTER-LEVEL COOPERATION IN HIERARCHICAL
REINFORCEMENT LEARNING 51

Continuing the derivation of ∇θmVw from Eq. (4.16), we get,

∇θmVw(st, gt) = ∇θmrw(st, gt, πw(st, gt)) + γ∇θm

∫
S
p(s′|st, πw(st, gt))Vw(gt+1, s

′)ds′

= ∇θmrw(st, gt, πw(st, gt)) + γ

∫
S
∇θmp(s

′|st, πw(st, gt))Vw(gt+1, s
′)ds′

= ∇θmgt∇grw(st, g, πw(st, gt))|g=gt

+∇θmgt∇gπw(st, g)|g=gt∇arw(st, gt, a)|a=πw(st,gt)

+ γ

∫
S

(
Vw(s

′, gt+1)∇θmgt∇gπw(st, g)|g=gt∇ap(s
′|st, a)|a=πw(st,gt)ds

′
)

+ γ

∫
S
p(s′|st, πw(st, gt))∇θmVw(s

′, gt+1)ds
′

= ∇θmgt∇g

(
rw(st, g, πw(st, gt))

+ πw(st, g)∇arw(st, gt, a)|a=πw(st,gt)

+ γ

∫
S
Vw(s

′, gt+1)πw(st, g)∇ap(s
′|st, a)|a=πw(st,gt)ds

′
)∣∣∣∣

g=gt

+ γ

∫
S
p(s′|st, πw(st, gt))∇θmVw(s

′, gt+1)ds
′

= ∇θmgt∇g

(
rw(st, g, πw(st, gt))

+ πw(st, g)∇a

(
rw(st, gt, a) + γ

∫
S
Vw(s

′, gt+1)p(s
′|st, a)ds′

)∣∣∣∣
a=πw(st,gt)

)∣∣∣∣
g=gt

+ γ

∫
S
p(s′|st, πw(gt, st))∇θmVw(s

′, gt+1)ds
′

= ∇θmgt∇g

(
rw(st, g, πw(st, gt)) + πw(st, g)∇aQw(st, gt, a)|a=πw(st,gt)

)∣∣∣∣
g=gt

+ γ

∫
S
p(s′|st, πw(st, gt))∇θmVw(s

′, gt+1)ds
′

(4.17)

CHAPTER 4. INTER-LEVEL COOPERATION IN HIERARCHICAL
REINFORCEMENT LEARNING 52

Iterating this formula, we have,

∇θmVw(st, gt) = ∇θmgt∇g

(
rw(st, g, πw(st, gt)) + πw(st, g)∇aQw(st, gt, a)|a=πw(st,gt)

)∣∣∣∣
g=gt

+ γ

∫
S
p(st+1|st, πw(st, gt))∇θmVw(st+1, gt+1)dst+1

= ∇θmgt∇g

(
rw(st, g, πw(st, gt)) + πw(st, g)∇aQw(st, gt, a)|a=πw(st,gt)

)∣∣∣∣
g=gt

+ γ

∫
S
p(st+1|st, πw(st, gt))∇θmgt+1∇g

(
rw(st+1, g, πw(st+1, gt+1))

+ πw(st+1, g)∇aQw(st+1, gt+1, a)|a=πw(st+1,gt+1)

)∣∣∣∣
g=gt+1

dst+1

+ γ2

∫
S

∫
S

(
p(st+1|st, πw(st, gt))p(st+2|st+1, πw(gt+1, st+1))

∇θmVw(st+2, gt+2)dst+2dst+1

)
...

=
∞∑
n=0

γn

∫
S
· · ·
∫
S︸ ︷︷ ︸

n times

(
n−1∏
k=0

p(st+k+1|st+k, πw(st+k, gt+k))

)

×∇θmgt+n∇g

(
rw(st+n, g, πw(st+n, gt+n))

+ πw(st+n, g)∇aQw(st+n, gt+n, a)|a=πw(st+n,gt+n)

))∣∣∣∣
g=gt+n

dst+n · · · dst+1

(4.18)

Taking the gradient of the expected worker value function, we get,

∇θmJw =

∫
S
ρ0(s0)∇θmVw(s0, g0)ds0

=

∫
S
ρ0(s0)

∞∑
n=0

γn
∫
S
· · ·
∫
S︸ ︷︷ ︸

n times

[(
n−1∏
k=0

p(sk+1|sk, πw(sk, gk))

)
∇θmgn

×∇g

(
rw(sn, g, πw(sn, gn)) + πw(sn, g)∇aQw(sn, gn, a)|a=πw(sn,gn)

)]∣∣∣∣
g=gn

dsn · · · ds0

=
∞∑
n=0

∫
S
· · ·
∫
S︸ ︷︷ ︸

n+1 times

γnpθm,θw,n(τ)∇θmgn∇g

(
rw(sn, g, πw(sn, gn))

+ πw(sn, g)∇aQw(sn, gn, a)|a=πw(sn,gn)

)∣∣∣∣
g=gn

dsn · · · ds0

= Eτ∼pθm,θw (τ)

[
∇θmgt∇g

(
rw(st, g, πw(st, gt)) + πw(st, g)∇aQw(st, gt, a)|a=πw(st,gt)

)∣∣∣∣
g=gt

]

(4.19)

CHAPTER 4. INTER-LEVEL COOPERATION IN HIERARCHICAL
REINFORCEMENT LEARNING 53

where τ = (s0, a0, s1, a1, . . . , sn) is a trajectory and pθm,θw,n(τ) is the (improper) discounted
probability of witnessing a trajectory a set of policy parameters θm and θw.

4.8 Cooperative HRL as goal-constrained optimization

In this section, we derive a constrained optimization problem that motivates cooperation
between a manager policy πm and worker policy πw. We will derive an update rule for
the finite horizon reinforcement learning setting, and then approximate the derivation for
stationary policies by dropping the time dependencies from the manager policy, worker policy,
and the weighting term λ. Our goal is to find a hierarchy of policies πm and πw with maximal
expected return subject to a constraint on minimum expected distance from goals proposed
by πm. Put formally,

max
πm

T∑
t=0

E [r(st)] s.t.
T∑
i=t

E [rw(si, gi, si+1)] ≤ δ ∀t (4.20)

where δ is the desired minimum expected distance from goals proposed by πm. The optimal
worker policy πw without the constraint need not be goal-reaching, and so we expect the
constraint to be tight in practice—this seems to be true in our experiments in this chapter. The
hierarchy of policies at iteration t may only affect the future, and so we can use approximate
dynamic programming to solve for the optimal hierarchy at the last timestep, and proceed
backwards in time. We write the optimization problem as iterated maximization,

max
πm,0,πw,0

E
[
r(s0) + max

πm,1,πw,1

E
[
· · ·+ max

πm,T ,πw,T

E [r(sT)]

]]
(4.21)

subject to a constraint on the minimum expected distance from goals proposed by πm.
Starting from the last time step, we convert the primal problem into a dual problem. Subject
to the original constraint on minimum expected distance from goals proposed by πm,T at the
last timestep,

max
πm,T ,πw,T

E [r(sT)] = min
λT≥0

max
πm,T ,πw,T

E [r(sT)] + λT δ − λT

T∑
i=T

E [rw(si, gi, si+1)] (4.22)

where λT is a Lagrange multiplier for time step T , representing the extent of the cooperation
bonus between the manager policy πm,T and the worker policy πw,T at the last time step.
In the last step we applied strong duality, because the objective and constraint are linear
functions of πm,T and πw,T . Solving the dual problem corresponds to CHER, which trains a
manager policy πm,T with a cooperative goal-reaching bonus weighted by λT . The optimal
cooperative bonus can be found by performing minimization over a simplified objective using
the optimal meta and worker policies.

min
λT≥0

λT δ − λT

T∑
i=T

Egi∼π∗
m,T (gi|si;λT),ai∼π∗

w,T (ai|si,gi;λT) [rw(si, gi, si+1)] (4.23)

CHAPTER 4. INTER-LEVEL COOPERATION IN HIERARCHICAL
REINFORCEMENT LEARNING 54

By recognizing that in the finite horizon setting the expected sum of rewards is equal to
the manager policy’s Q function and the expected sum of distances to goals is the worker
policy’s Q function for deterministic policies, we can separate the dual problem into a bi-level
optimization problem first over the policies.

max
πm,T ,πw,T

Qm(sT , gT)− λTQw(sT , gT , aT) (4.24)

min
λT≥0

λT δ + λTQw(sT , gT , aT) (4.25)

By solving the iterated maximization backwards in time, solutions for t < i ≤ T are a
constant ct:T with respect to manager policy πm,t, worker policy πw,t and Lagrange multiplier
λt. Dropping the time dependencies gives us an approximate solution to the dual problem
for the stationary policies used in practice, which we parameterize using neural networks.

max
πm,πw

Qm(st, gt)− λQw(st, gt, at) + ct:T (4.26)

min
λ≥0

λδ + λQw(st, gt, at) + ct:T (4.27)

where the constant ct:T may be dropped during the optimization procedure.
The final approximation we make assumes that, for a worker policy that is maximizing

a mixture of the manager policy reward and the worker goal-reaching reward, the goal-
reaching term tends to be optimized the most strongly of the two, leading to the following
approximation.

max
πm

Qm(st, gt) + λmax
πw

Qw(st, gt, at) (4.28)

min
λ≥0

λδ + λQw(st, gt, at) (4.29)

4.9 Environment details

In this section, we highlight the environmental setup and simulation procedure used for each
of the environments explored within this chapter.

4.9.1 Environments

Ant Gather In this task shown in Figure 4.4c, an agent is placed in a 20× 20 space with
8 apples and 8 bombs. The agent receives a reward of +1 for collecting an apple (denoted by
the green disks) and −1 for collecting a bomb (denoted by the red disks); all other actions
yield a reward of 0. Finally, if an agent falls, defined as the z-coordinate of the agent being
less than a certain threshold, the environment is terminated prematurely and the agent
receives a return of 0 for the current time step.

CHAPTER 4. INTER-LEVEL COOPERATION IN HIERARCHICAL
REINFORCEMENT LEARNING 55

Ant Maze For this task, immovable blocks are placed to confine the agent to a U-shaped
corridor, shown in Figure 4.4e. The agent is initially placed at position (0, 0), and assigned
an (x, y) goal position between the range (−4,−4)× (20, 20) at the start of every episode.
The agent is incentivized to reach these goals via a reward function defined as the negative
L2 distance from this (x, y) position, and is evaluated for its ability to reach the three corners
of the network at the positions (16, 0), (16, 16), and (0, 16).

Ant Four Rooms An agent is placed on one corner of the classic four rooms environ-
ment [162] and attempts to navigate to one of the other three corners. The agent is initialized
at position (0, 0) and assigned an (x, y) goal position corresponding to one of the other three
corner ((0, 20), (20, 0), or (20, 20)). The agent, similar to the Ant Maze environment, receives
reward defined as the negative L2 distance from this (x, y) position, and evaluated over its
ability to reach any of these corners.

Ring Road This environment, see Figure 4.4b, is a replication of the environment presented
by [202], but with sparser rewards. A total of 22 vehicles are placed in a ring road of variable
length (220-270m). In the absence of autonomy, instabilities in human-driven dynamics result
in the formation of stop-and-go traffic [156]. During training, a single vehicle is replaced by a
learning agent whose accelerations are dictated by an RL policy. The vehicle perceives its
speed, as well as the speed and gap between it immediate leader and follower from the five
most recent time steps (resulting in a observation space of size 25). In order to maximize
the throughput of the network, the agent is rewarded via a reward function defined as:
renv = 0.1

nv
[
∑nv

i=1 vi]
2, where nv is the total number of vehicles in the network, and vi is the

current speed of vehicle i.

Highway This environment, see Figure 4.4a, is a higher-dimensional and open-network
extension of the Ring Road environment. In this problem, downstream traffic instabilities
resulting simulated via a slower-moving downstream segment produce congestion in the form
of stop-and-go waves. AVs in this setting are once again tasked with improving the throughput
of traffic within this network. Within this problem, the states and actions are once again
chosen to to match those presented for the Ring Road environment, and similar to the work
of [82] are concatenated across all automated vehicles to produce a single centralized policy.

4.9.2 Simulation details

The simulators and simulation horizons for each of the environments are as follows:

• The Ant Maze, Ant Four Rooms, and Ant Gather environments are simulated using the
MuJoCo physics engine for model-based control [173]. The time horizon in each of these
tasks is set to 500 steps, with dt = 0.02 and frame skip = 5.

• The Ring Road and Highway environments are simulated using the Flow [202] compu-
tational framework for mixed-autonomy traffic control. During resets, the simulation is

CHAPTER 4. INTER-LEVEL COOPERATION IN HIERARCHICAL
REINFORCEMENT LEARNING 56

warmed up for 1500 steps to allow for regular and persistent stop-and-go waves to form.
The horizon of these environments are set to 1500 steps. Finally, the simulation step
size for the Ring Road environment is set to 0.2 seconds/step, and that of the Highway
environment is set to 0.4 seconds/step.

4.10 Algorithm details

4.10.1 Choice of hyperparameters

• Network shapes of (256, 256) for the actor and critic of both the manager and worker
with ReLU nonlinearities at the hidden layers and tanh nonlinearity at the output layer of
the actors. The output of the actors are scaled to match the desired action space.

• Adam optimizer; learning rate: 3e− 4 for actor and critic of both the manager and worker
• Soft update targets τ = 5e− 3 for both the manager and worker.
• Discount γ = 0.99 for both the manager and worker.
• Replay buffer size: 200,000 for both the manager and worker.
• Lower-level critic updates 1 environment step and delay actor and target critic updates

every 2 steps.
• Higher-level critic updates 10 environment steps and delay actor and target critic updates

every 20 steps.
• Huber loss function for the critic of both the manager and worker.
• No gradient clipping.
• Exploration (for both the manager and worker):

– Initial purely random exploration for the first 10,000 time steps

– Gaussian noise of the form N (0, 0.1× action range) for all other steps

• Reward scale of 0.1 for Ant Maze and Ant Four Rooms, 10 for Ant Gather, and 1 for all
other tasks.

• Number of candidate goals = 10. This is only used by the HIRO algorithm.
• Subgoal testing rate = 0.3. This is only used by the HAC algorithm.
• Cooperative gradient weights (λ):

– fixed λ: We perform a hyperparameter search for λ values between [0.005, 0.01], and
report the best performing policy. This corresponds to λ = 0.01 for the Ant Gather,
Ring Road, and Highway environments, and λ = 0.005 for the Ant Maze and Ant
Four Rooms environments.

– dynamic λ: We explore varying degrees of cooperation by setting δ such then it
corresponds to 25%, 50%, or 75% of the worker expected return when using standard
HRL, and report the best performing policy. This corresponds to 25% for the Ant
Gather environment, and 75% for all other environments.

CHAPTER 4. INTER-LEVEL COOPERATION IN HIERARCHICAL
REINFORCEMENT LEARNING 57

4.10.2 Manager goal assignment

As mentioned in Section 4.10.1, the output layers of both the manager and worker policies
are squashed by a tanh function and then scaled by the action space of the specific policy.
The scaling terms for the worker policies in all environments are provided by the action space
of the environment.

For the Ant Maze, Ant Four Rooms, and Ant Gather environments, we follow the scaling
terms utilized by [117]. The scaling terms are accordingly ±10 for the desired relative x,y;
±0.5 for the desired relative z; ±1 for the desired relative torso orientations; and the remaining
limb angle ranges are available from the ant.xml file.

Conversely, for the Ring Road and Highway environments, assigned goals represent the
desired speeds by controllable/automated vehicles. The range of desired speeds is set to
0− 10 m/s for the Ring Road environment and 0− 20 m/s for the Highway environment.

4.10.3 Reproducibility of the HIRO algorithm

Our implementation of HIRO, in particular the use of egocentric goals and off-policy corrections
as highlighted in the original paper, are adapted largely from the original open-sourced
implementation of the algorithm, as available in https://github.com/tensorflow/models/
tree/master/research/efficient-hrl. Both our implementation and the original results
from the paper exhibit similar improvement when utilizing the off-policy correction feature,
as seen in Figure 4.10, thereby suggesting that the algorithm was successfully reproduced. We
note, moreover, that our implementation vastly outperforms the original HIRO implementation
on the Ant Gather environment. Possible reasons this may be occurring could include software
versioning, choice of hyperparameters, or specific differences in the implementation outside
of the underlying algorithmic modification. More analysis would need to be performed to
pinpoint the cause of these discrepancies.

(a) Ant Gather (b) Ant Maze

Figure 4.10: Training performance of the original implementation of the HIRO algorithm with
ours. The original performance of HIRO, denoted by the right figure within each subfigure,
is adapted from the original paper, see [117]. While the final results do not match exactly,
the relative evolution of the curves exhibit similar improvements, as seen within the regions
highlighted by the red ovals.

https://github.com/tensorflow/models/tree/master/research/efficient-hrl
https://github.com/tensorflow/models/tree/master/research/efficient-hrl

CHAPTER 4. INTER-LEVEL COOPERATION IN HIERARCHICAL
REINFORCEMENT LEARNING 58

4.10.4 Hierarchical Actor-Critic with egocentric goals

To ensure that the hindsight updates proposed within the Hierarchical Actor-Critic (HAC)
algorithm [95] are compared against other algorithms on a level playing field, we modify the
non-primary features of this algorithm to result in otherwise similar training performance.
For example, while the original HAC implementation utilizes DDPG as the underlying
optimization procedure, we use TD3. Moreover, while HAC relies on binary intrinsic rewards
that significantly sparsify the feedback provided to the worker policy, we on the other hand
use distance from the goal.

We also extend the HAC algorithm to support the use of relative position, or egocentric,
goal assignments as detailed in [117]. This is done by introducing the goal-transition function
h(·) to the hindsight goal computations when utilizing hindsight goal and action transitions.
More concretely, while the original HAC implementation defines the hindsight goal g̃t at
time t as g̃t = g̃t+1 = · · · = g̃t+k = st+k, the hindsight goal under the relative position goal
assignment formulation is g̃t+i = st+k − st+i, i = 0, . . . , k. This function results in the final
goal g̃t+k before a new one is issued by the manager to equal zero, thereby denoting the
worker’s success in achieving its allocated goal. These same goals are used when computing
the worker rewards in hindsight.

59

Part II

Exploiting Expert Demonstrations

60

CHAPTER 5

Learning Energy-Efficient Driving
Behaviors by Imitating Experts

In this part, we explore methods for enhancing the data-efficiency of learning procedures
within mixed-autonomy settings. The challenges here arise largely from difficulties associated
with credit assignment and exploration, particularly as the number of trainable agents within
a task increases1. These challenges in mixed-autonomy settings manifest themselves early
within the training procedure when agents are incapable of performing simple behaviors
such as car-following. The inability of leading vehicles to perform logical primitive actions
propagates upstream to other learning agents, altering both the distribution of states they
witness and as such the rewards they are assigned when performing certain actions. A
common behavior witnessed in these settings is the emergence of stopped traffic, for which
any behavior (excluding those by the platoon leader) results in agents not moving, and as
such no meaningful signal may be extracted. These challenges furthermore grow exponentially
as the number of trainable agents within a network increases, thereby rendering learning in
large-scale networks neigh impossible without excessive data collection or significant focus on
reward engineering or some other means of problem simplification.

In this chapter, we demonstrate that imitation learning techniques can succeed in learning
traffic smoothing behaviors in even large-scale networks without the need for excessive data
collection. To do so, we construct an expert policy that maps non-local states of traffic to
behaviors that, if adopted locally by a subset of vehicles, homogenize the flow of traffic within
highway networks. We then describe some of the challenges that emerge when trying to
imitate such an expert, and demonstrate that imitation learning techniques can succeed in
mapping such a behavior to locally observable features of traffic in a robust and effective
manner.

This chapter is adapted from [81]. Results and code are available online at https:
//sites.google.com/view/il-traffic/home.

1This is generally true whether trained agent share policy parameters or not, and is an active topic of
research in the multiagent RL community

https://sites.google.com/view/il-traffic/home
https://sites.google.com/view/il-traffic/home

CHAPTER 5. LEARNING ENERGY-EFFICIENT DRIVING BEHAVIORS BY
IMITATING EXPERTS 61

5.1 Introduction

Autonomous driving systems have the potential to vastly improve the quality and efficiency
of existing transportation systems. With fast reaction times and socially optimal behaviors,
automated vehicles (AVs) can improve the road capacity and traffic flow stability of existing
networks [187, 166, 155, 201, 82], as well as reduce instances of vehicle collisions and similar
incidents brought about by human errors [20]. The promise of such systems, however, is
seldom witnessed in practice [58, 33], highlighting the challenge that lies ahead.

For the condition of addressing traffic flow instabilities in highway networks, longitudinal
motion planning systems have been at the core of the conversation [209, 153]. Even in mixed-
autonomy settings, whereby only a subset of vehicles act as AVs, such systems have been
demonstrated to provide significant improvements to both network throughput and energy-
efficiency. In their seminal work, for instance, the authors of [155] empirically demonstrate
that even at low penetration rates, AVs driving at the equilibrium free-flow speed of a single-
lane ring road can effectively stabilize traffic conditions for all vehicles involved, reducing
system-level fuel consumption by 40% in the process. Such maneuvers, however, rely on
prior knowledge of free-flow conditions, or access to non-local sensing and communication
apparatuses from which to estimate them [148], making these maneuvers difficult to adapt to
arbitrary highway networks.

In this chapter, we demonstrate that imitation learning (IL) techniques can help alleviate
the need for non-local traffic state estimates in expertly designed AV controllers. Looking
to multi-lane highways in particular, we construct a controller inspired by the work of [155]
that dissipates the formation of stop-and-go traffic, but relies on downstream information to
do so. Next, we apply IL to the controller and validate that such techniques, when properly
deployed, can learn patterns in locally observable features that negate the need for such
information, resulting in AV driving policies that operate as if they are knowledgeable of the
state of downstream traffic. These findings suggest that techniques such as IL can serve an
important role in adapting traffic smoothing controllers to limitations that arise in the real
world.

The primary contributions of this chapter are:

• We design a controller (serving as the expert) that, through some degree of non-local
sensing, dissipates the formation of stop-and-go waves within open highway networks.

• We identify key limitations in both the expert model and training procedure that limit
the efficacy of IL and describe methods for addressing them. These include introducing
temporal reasoning through the state representation and modifying the expert to allow
it to recover from errors.

• Finally, we study the performance and robustness of the imitated policies, demonstrating
that the policy succeeds at nearly perfectly matching the performance of the expert
without the need for non-local state information.

CHAPTER 5. LEARNING ENERGY-EFFICIENT DRIVING BEHAVIORS BY
IMITATING EXPERTS 62

The remainder of this chapter is organized as follows. Section 5.2 provides an overview
of imitation learning and mixed-autonomy traffic. Section 5.3 outlines the problem setup,
expert, and IL approach. Section 5.4 presents the findings and results of computational
experiments over a wide variety of traffic states and compares the performance of the expert
and imitated policies. Finally, Section 5.5 provides concluding remarks and potential avenues
for future work.

5.2 Related Work

5.2.1 Traffic congestion and mixed-autonomy traffic

Traffic congestion is a state of traffic characterized by slower speeds, longer trip times, and
increased instances of vehicular queuing. The presence of such phenomena degrades the quality
and efficiency of existing networks, resulting in reduced fuel efficiency [179] and increased
incidents of road rage [65] and vehicle-to-vehicle collisions [109]. As a result, solutions for
such phenomena have been of primary interest within the transportation community.

The present study focuses on a form of congestion common to typical highways. Within
these settings, congestion appears as stop-and-go waves, characterized by periodic, sudden,
and at times sharp oscillations in driving speeds. Interestingly, these waves emerge even in
the absence of external disturbances. For example, in simplified networks such as ring roads,
small fluctuations arising from heterogeneities in human driving behaviors can produce higher
amplitude oscillations by following vehicles as they break harder to avoid unsafe settings [156].
This response, termed string instability [164], results in the formation of stop-and-go waves
as oscillations propagate deeper through a platoon.

The presence of string instabilities in human driving highlights a potential benefit for
upcoming automated driving systems. In particular, if properly implemented, AVs can reduce
the effects of such instabilities amongst one another [106], and by influencing the behaviors
of neighboring vehicles may succeed at mitigating congestion in mixed autonomy settings,
where only a subset of vehicles are automated. In [155], for instance, the authors demonstrate
that stop-and-go waves in ring road settings can be dampened by operating as few as 5% of
vehicles at the effective equilibrium speed of the network. The control strategy applied to
the AVs, termed the Follower Stopper, acts as a velocity controller, navigating the speeds
of automated vehicles to a predefined desired speed U (set to the equilibrium speed) while
maintaining a safe gap with the vehicle ahead. Following this model, the command velocity
vcmd of an AV is defined as:

vcmd =


0 if hα ≤ ∆x1

v ∆x−∆x1

∆x2−∆x1
if ∆x1 ≤ hα ≤ ∆x2

v + (U − v) ∆x−∆x2

∆x3−∆x2
if ∆x2 ≤ hα ≤ ∆x3

U otherwise

(5.1)

CHAPTER 5. LEARNING ENERGY-EFFICIENT DRIVING BEHAVIORS BY
IMITATING EXPERTS 63

Intelligent Driver Model (IDM)
Parameter v0 T a b δ s0 ϵ
Value 30 1 1.3 2.0 4 2 N (0, 0.3)

Follower Stopper
Parameter ∆x0

1 ∆x0
2 ∆x0

3 d1 d2 d3 amax

Value 4.5 5.25 6.0 1.5 1.0 0.5 1

Table 5.1: Model parameters

where v = min(max(vl, 0), U) and ∆xk is defined as:

∆xk = ∆x0
k +

1

2dk
(∆v−)

2, k = 1, 2, 3 (5.2)

where ∆v− = min(∆v, 0) is the negative arm of difference between the speed of the lead vehicle
and the AV. This intermediary desired speed in then converted to approach acceleration or
torque commands via some form of lower-level control. In this chapter, we exploit this final
controller when designing our congestion-mitigating expert. The parameters used for this
model are provided in Table 5.1.

5.2.2 Imitation learning

Imitation learning (IL) refers to a class of algorithms that attempt to develop a policy
πθ(st) : S → A, parametrized by θ, that matches the behavior of an expert π∗ through
demonstrations of the performance of the expert within an environment. Let D = {(si, ai)}Ni=1

denote a dataset of (state, action) demonstrations provided by an expert. In this setting, the
objective of an IL algorithm is to solve the problem: θ := argminθ [ED [L(πθ(si), ai)]], where
L(·, ·) is a distance metric between the predicted and expert action. For this work, we use a
mean-square error loss function.

Imitation learning, and its role in autonomous driving, has grown rapidly since its initial
deployment via ALVINN [132]. Nowadays, IL methods in autonomous driving have become
valuable tools for model compression. In [159], for instance, these methods are used to
compress computationally complex AV control strategies based on model-predictive control
(MPC) into faster neural network representations. More broadly, IL has been actively being
explored as a means of reducing the complexity of ruled-based approaches for autonomous
driving into relatively simple end-to-end models trained to replicate the behaviors of human
drivers [11, 34]. These findings and similar ongoing work highlight the potential benefits and
adaptability of IL within the domain of driving. Taking inspiration from the above studies,
we explore the ability of IL to compress behaviors of AV models reliant on knowledge from
non-local state information into policies that are more conducive for real-world settings.

CHAPTER 5. LEARNING ENERGY-EFFICIENT DRIVING BEHAVIORS BY
IMITATING EXPERTS 64

(a
)

N
et

w
or

k
co

nfi
gu

ra
ti

on

(b
)

H
um

an
-d

ri
ve

n
ba

se
lin

e

(c
)

E
xp

er
t

co
nt

ro
lle

r
pe

rf
or

m
an

ce

Fi
gu

re
5.

1:
A

n
ill

us
tr

at
io

n
of

th
e

ex
pl

or
ed

ne
tw

or
k.

T
op

:
W

e
ex

pl
or

e
th

e
ap

pl
ic

at
io

n
of

co
ng

es
ti

on
-m

it
ig

at
in

g
st

ra
te

gi
es

on
a

se
ct

io
n

of
th

e
I-

21
0

ne
tw

or
k.

M
id

d
le

:
In

th
e

ab
se

nc
e

of
au

to
m

at
io

n,
re

st
ri

ct
io

ns
to

th
e

ou
tfl

ow
of

ve
hi

cl
es

fr
om

a
sl

ow
er

-m
ov

in
g

do
w

ns
tr

ea
m

ed
ge

re
su

lt
in

th
e

fo
rm

at
io

n
of

st
op

-a
nd

-g
o

w
av

es
.

B
ot

to
m

:
T
o

m
it

ig
at

e
co

ng
es

ti
on

,
w

e
de

si
gn

an
ex

pe
rt

in
sp

ir
ed

by
th

e
Fo

llo
w

er
St

op
pe

r.
T

hi
s

ex
pe

rt
,w

hi
ch

ex
pl

oi
ts

do
w

ns
tr

ea
m

in
fo

rm
at

io
n

fr
om

th
e

ne
tw

or
k,

ca
n

su
cc

ee
d

in
re

du
ci

ng
th

e
pr

op
ag

at
io

n
of

w
av

es
.

CHAPTER 5. LEARNING ENERGY-EFFICIENT DRIVING BEHAVIORS BY
IMITATING EXPERTS 65

5.3 Experimental Setup

In this section, we detail the considered problem and design an expert controller which, using
non-local estimates of traffic, can dissipate the formation and propagation of congestion
in the considered setting. We then present an IL paradigm through which the presented
controller can be redefined to dissipate congestion in arbitrary traffic conditions using only
locally perceptible state information.

5.3.1 Network configuration

We explore the problem of designing congestion-mitigating strategies for AVs in multi-lane
highways. The network considered, see Figure 5.1a, is a simulation of a 1-mile section of the
I-210 network in Los Angeles, California. This network has been the topic of considerable
research in recent years, with various studies aiming to identify and reconstruct the source of
congestion within it [55, 42]. This chapter in particular builds on the work of [92], which
explores the role of mixed-autonomy traffic systems in improving the energy-efficiency of
vehicles within I-210.

Within this network, congestion is generated via an imbalance between the inflow and
outflow conditions. In particular, high inflow rates matching peak demand intervals are
provided from the leftmost edge, and outflow rates are restricted via a reduced speed limit
within the rightmost 100 m. These restrictions serve to model various downstream effects,
including from slow-moving or stopping bottlenecks and downstream arterial or merges
networks. The overall imbalance increases the density of the network, which coupled with
string-instabilities in human-driver dynamics2 results in the onset of stop-and-go traffic.
Figure 5.1b depicts this behavior in the fully human-driven setting.

5.3.2 Dissipating stop-and-go waves via non-local sensing

To dissipate the emergence of stop-and-go waves within this network in mixed-autonomy
settings, we seek to adapt to the work of [155] (see Section 5.2.1) to multi-lane highways. To
do so, we must first define a distribution of desired speeds that consistently dissipate the
formation of waves within the network. For the problem explored within this chapter, we take
inspiration from ramp-metering systems for traffic signal control [127, 128]. Through such
systems, free-flow conditions in high-demand, throughput-restricted networks are sustained by
bounding the inflow of vehicles below a network’s breakdown capacity. Similarly, by driving
near the outflow conditions of a given network, AVs can restrict the flow of vehicles upstream,
thereby preventing the buildup of dense traffic and formation of subsequent stop-and-go
waves. We accordingly choose to set the desired speed U of AVs within the Follower Stopper
to match the downstream speed of the network.

2To model string instabilities within the network, we use the Intelligent Driver Model (IDM) [174]. The
specific model parameters are in Table 5.1.

CHAPTER 5. LEARNING ENERGY-EFFICIENT DRIVING BEHAVIORS BY
IMITATING EXPERTS 66

Figure 5.1c depicts the performance of the aforementioned controller for an AV penetration
rate of 5%. Seen here, the AVs succeed at dissipating the formation of stop-and-go waves,
resulting in more uniform driving speeds across the network. This is true for a range
of downstream boundaries conditions where stop-and-go congestion occurs and results in
significant reductions to energy consumption. This solution, however, requires knowledge of
downstream information, which may be unavailable. In the following subsection, we explore
methods for subverting this limitation via IL.

5.3.3 Absolving the dependence on non-local states

In this chapter, we aim to determine whether control strategies similar to the one presented
previously may be derived from features observable to individual AVs. Specifically, for a given
AV α, we seek to design a controller πθ(vα, hα, vl) which maps actions by the expert Follower
Stopper controller aFS(vα, hα, vl, U) solely to the variables vα, vl, hα, while abolishing the
reliance on the non-local desired speed term U . To do so, we explore the use of the IL
methods described in Section 5.2 while treating the Follower Stopper as the expert. This
process introduces several challenges that must be addressed. We describe the two most
prominent challenges and introduce techniques to mitigate them in practice.

Challenge #1: Unobservability of downstream state

The first of these challenges accounts for the absence of non-local observations for the imitated
policy. The use of purely local observations confounds the expert’s behavior across varying
downstream conditions, thereby making specialization to unique downstream events difficult.
In response to this challenge, we hypothesize that local historical data can be exploited to
estimate traffic flow properties further downstream. In particular, fluctuations in driving
speeds from the perspective of an AV, or the act of approaching or moving away from a lead
vehicle over time, may provide useful information on the effective equilibrium speed of a
given network in relation to one’s own. To validate this assumption, we introduce additional
temporal information to the state space of the imitated policy. Specifically, we concatenate
to the original observation of an AV the past N states, collected at a sampling rate of ∆t.
For this problem, the following constants are chosen: N = 5 and ∆t = 2.

Challenge #2: Recovering from errors

The second of these limitations accounts for features within the expert that are non-conducive
for IL. In many driving applications (e.g. lane-keeping [21]), IL methods rely on demonstrations
of how to recovery from non-optimal or erroneous trajectories to produce safe and robust
behaviors. For longitudinal driving tasks explored here, errors emerge in the form of large
gaps. In particular, at the early stages of training, the imitated policy often does not produce
actions that maintain the speed desired by the expert, instead slowing down and allowing
its leader to outpace it. While this is to be expected, the Follower Stopper does not inform

CHAPTER 5. LEARNING ENERGY-EFFICIENT DRIVING BEHAVIORS BY
IMITATING EXPERTS 67

0 20 40 60 80 100
Time (s)

0

100

200

300

400

500

Po
sit

io
n

(m
)

Gap maintained
 after error.

Leader
AV halted
With gap recovery
Without gap recovery

Figure 5.2: Behavior of the Follower Stopper when following a leader with and without gap
recovery. The original controller, in green, cannot address gaps after an error is introduced.
Conversely, the modified controller, in orange, tends towards its prior trajectory.

policies how to recover from such errors, instead opting to maintain a constant speed despite
the magnitude of the gap ahead. As a result, the presence of such errors and the absence of
labels that correct for them introduces an incentive to maintain large headways, which may
result in additional undesirable behaviors.

In order to address this challenge, we introduce an additive term to the final condition
of the expert, thereby informing the AVs to reduce the gap when large values emerge. The
modified Follower Stopper command speeds is:

vcmd =


0 if ∆x ≤ ∆x1

v ∆x−∆x1

∆x2−∆x1
if ∆x1 ≤ ∆x ≤ ∆x2

v + (U − v) ∆x−∆x2

∆x3−∆x2
if ∆x2 ≤ ∆x ≤ ∆x3

U+ c(∆x−∆x3)
2 otherwise

(5.3)

where c is a constant term that toggles the rate at which recovery occurs, and is set to 0.001
in future experiments.

Figure 5.2 depicts the performance of the original and modified Follower Stopper in the
presence of gap-inducing errors. The benefit of this modification becomes evident under this
setting, with the modified controller clearing the gap and the original failing to do so.

5.3.4 Simulation and training procedure

Experiments are conducted in Flow [202], an open-source framework designed to enable the
integration of machine learning tools with microscopic simulations of traffic. Within Flow,
simulations of the I-210 are executed in SUMO [80] with step sizes of 0.4 sec/step and are
warmed-started for 3600 sec to allow for the onset of congestion before being run within the
training procedure an additional 600 sec. Each simulation is initialized with a random set of
boundary conditions, sampled from a distribution of [1900, 2300] veh/hr/lane in increments
of 50 for the inflow conditions, and [5, 7] m/s in increments of 1 for the downstream speed

CHAPTER 5. LEARNING ENERGY-EFFICIENT DRIVING BEHAVIORS BY
IMITATING EXPERTS 68

limit. Once the warmup period is finished, 5% of vehicles are replaced with AVs whose actions
are sampled either from the expert or policy to mimic a similar penetration rate.

For all experiments in this chapter, we use DAgger [137] for imitating the desired behavior
by the expert. We initialize the expert dataset with 30k samples extracted from 20 rollouts
of the expert for varying inflow rate and downstream speed limit conditions and, after each
training epoch, aggregate the dataset with 7.5k new samples from states visited by the
imitated policy. This is repeated for 100 training epoch for a total of 750k samples. Finally,
for the choice of policy, a Multi-Layer Perceptron is used with hidden layers (32, 32, 32) and
a ReLU non-linearity. This policy is updated using Adam [79] with a learning rate of 0.001
and batch size of 128, and dropout [154] is employed to allow for increased robustness.

5.4 Numerical Results

In this section, we present numerical results for the expert and imitated policy presented in
the previous section. Through these results, we aim to answer the following questions:

1. Does the imitated policy succeed in improving the traffic stability and energy-efficiency
of vehicles within the network for different traffic conditions?

2. Is the introduction of temporal reasoning and gap recovery to the imitated and expert
models, respectively, needed for proper training to occur?

3. Is the imitated policy robust to unseen variations in network and human-driver behav-
iors?

Imitation learning runs for the various experimental setups are executed over 5 seeds, and
the training performance is averaged and reported across all seeds to account for stochasticity
between simulations and policy initialization. Further implementation details can be found
at: https://github.com/AboudyKreidieh/il-traffic.

5.4.1 Performance comparison

Figure 5.3c depicts the spatio-temporal performance of the imitated policy for a unique traffic
state. As we can see, the learned behavior largely succeeds in mitigating the frequency and
intensity of stop-and-go waves that arise in the fully human-driven setting (see Figure 5.1b),
resulting in more uniform driving speeds throughout the network. Moreover, this behavior
closely matches that by the expert in Figure 5.1c, suggesting that the imitation procedure
was successful.

The performance of the imitated policy in comparison to the expert is further elucidated in
Figure 5.4. Within this figure, we compare the ability for both the expert and imitated policy
to improve the energy-efficiency of the studied network based on two metrics: 1) a model of
energy consumption, in miles per gallon, fitted to Toyota RAV4 emission data [92], and 2) the

https://github.com/AboudyKreidieh/il-traffic

CHAPTER 5. LEARNING ENERGY-EFFICIENT DRIVING BEHAVIORS BY
IMITATING EXPERTS 69

(a
)

W
it

ho
ut

ga
p

re
co

ve
ry

(b
)

W
it

ho
ut

te
m

po
ra

lly
ex

te
nd

ed
ob

se
rv

at
io

ns

(c
)

F
in

al
ap

pr
oa

ch

F
ig

ur
e

5.
3:

Sp
at

io
-t

em
po

ra
lc

om
pa

ri
so

n
of

th
e

im
it

at
ed

m
od

el
fo

r
an

in
flo

w
ra

te
of

21
00

ve
h/

hr
/l

an
e

an
d

do
w

ns
tr

ea
m

sp
ee

d
lim

it
of

5
m

/s
.
a)

W
he

n
ga

p-
re

co
ve

ry
is

no
t

en
fo

rc
ed

w
it

hi
n

th
e

ex
pe

rt
,A

V
s

le
ar

n
to

fo
rm

la
rg

e
ga

ps
w

it
h

th
ei

r
le

ad
er

s
w

he
ne

ve
r

po
ss

ib
le

,r
es

ul
ti

ng
in

th
e

em
er

ge
nc

e
of

m
or

e
pr

on
ou

nc
ed

w
av

es
in

ad
ja

ce
nt

la
ne

s.
b)

W
he

n
ad

di
ti

on
al

te
m

po
ra

lk
no

w
le

dg
e

is
no

t
pr

ov
id

ed
,t

he
im

it
at

ed
po

lic
y

do
es

pe
rf

or
m

s
w

el
l,

bu
t

fa
ils

to
di

ss
ip

at
e

w
av

es
as

fr
eq

ue
nt

ly
as

th
e

ex
pe

rt
.
c)

T
he

fin
al

ap
pr

oa
ch

su
cc

ee
ds

in
id

en
ti

fy
in

g
an

d
dr

iv
in

g
at

th
e

eff
ec

ti
ve

sp
ee

d
of

th
e

ne
tw

or
k,

an
d

in
do

in
g

so
di

ss
ip

at
es

th
e

va
st

m
aj

or
ity

of
em

er
gi

ng
st

op
-a

nd
-g

o
w

av
es

in
ea

ch
in

di
vi

du
al

la
ne

.

CHAPTER 5. LEARNING ENERGY-EFFICIENT DRIVING BEHAVIORS BY
IMITATING EXPERTS 70

. Baseline (no control) Expert
Imitated (current

timestep)
Imitated (current +
previous timesteps)

.

Energy
efficiency

.
Accel.

.

Outflow
rate

Figure 5.4: Performance of different models for different traffic conditions. Both the expert
model and imitated policies provide significant improvements to both energy-efficiency and the
frequency and magnitude of accelerations without significantly degrading network throughput.
This is true for all sampled inflow / downstream speed limit pairs.

magnitude of accelerations by both the human and automated vehicles within the network.
We also compare the throughput of the network (in veh/hr/lane) to ensure any improvements
to the energy-efficiency of the network do not emerge at the cost of mobility. As we can see,
the energy-efficiency of both the expert and imitated policy match one another very closely,
producing values of 34.5 mpg and 34.4 mpg respectively in terms of energy consumption (a
15% improvement over the baseline value of 29.6 mpg), and values of 0.242 m/s2 and 0.240
m/s2 respectively in terms of fluctuations in speed (a 60% reduction over the baseline value
of 0.604 m/s2). The two also only experience very minor reductions in network throughput of
around 2%, suggesting that the improvements to energy do not come at the cost of mobility.
Remarkably, from the perspective of the imitated policy, this behavior emerges in the absence
of non-local (downstream) knowledge of the state of traffic, demonstrating the potential for
imitation learning to augment and even improve the quality of existing AV control strategies.

5.4.2 Ablation studies

Next, we explore the effect of the various augmentations presented in Section 5.3.3 on the
performance of the resultant policy. Figure 5.3 depicts the learned behaviors when a number
of the proposed methods are removed from the training procedure. In the absence of gap
recovery during the training procedure, the imitated policy produces undesirable large gaps
in several lanes as marked by the red circles. These gaps, coupled with the lane-change
dynamics of human vehicles, produce distributions of highly dense traffic in adjacent lanes
that enable the further propagation of congestion, thereby negating the desired behaviors of

CHAPTER 5. LEARNING ENERGY-EFFICIENT DRIVING BEHAVIORS BY
IMITATING EXPERTS 71

the AVs as congestion mitigators. Alternatively, when gap recovery is enforced through the
expert model but only the current time step is perceived through the input observation space,
gaps do disappear and waves are further dissolved, however, the regularity at which waves
emerge is greater than is experienced when additional temporal information is provided to
the imitated model.

The performance gap when temporally extended state information is not provided is further
highlighted in Figure 5.4. As seen in this figure, the use of current time-step information does
perform well in terms of the studied energy-consumption model and network throughput when
compared to the expert model. The disparity, however, is evident in terms of fluctuations in
vehicle speeds, producing average acceleration/deceleration values of 0.278 m/s2, 15% greater
than the expert model and imitated model with temporally extended information. This
concurs with the increased emergence of waves in Figure 5.3, and in the presence of vehicles
with different energy emission properties may result in a degradation in the energy-efficiency
of the network in comparison to more fine-tuned models. These findings reinforce the notion
that temporal reasoning is needed to properly imitate models that utilize non-local state
information.

5.4.3 Robustness to unseen phenomena

Finally, we explore the robustness of imitated behaviors to unseen variations to the task
at training time. In particular, we explore two types of variations. For one, we alter the
penetration rate of AVs to determine whether the changes to the dynamics associated with
such values negatively degrade the performance of the policy. Next, we look to variations in
the responsiveness and aggressiveness of the car-following and lane-change models, respectively.
Specifically, for the car-following behaviors, we alternate the maximum acceleration, or a
term, which controls the human’s ability to respond to existing waves. Conversely, for the
lane-change model, we modify the lane-change frequency parameter of the model, with larger
values of this parameter resulting in more aggressive lane changes by the human drivers.

Figure 5.5 depicts the performance of the baseline, expert, and imitated policies for the
aforementioned variations in simulation parameters. For the variations in AV penetration rate,
we explore the influence of varying downstream speed limits as well but set the inflow rate to
a fixed value of 2100 veh/hr/lane for each run. Moreover, for the variations in human-driver
model parameters, we restrict the analysis to a single pair of boundary conditions of 2100
veh/hr/lane and 5 m/s. As we can see from this figure, the imitated policies generalize
well to different penetration rates, reducing slightly for low penetration rates of 2.5%, but
outperforming the expert at higher penetration rates. For modifications to the human-driver
models, a performance gap does begin to emerge between the expert and imitated policy for
large changes to the parameters; however, the imitated policy does continue to outperform
the human-driven baseline for all regions in which the expert outperforms as well. The gap is
also reduced once temporally extended state information is introduced, further highlighting
the benefit of this approach.

CHAPTER 5. LEARNING ENERGY-EFFICIENT DRIVING BEHAVIORS BY
IMITATING EXPERTS 72

. Baseline (no control) Expert
Imitated (current

timestep)
Imitated (current +
previous timesteps)

.

Energy
efficiency

.

Sp
ee

d
Lim

it
(m

/s
)

38.0
± 0.2

38.3
± 0.1

38.0
± 0.1

37.8
± 0.1

34.5
± 0.2

34.5
± 0.2

34.4
± 0.1

34.3
± 0.1

30.4
± 0.1

30.9
± 0.1

30.9
± 0.2

30.5
± 0.1

0.025 0.050 0.075 0.100

7

6

5

Pentration Rate

Sp
ee

d
Lim

it
(m

/s
)

38.1
± 0.3

38.6
± 0.5

38.7
± 0.6

38.8
± 0.6

34.9
± 0.1

35.0
± 0.3

34.8
± 0.4

34.8
± 0.4

30.9
± 0.1

31.0
± 0.2

30.6
± 0.2

30.3
± 0.2

0.025 0.050 0.075 0.100

7

6

5

Pentration Rate

Sp
ee

d
Lim

it
(m

/s
)

38.3
± 0.1

38.4
± 0.3

38.4
± 0.1

38.8
± 0.2

34.7
± 0.1

34.4
± 0.2

34.2
± 0.1

34.3
± 0.2

30.7
± 0.1

30.2
± 0.3

30.0
± 0.1

30.0
± 0.1

0.025 0.050 0.075 0.100

7

6

5

Pentration Rate

.
Accel.

.

.

Energy
efficiency LC

 fr
eq

ue
nc

y

27.1
± 0.6

27.2
± 0.3

27.3
± 0.4

24.2
± 0.2

24.5
± 0.3

24.1
± 0.3

25.4
± 0.2

25.7
± 0.3

25.3
± 0.2

28.2
± 0.1

28.5
± 0.1

28.4
± 0.1

30.3
± 0.0

30.3
± 0.0

30.3
± 0.1

0.8 1.0 1.2 1.4 1.6

10

2

1

Max acceleration (m/s2)

LC
 fr

eq
ue

nc
y

34.7
± 0.4

34.6
± 0.1

34.0
± 0.2

32.7
± 0.1

33.4
± 0.2

33.2
± 0.2

32.1
± 0.2

32.8
± 0.2

33.2
± 0.1

30.5
± 0.2

30.6
± 0.1

31.1
± 0.2

28.9
± 0.0

28.9
± 0.0

28.9
± 0.0

0.8 1.0 1.2 1.4 1.6

10

2

1

Max acceleration (m/s2)

LC
 fr

eq
ue

nc
y

33.7
± 0.3

33.7
± 0.6

33.9
± 0.6

32.2
± 0.5

32.7
± 0.2

32.8
± 0.2

31.9
± 0.1

32.4
± 0.2

32.9
± 0.1

30.6
± 0.1

30.5
± 0.2

30.6
± 0.1

29.0
± 0.0

29.0
± 0.0

29.0
± 0.0

0.8 1.0 1.2 1.4 1.6

10

2

1

Max acceleration (m/s2)

LC
 fr

eq
ue

nc
y

33.8
± 0.6

33.4
± 0.3

33.8
± 0.5

32.3
± 0.2

32.4
± 0.4

32.8
± 0.5

31.7
± 0.1

31.9
± 0.2

32.2
± 0.2

30.1
± 0.1

30.0
± 0.1

30.1
± 0.2

28.9
± 0.0

28.9
± 0.0

28.9
± 0.0

0.8 1.0 1.2 1.4 1.6

10

2

1

Max acceleration (m/s2)

.
Accel.

Figure 5.5: Generalizability of the learned policy to different AV penetration rates (top) and
human-driver conditions (bottom). The original training regime is bordered in red. We find
that the imitated policy generalizes relatively well, continuing to outperform the baseline
in all settings. The policy imitated with additional temporal information also succeeds in
generally better outside its training scheme.

5.5 Chapter Summary

This chapter explores the problem of designing congestion-mitigating control strategies
for automated vehicles in mixed-autonomy highways. For one, it demonstrates that such
strategies can be achieved by aligning the speeds of a number of vehicles with the effective
speed of downstream traffic, thereby preventing the onset of dense traffic. Next, through
imitation learning it demonstrates that such strategies can be mapped to observations that
are locally perceivable to individual vehicles, producing a purely decentralized controller that
does not require feedback from non-local sources. This final behavior is shown to improve
the energy-efficiency of the explored network for values as high as 15% while effectively
eliminating the presence of most waves.

As a topic of ongoing work, we aim to determine whether similar control design strategies
can be applied to real-world driving settings. In particular, we aim to validate the performance
of this control strategy on trajectories of human driving provided by the real world. Dependent
on the performance of the model to such a domain shift, we will next determine whether a

CHAPTER 5. LEARNING ENERGY-EFFICIENT DRIVING BEHAVIORS BY
IMITATING EXPERTS 73

similar procedure of iteratively readjusting the model to learn patterns from human driving
in the real world can result in a more robust and transferable policy.

74

CHAPTER 6

Data-efficient Learning for Cooperative Driving
through Expert Relabeling

In this chapter, we extend the work presented in Chapter 5. In particular, we expand the
expert control strategy employed previously so as to identify desirable speed profiles when
the source of the bottleneck is unseen or not undecipherable. We then demonstrate that
the previously defined imitation learning procedure continues to generate meaningful results
under this approach, and in particular does so even in the presence of highly-stochastic
trajectories adopted from real-world data.

6.1 Introduction

Imitation learning techniques have broadly come to serve a critical role in enabling technical
advancements in vehicle autonomy. Amid ever-growing complexities and uncertainties
associated with automating driving in large urban settings, imitation learning strategies
extended the proverbial helping hand, restructuring said challenges to one more tractable
within the machine learning community. Instead of hand-crafted systems designed to decipher
every possible traffic condition, behavior-planning algorithms were replaced with end-to-end
models trained to replicate human behaviors extracted from large driving datasets. This is
an approach that dates back to the late 1980s with the advent of the autonomous vehicle
ALVINN [132] and has seen a sharp growth in popularity since, with advancements in deep
learning motivating researchers to extend such approaches to more complex and interesting
problems [21, 11, 62].

Imitation, while a powerful tool for developing robust feedback control strategies from
demonstrations, is restricted largely by the nature of demonstrations assigned at training.
This is a not uncommon point of contention, and is discussed frequently in the context of
data diversity, with researchers primarily focusing on visual factors such as scenery, network
structure, and the time-of-day or weather conditions within a given datapoint [43]. A less
frequently targeted criticism, however, is the behavioral component of said demonstrations and
under what conditions human-labeled responses hinder the performance of learned behaviors.

CHAPTER 6. DATA-EFFICIENT LEARNING FOR COOPERATIVE DRIVING
THROUGH EXPERT RELABELING 75

Edge-segment data

x1, v̄1 x2, v̄2 . . . xN−1, v̄N−1 xN , v̄N

.
sαvα vl

Direction of motion

Figure 6.1: We consider the task of traffic flow harmonization in settings where CAVs (in
red) are distributed amongst, and interact with, human drivers. Within this setting, we aim
to define traffic regulation strategies conditioned on either the local state of traffic (i.e. the
ego vehicles’ states and that of their immediate vehicles in blue) or the combination of local
sensory inputs and edge-segment speeds provided at various locations within the network.

In dense traffic settings, for instance, humans are frequently suboptimal actors, contributing
to, as opposed to mitigating, the evolution of congestion. The reasoning behind this varies
from network to network, be it capacity drops near bottlenecks [138], instabilities induced by
on- and off-ramps [113, 175], or other human-driven phenomena, but propagates through the
training procedure, thereby hindering the cooperative aspect of learned responses.

On the other hand, other learning approaches have been explored to induce cooperative
driving within automated systems in mixed traffic settings. Reinforcement learning, in partic-
ular, has played an important role in shedding light on the style of emergent responses possible
by automated vehicles, particular in fully observable or centralized control settings [201, 202].
Learning in large-scale multi-agent networks is nevertheless very difficult. The challenges here
arise largely from difficulties associated with credit assignment and exploration, particularly as
the number of trainable agents within a task increases. These challenges in mixed-autonomy
settings manifest themselves early within the training procedure when agents are incapable
of performing simple behaviors such as car-following. The inability of leading vehicles to
perform logical primitive actions propagates upstream to other learning agents, altering
both the distribution of states they witness and as such the rewards they are assigned when
performing certain actions. A common example is the emergence of stopped traffic, for which
any behavior (excluding those by the platoon leader) results in agents not moving, and as
such no meaningful signal may be extracted. These challenges furthermore grow exponentially
as the number of trainable agents within a network increases, thereby rendering learning in
large-scale networks neigh impossible without excessive data collection, a significant focus on
reward engineering, or some other means of problem simplification [211].

Contribution. In this chapter, we demonstrate that imitation learning techniques, when
coupled with appropriate experts, can succeed in learning traffic smoothing behaviors in

CHAPTER 6. DATA-EFFICIENT LEARNING FOR COOPERATIVE DRIVING
THROUGH EXPERT RELABELING 76

large-scale networks without the need for excessive data collection or reward engineering.
The key contributions are accordingly as follows:

1. Expert relabeling in congestion-prone settings. First, we construct an expert policy
that maps non-local states of traffic to behaviors that, if adopted in mixed-autonomy
settings, homogenize the flow of traffic within highway networks. Our controller, as we
discuss, assigns appropriate speed profiles to vehicles from edge-segment data (Figure 6.1),
while using local data to maintain reasonable spacings with leading vehicles. The actions
assigned by such an expert can be extracted in hindsight and used as labels in a learning
procedure, but are difficult to compute in real time without extensive communication and
sensing infrastructures, leading to our second contribution.

2. Imitation enabling flexibility and decentralization. Next, we demonstrate that
imitation learning techniques can succeed in mapping the above expert behavior to locally
observable features of traffic in a robust and effective manner. This result demonstrates that
efficient multi-agent learning methods may be generated by combining modern learning
approaches with expert responses dictated by traffic flow theory. The mapping of such
behaviors to differentiable models further introduces a degree of flexibility to learned
responses, thereby enabling policies to serve as warm starts to other learning processes.

The remainder of this chapter is organized as follows. Section 6.2 and 6.3 provide an
overview of relevant concepts and the problem setup, respectively. Section 6.4 describes the
proposed expert model and provides some insights behind the modeling decisions. Section 6.5
describes the imitation learning procedure and the target networks used to validate the
efficacy of our approach. Section 6.6 provides numerical results on the aforementioned tasks.
And finally, Section 6.7 outlines some of the key findings and discusses potential topics of
future work and challenges that may arise when attempting to adopt similar approaches
within cyber-physical systems.

6.2 Preliminaries

6.2.1 Imitation learning

Imitation learning algorithms provide techniques for generating mappings between states
and actions from demonstrations of desirable behaviors. Consider a policy πθ : S → A,
where S is a state space, A is an action space, and θ are trainable parameters, and let
D = {(si, ai)}Ni=1 denote a dataset of (state, action) demonstrations provided by an expert
policy π∗. In this setting, the objective of an imitation learning algorithm is to solve the
problem: θ := argminθ [ED [L(πθ(si), ai)]], where L(·, ·) is a distance metric between the
predicted and expert action1.

1For this work, we use a mean-square error loss, a function commonly used within regression problems

CHAPTER 6. DATA-EFFICIENT LEARNING FOR COOPERATIVE DRIVING
THROUGH EXPERT RELABELING 77

6.2.2 Microscopic traffic flow models

This chapter studies traffic control in the context of microscopic traffic flow models, which
attempt to simulate realistic driving behaviors at the level of individual vehicles. Within
these models, the acceleration of each individual vehicle of index α distributed longitudinally
within a platoon is described by ordinary differential equations of the form:{

dsα
dt

= vl(t)− vα(t)
dvα
dt

= f(sα(t− τ), vα(t− σ), vl(t− κ))
(6.1)

where f is an acceleration function, vα is the speed of the ego vehicle, vl is the speed of the
vehicle preceding it, sα is the space headway between the two, and τ , σ, and κ are time delays.

Optimal conditions. In a longitudinal vehicles platoon, the optimal performance of human
drivers homogeneously following such a dynamical structure is defined by its uniform-flow
equilibrium state. At this state, all vehicles move at a constant speed v∗ and with constant
spacing s∗, such that:

f(s∗, v∗, v∗) = 0 (6.2)

This equilibrium is characterized by fast driving speeds and reduced instances of sharp
accelerations, and as such is considered desirable from the perspectives of mobility and
energy-efficiency. In generic highway settings, however, this equilibrium is typically unstable.
Instead, under dense enough conditions, small fluctuations in driving speeds propagate and
grow in magnitude as following vehicles break harder to avoid unsafe settings. This process
then repeats itself until, for large enough platoons, a stop-and-go wave is formed, i.e a
scenario in which drivers regularly and sharply transition between what appear to be free-flow
conditions to a state of highly dense and slow-moving traffic. The phenomenon leading to
these every-growing oscillations, known an string instability [164], arises largely from human
factors in driving, and as such may be addressed by automated systems in mixed-autonomy
settings.

Intelligent Driver Model. In this chapter, the behavior of human-driven vehicles within
the presented simulations are defined by the Intelligent Diver Model [174], or IDM, a common
model for reconstructing realistic driving behaviors in traffic microsimulations. Following
this model, the acceleration response of a vehicle α is defined as:

f(sα, vα, vl) = a

[
1−

(
vα
v0

)δ

−
(
s⋆(vα,∆vα)

sα

)2
]
+ ϵ (6.3)

where ∆vα = vl − vα, ϵ is an exogenous noise term designed to mimic stochasticity in human
driving behaviors, and s⋆ is the desired headway of the vehicle denoted by:

s⋆(vα,∆vα) = s0 + max
(
0, vαT +

vα∆vα

2
√
ab

)
(6.4)

CHAPTER 6. DATA-EFFICIENT LEARNING FOR COOPERATIVE DRIVING
THROUGH EXPERT RELABELING 78

and s0, v0, T , δ, a, b are fixed parameters defined further on within this document. The
parameter T in particular, defines the desired time headways by drivers, and as discussed
in [174], may be altered spatially or temporally to induce disturbances to vehicles states
reminiscent of freeway bottlenecks. In particular, higher desired time headways restrict
the number of vehicles that can reside in a freeway segment, thereby simulating the effects
capacity drops once imposed on certain regions. We return to this concept in Section 6.5.

6.3 Problem statement

In this chapter, we focus on deriving longitudinal (acceleration) responses for automated
vehicles (AVs) dispersed within a straight, single lane track. Figure 6.1 provides a visual
interpretation of the explored problem setup. Within this setup, we define a mixed-autonomy
platoon as a sequence of K subplatoons, each consisting of one leading AV followed by n
human-driven vehicles. The platoon as a whole in turn follows a single leading vehicle, which
is used to impose boundary condition on the platoon and, as discussed in Section 6.5, may
also be used to generate disturbances that shift the platoon from its uniform state. The
objective of AVs within this platoon is to disrupt the growth and propagation of disturbances
resulting from string unstable interactions between adjacent vehicles, and in doing so shift
the motion of vehicles towards their desirable uniform-flow equilibrium state.

To solve this problem, we explore two separate sensing paradigms in which AVs have
access to either local or global and local knowledge of traffic state information. We define
each of these paradigms as follows:

• Local sensing. In local sensing settings, vehicles have access to knowledge generally
accessible from onboard sensing devices such as radar. This knowledge consists of the
speed vα of the ego vehicle α, the speed of its immediate leader vl, and the space headway
sα or time headway hα between the two. Such a sensing paradigm may safely and readily
be adopted to any vehicle capable of assigning adaptive cruise control (ACC) commands,
but is limited in its ability to gauge downstream events in traffic such as the propagation
of stop-and-go traffic [58].

• Global sensing. In global sensing settings, vehicles are equipped with local sensing
information and have access to traffic state estimation data defining the aggregate movement
of vehicles across large spatiotemporal segments. These variables consist of average
(aggregated) speeds v̄i across multiple positions xi; i = 1, . . . , N relative to the origin of
the network, and may be in practice be accessed from fixed infrastructures such as loop
detectors [28] and cameras [12], as well as Lagrangian or floating point sensors such as
probe vehicles [148]. These estimates can be very useful for detecting and responding to
downstream events, but may be inaccessible in real-time or unavailable within arbitrary
road networks.

CHAPTER 6. DATA-EFFICIENT LEARNING FOR COOPERATIVE DRIVING
THROUGH EXPERT RELABELING 79

6.4 Expert control mechanism

We present an expert feedback control strategy that requires both global and local sensing
to harmonize driving speeds amongst vehicles while maintaining safe and appropriate gaps
between AVs and their leaders. Previous empirical studies [7, 36, 155, 81] provide a useful
insight that traffic may be homogenized near its desirable uniform driving speed by operating
a subset of vehicles near accurate predictions of said speed. However, under the every-evolving
dynamics of a particular network, the actuator must reactively identify desirable speeds
that match current spatio-temporal trends while not inhibiting the safety or mobility of the
vehicle. To this, the two sensing paradigms may offer a helping hand. Macroscopic traffic
state estimates obtained from global sensing may elucidate spatio-temporal patterns that can
be exploited by AVs in a largely decentralized manner. This is in part demonstrated in the
work of [7], for instance, which devises an optimal speed profile for vehicles provided speed
measurements forwards in space and time. Solutions such as these, however, are often studied
in the context of fully-observable macroscopic environment, and as such become brittle and
unsafe in the presence of inaccurate traffic state estimates and microscopic fluctuations in
speed and spacing. As a result, we take microscopic observations via local sensing into
consideration to regulate the gap between AV and preceding vehicle and produce a reasonable
car-following response. Finally, we also equip the expert with a safety filter to ensure enough
gap will be maintained with the preceding vehicle.

With all of the above considerations mentioned, the expert consists a velocity design
which including speed synchronization and gap regulation, and a safety filter as E1. (6.5)
shows:

vc = max(0,min(vdes + kp(hα − hdes) + kd(vl − vα), vfs)) (6.5)

We describe each subcomponent in further detail below.

6.4.1 Speed synchronization

The desirable uniform driving speed must be achieved without shared communication between
adjacent vehicles, as in mixed-autonomy settings human-driven vehicles are incapable of
sharing their desired speeds. Instead, we rely on traffic state data to synchronize the driving
speeds of automated vehicles. In particular, vehicles are assigned speed profiles contingent on
traffic state information, which is shared and common among all AVs. This speed profile may
be extracted in a number of different ways, with many convolutional mapping capable of
homogenizing the flow at traffic. For this purposes of this study, we consider a uniform kernel,
the simplest such mapping. The speed profile at a position xα is accordingly defined as:

vavg(x0) =

∫ xα+w

x=xα
v(x)dx

w
(6.6)

where v(·) is an interpolation across average (aggregated) speeds within each spatiotemporal
segment (Section 6.3), xα is the position of the subject vehicle, and w is the width of the

CHAPTER 6. DATA-EFFICIENT LEARNING FOR COOPERATIVE DRIVING
THROUGH EXPERT RELABELING 80

Figure 6.2: Example of the proposed synchronized speed profile for sample traffic state
estimates. Average (aggregated) speeds across multiple segments (orange dots) are interpolated
to a continuous profile. Uniform kernel as Eq. (6.6) expressed is applied to obtain the
synchronized speed profile (green line).

estimation window. Figure 6.2 provides a visual interpretation of our proposed synchronized
speed profile for sample traffic state estimates.

The desired speed locally is then estimated contingent on the headway between the subject
and preceding vehicle. When the headway is relatively small, we focus on microscopic range,
while when the headway is large, we focus on the macroscopic range. The relation between
the two is smoothly weighted as follows.

vdes,α =


vα if 0 ≤ hα < 1

(2− hα)vα + (hα − 1)vavg if 1 ≤ hα ≤ 2

vavg if hα > 2

(6.7)

where vα and hα are the speeds and time headways of the subject vehicle, respectively.

6.4.2 Gap regulation

Our expert, in addition to harmonizing its speeds with other AVs, also regulates its spacing
in a manner that is both safe and responsive to nearby events such the formation of large
gaps. In particular, when provided traffic state information overestimates or underestimates
the actual state of traffic, additional feedback mechanisms are employed to allow AVs to
respond in a manner more reminiscent of adaptive cruise control [205]. The gap regulation
part (kp(hα − hdes) + kd(vl − vα)) in Eq. (6.5) is similar with the design of the ACC vehicle

CHAPTER 6. DATA-EFFICIENT LEARNING FOR COOPERATIVE DRIVING
THROUGH EXPERT RELABELING 81

B
ot

tl
en

ec
k

Figure 6.3: An illustration of the bottleneck problem and human-driven dynamics within
it. A bottleneck placed near the end of the network restricts the flow of vehicles within this
region and subsequent throughput of vehicles downstream. The buildup of dense traffic near
the bottleneck also produces a spillover effect, resulting in the propagation of stop-and-go
congestion.

model [196], and aims to maintain a desired time headways hdes while further reducing the
discrepancy in speeds between ego and leading vehicles. The kp and kd terms, similar to other
PD feedback control methods, specifies intensity of responses by AVs to such fluctuations.
This design intends to capture the human-like car following behavior so that the subject
vehicle can maintain a reasonable gap from the preceding vehicle. Equipped with the speed
synchronization, our controller tries to drive smoothly while maintains reasonable gap with
the anticipation of future oscillations in driving speeds.

6.4.3 Safety filter

Finally, to avoid potential collisions with the preceding vehicle from unforeseen driving events,
we additionally restrict the magnitudes of assigned speeds by values imposed by a safety
filter vfs. The safety filter in our formulation is treated as a generic term to allow for flexible
assignment. In this chapter, we adopt a simple method with the idea of maintaining a
sufficiently large gaps, both in space an time, subject to the leading vehicles most recent
fluctuations in speeds. This failsafe is used both by the expert policy as well as the imitated
within the training and evaluation procedures. Details on this safety filter are provided in
Section 6.8.2.

CHAPTER 6. DATA-EFFICIENT LEARNING FOR COOPERATIVE DRIVING
THROUGH EXPERT RELABELING 82

6.5 Experimental Setup

In this section, we describe the experimental procedure used to evaluate the efficacy of
imitation learning in generating cooperative driving behaviors in congestion-prone settings.
We first introduce two scenarios in which platoons, via some network-imposed phenomenon,
frequently experience stop-and-go states of traffic, and then continue to provide details on
the simulation and learning processes employed.

6.5.1 Scenarios

We design two scenarios aimed at evaluating the efficacy of the expert and learned responses
against both static and active sources of congestion. These scenarios involve multiple agents
interacting across large timescales and significantly altering the traffic states witnessed by
one another, and as such are difficult to solve from a reinforcement learning perspective [101,
100]. These congested states of traffic, however, can be mitigated by the expert through
knowledge of downstream inhomeginuoties in driving speeds, and as such are good candidates
for evaluating the effects of imitation on generating traffic-regulating behaviors.

Capacity-restricted bottleneck

In this first scenario, we simulate the effects of traffic bottlenecks, static disruptions of
vehicular traffic, in both fully-driven and mixed-autonomy settings. Bottlenecks of this nature
emerge from various physical phenomena including traffic lights, lane reductions, etc. and
reduce the capacity, or number of vehicles flowing through a certain region. This raises the
density of traffic upstream, which when coupled with string-instabilities in human-driver
dynamics introduce further disruptions in the form of stop-and-go traffic.

To simulate responses of vehicles to such bottlenecks, we assign a restriction to the
capacity of traffic beyond a bottleneck region xBN , here set to 12 km. This restriction is
imposed by raising the desired time headway T within the model parameters of human-driven
vehicles (Section 6.2.2). This, as described in [174], lowers the capacity of traffic with the
bottleneck region in a manner inversely proportional to the increase in T , thereby producing
the desired effect. Figure 6.3 depicts this behavior in the fully human-driven vehicles within
this setting.

Shockwave response

Next, we simulate the response of vehicles to shockwaves, sudden and substantial changes
in the state of traffic that act as active or moving bottlenecks [116]. Shockwaves generally
emerge from sharp and sudden oscillations in driving speeds occurring forwards in traffic and
resulting from, for instance, aggressive lane changing maneuvers, disturbances near on-ramps
and off-ramps, or other events. These oscillations are then propagated by human drivers,

CHAPTER 6. DATA-EFFICIENT LEARNING FOR COOPERATIVE DRIVING
THROUGH EXPERT RELABELING 83

..
. Time

0

5

10

15

20

25

30

Sp
ee

d

Figure 6.4: Sample response to a leading vehicle profile (in red) captured by the trajectories
described in Section 6.5.1. Oscillations by following vehicles grow in magnitude, pointing to
the phenomenon resulting in stop-and-go congestion.

who, unable to see the shockwave, maintain close distances with leading vehicles and as such
are forced to break heavily when lead vehicles behind to oscillate.

To replicate the effects of realistic and highly stochastic shockwaves in simulation, we make
use of the work presented by [100]. In this document, the authors synthesize driving responses
to shockwaves in vehicular traffic by extracting trajectories from real-world congested states
of traffic witness in Interstate I-24 in Nashville, Tennessee. Shockwaves here are imposed as
boundary conditions by a leading vehicles which follow recorded trajectories consisting of
position and velocity measurements τ := {(x1, v1), . . . , (xT , vT)} sampled in increments of
0.1 seconds and varying in collection date and severity of congestion witnessed. Platoons of
simulated vehicles are then placed behind such a leading trajectory and follow control laws
assigned either by a human-driver model or a mixture of human-driver models and automated
control strategies provided by the expert or trained policy. Figure 6.4 depicts the behavior
of human-driven vehicles following one such trajectory (in red). Seen here, disturbances,
experienced as oscillations in driving speeds, expand between subplatoons, thereby pointing
to the string unstable nature of driving that propagates and worsens congested events.

6.5.2 Simulations

Simulations were conducted with a step size of 0.1 sec/step and a horizon of length 3600
seconds for bottleneck scenarios and the length of provided trajectories for schockwave
scenarios. In each scenario, subplatoons of length K = 25 vehicles were assigned to mimic
a AV market penetration of 4%. Platoons furthermore vary in length. In particular, for
shockwave scenarios, we consider a fixed platoon of length 250 vehicles and containing in part
10 automated vehicles, while for bottleneck scenarios infinite length platoons are assigned

CHAPTER 6. DATA-EFFICIENT LEARNING FOR COOPERATIVE DRIVING
THROUGH EXPERT RELABELING 84

Parameter Value (trajectory) Value (bottleneck)

v0 45 m/s 35 m/s
T 1 s 1.24 s
a 1.3 m/s2 1.3 m/s2
b 2.0 m/s2 2.0 m/s2
δ 4 4
s0 2 m 2 m
ϵ N (0, 0.3) m/s2 N (0, 0.3) m/s2

Table 6.1: Human model parameters

Parameter Description Value

kp Proportional gain 2.0
kd Differential gain 0.5
hdes Desired time headway 2.0 s
w Sliding window length for speed estimation 3000 m
smin Minimum safe space headway 5.0 m
hmin Minimum safe time headway 0.5 s
τs Safety decision-making horizon 5.0 s

Table 6.2: Expert controller parameters

but evaluated solely from positions 0-12 km. All vehicles outside of the range 0-12 km act as
human-driven vehicles, with vehicles beyond 12 km further exhibiting reductions in capacity
as a result of their updated model parameters. The model parameters for both human-driven
vehicles and expert policies within these simulations are provided in Tables 6.1 and 6.2,
respectively.

Prior to training, leading vehicles are initially placed at position 0 and subsequent vehicles
are placed behind it with equivalent spacings and speeds to replicate uniform-flow conditions2.
Vehicles within bottleneck simulations are then further simulated for 3600 seconds initially
to allow for the buildup of congested states of traffic prior to simulating mixed-autonomy
behaviors. Afterwards, AVs are assigned control laws dictated either by the expert when
constructing labeled demonstrations or by the training agent when performing learning.

In assigning expert actions, we collect edge-segment estimates using one of two approaches.
For bottleneck scenarios, we directly compute aggregated speeds by return the average speeds

2The leading vehicle within bottleneck simulations operate at a constant speed throughout, but exhibit
no noticeable effect on the flow of traffic as inter-vehicle spacings and speeds are dictated primarily by the
intensity of the bottleneck.

CHAPTER 6. DATA-EFFICIENT LEARNING FOR COOPERATIVE DRIVING
THROUGH EXPERT RELABELING 85

Autonomy on

(a) Global sensing (expert)

Autonomy on

(b) Local sensing (imitation) .

Figure 6.5: Spatio-temporal responses by vehicles within the mixed-autonomy bottleneck
with a bottleneck time headway of 1.5 s. Left: AVs following responses imposed directly
by the expert quickly dissipate the propagation of stop-and-go traffic and maintain uniform
driving speeds after. Right: The learned policy similarly, but more gradually, harmonizes
the flow of traffic near the downstream condition imposed by the bottleneck.

of vehicles within each segment in real time. This is possible in this setting as vehicles are
distributed throughout the network an may be accessed from the perspective of the simulator,
thereby providing feedback on each segment. Alternatively, for shockwave scenarios, provided
events downstream of the leading vehicle are not visible, we instead sample said estimates
from historical data collected by Inrix [35]. These measurements are collected in segments of
length approximately equal to 0.5 miles and are updated in increments of 5 minutes, and
provide an added layer of realism to simulated mixed-autonomy responses.

6.5.3 Learning procedure

For all experiments in this chapter, we use DAgger [136, 137], an online imitation learning
procedure for generating desired behavior from demonstrations. Labels from expert policies
in this setting match the work of [81]. In particular, observations are set as temporal
concatenations of local vehicle speeds and headways to capture non-local phenomena via
fluctuations in local driving conditions, while actions are defined as relative changes in the
desired speed by an expert policy from the driving speeds vehicles current operate under.
For both scenario, we initialize the demonstration dataset with samples collected from
10 instantiations of the simulation environments, and then continue data collection after
subsequent policy updates, rerunning one new simulation after each update for a total of
50 iterations. Note that this, in itself, is more efficient than classic reinforcement learning
strategies, which require dozens of rollouts to effectively perform a single policy update
step. Finally, a Multi-Layer Perceptron is used with hidden layers (32, 32, 32), and a ReLU
nonlinearity. This policy is updated using Adam [79] with a learning rate of 0.001, and
dropout [154] is employed to allow for increased robustness.

CHAPTER 6. DATA-EFFICIENT LEARNING FOR COOPERATIVE DRIVING
THROUGH EXPERT RELABELING 86

Figure 6.6: Accepted space and time headway by AVs within the bottleneck simulations
compared to human drivers (blue).

Bottleneck time headway [s] Simulation type Throughput [veh/hr] Miles-per-gallon (AVs) Miles-per-gallon (total)

Human-driven 1858 −→ 1862 – 42.32
1.4 Global Sensing 1917 −→ 1874 57.93 (+36.90%) 58.15 (+37.41%)

Local Sensing 1857 −→ 1876 57.06 (+34.83%) 58.63 (+38.54%)

Human-driven 1740 −→ 1709 – 43.10
1.5 Global Sensing 1756 −→ 1712 52.20 (+21.11%) 52.21 (+21.14%)

Local Sensing 1748 −→ 1715 52.51 (+21.83%) 52.22 (+21.16%)

Human-driven 1638 −→ 1592 – 41.95
1.6 Global Sensing 1633 −→ 1593 47.40 (+12.99%) 47.37 (+12.92%)

Local Sensing 1631 −→ 1594 47.37 (+12.92%) 47.28 (+12.71%)

Human-driven 1512 −→ 1500 – 39.47
1.7 Global Sensing 1530 −→ 1500 43.56 (+10.36%) 43.56 (+10.36%)

Local Sensing 1530 −→ 1500 43.51 (+10.24%) 43.44 (+10.06%)

Human-driven 1458 −→ 1425 – 38.71
1.8 Global Sensing 1455 −→ 1424 40.49 (+4.63%) 40.50 (+4.65%)

Local Sensing 1456 −→ 1425 40.46 (+4.52%) 40.37 (+4.29%)

Table 6.3: Performance of human-driven and mixed-autonomy simulations within bottleneck
simulations. Throughputs are computed near the start of the network (at 1 km) and bottleneck
(at 9 km) to measure both the effects of control strategies on the mobility of vehicles through
the bottleneck and whether any alterations emerge at the cost of restricting traffic upstream.

CHAPTER 6. DATA-EFFICIENT LEARNING FOR COOPERATIVE DRIVING
THROUGH EXPERT RELABELING 87

Distance traveled (km) Miles-per-gallon (AVs) Miles-per-gallon (total)

Light/Moderate Human-driven 13.71 – 45.41
Experiment 1 Global Sensing 13.57 (−1.02%) 49.89 (+9.87%) 50.85 (+11.98%)

Local Sensing 13.51 (−1.46%) 51.12 (+12.57%) 51.10 (+12.53%)

Human-driven 13.86 – 39.45
Experiment 2 Global Sensing 13.79 (−0.51%) 42.55 (+7.86%) 42.68 (+8.19%)

Local Sensing 13.59 (−1.95%) 42.40 (+7.48%) 43.23 (+9.58%)

Human-driven 14.58 – 40.36
Experiment 3 Global Sensing 14.46 (−0.82%) 44.93 (+11.32%) 44.73 (+10.83%)

Local Sensing 14.38 (−1.37%) 44.57 (+10.43%) 44.03 (+9.09%)

Human-driven 14.09 – 40.46
Experiment 4 Global Sensing 14.02 (−0.50%) 48.21 (+19.15%) 49.84 (+23.18%)

Local Sensing 13.89 (−1.42%) 47.52 (+17.45%) 48.22 (+19.18%)

Human-driven 13.23 – 44.19
Experiment 5 Global Sensing 13.12 (−0.83%) 46.14 (+4.41%) 45.94 (+3.96%)

Local Sensing 12.81 (−3.17%) 52.58 (+18.99%) 48.81 (+10.45%)

Human-driven 14.24 – 39.79
Experiment 6 Global Sensing 14.17 (−0.49%) 46.24 (+16.21%) 46.64 (+17.22%)

Local Sensing 14.09 (−1.05%) 44.41 (+11.61%) 45.75 (+14.98%)

Human-driven 14.48 – 38.65
Experiment 7 Global Sensing 14.34 (−0.97%) 48.12 (+24.50%) 48.61 (+25.77%)

Local Sensing 14.25 (−1.59%) 47.41 (+22.66%) 47.03 (+21.68%)

Human-driven 14.03 – 41.19
Average Global Sensing 13.92 (−0.73%) 46.58 (+13.10%) 47.04 (+14.21%)

Local Sensing 13.79 (−1.70%) 47.14 (+14.46%) 46.88 (+13.83%)

Heavy Human-driven 13.32 – 36.67
Experiment 8 Mixed-autonomy 13.29 (−0.23%) 42.95 (+17.13%) 41.75 (+13.85%)

Local Sensing 13.14 (−1.35%) 41.11 (+12.11%) 40.65 (+10.85%)

Human-driven 13.10 – 36.34
Experiment 9 Global Sensing 13.04 (−0.46%) 52.48 (+44.41%) 48.72 (+34.07%)

Local Sensing 12.96 (−1.07%) 45.81 (+26.06%) 44.75 (+23.14%)

Human-driven 10.70 – 30.97
Experiment 10 Global Sensing 10.64 (−0.56%) 38.48 (+24.25%) 37.55 (+21.25%)

Local Sensing 10.43 (−2.52%) 33.48 (+8.10%) 35.60 (+14.95%)

Human-driven 12.37 – 34.66
Average Global Sensing 12.32 (−0.40%) 44.64 (+28.78%) 42.67 (+23.12%)

Local Sensing 13.30 (−1.59%) 45.04 (+15.79%) 44.92 (+16.37%)

Human-driven 13.53 – 39.23
Overall Average Global Sensing 13.44 (−0.64%) 46.0 (+17.26%) 45.73 (+16.57%)

Local Sensing 13.30 (−1.67%) 45.04 (+14.82%) 44.92 (+14.50%)

Table 6.4: Performance of both fully human-driven and mixed-autonomy simulations, in-
dividually and average across 10 runs for each leading trajectory sampled from I-24. Fig-
ures 6.8 and 6.7 correspond to experiments 1 and 9, respectively.

CHAPTER 6. DATA-EFFICIENT LEARNING FOR COOPERATIVE DRIVING
THROUGH EXPERT RELABELING 88

(a) Fully human-driven (b) Global sensing (expert) (c) Local sensing (imitation)

Figure 6.7: Performance of vehicles in the presence of sharp and frequent oscillations in
driving speeds. Automated vehicles whose actions are supplied both by the global sensing
expert as well as the imitated policy do well in reducing the intensity of oscillations by
following vehicles, with the expert policy slightly outperforming that which imitates it.

(a) Fully human-driven (b) Global sensing (expert) (c) Local sensing (imitation)

Figure 6.8: Performance of vehicles in the presence of moderate/infrequent oscillations in
driving speeds. Automated vehicles in both settings succeed in reducing the magnitude of
oscillations in driving speeds resulting from aggressive human driving behaviors. The imitated
policy, however, unlike the expert policy does not slow down in anticipation of the shockwave,
but rather incrementally alleviates its effects by accepting larger headways and slowing down
in a smoother fashion.

CHAPTER 6. DATA-EFFICIENT LEARNING FOR COOPERATIVE DRIVING
THROUGH EXPERT RELABELING 89

(a) Moderate / infrequent oscillations (b) Heavy / frequent oscillations

Figure 6.9: Accepted space headway and time by human-driven and automated vehicles
within the shockwave simulations. As we can see, automated vehicles primarily maintain
reasonable headways that distributionally match those of human-driven vehicles but are
willing to adopt larger gaps when required to avoid future anticipated congestion.

6.6 Numerical Results

In this section, we present numerical results for the proposed controller and imitation learning
procedure across each of the previously described environments. Through these results,
we demonstrate 1) that imitation learning procedures are capable of extracting behaviors
from global sensing experts that, while distributionally different under certain settings, on
aggregation match the behaviors of such experts in critical moments, and 2) that such learned
longitudinal responses significantly improves the energy-efficiency of vehicles in comparison
to human car-following dynamics.

6.6.1 Evaluation metrics

We evaluate the response of vehicles of vehicles in each setting across the following metrics:

Energy-efficiency. To analyze the performance of the proposed controller in terms of en-
ergy efficiency, we adopt a semi-principled energy model that has a physics-based component.
This model is described in Section 6.8.1. The energy consumption obtained from the model
will be converted into Miles-Per-Gallon (MPG) as the metric to indicate energy efficiency.

Throughput. Next, to evaluate our controller on mobility improvement, throughput can be
a good metric to indicate the actual amount of traffic flowing in our target segment. However,
in the shockwave scenario, since the simulation experiment will end if it reaches the end of
the leading trajectory, regulation on controlled vehicles may reduce the throughput near and
upstream of these vehicles. For fixed regions, measuring the distanced traveled can be an
equivalent representation of measuring the traffic flow. Therefore, we use controlled vehicles’
travel distance as a representation of the throughput.

Proximity to leader. Close proximity may denote unsafe driving behaviors while large
distances between vehicles may denote reductions in throughput and may encourage cut-ins

CHAPTER 6. DATA-EFFICIENT LEARNING FOR COOPERATIVE DRIVING
THROUGH EXPERT RELABELING 90

and cut-outs by following vehicles. We use time headway and space gap as the metrics to
measure the proximity to leader.

6.6.2 Generalization of learned control laws

For both scenarios, we ensure that both the learned and expert responses are robust to traffic
conditions by varying the response and severity of traffic conditions between simulations.

Bottleneck.

In the bottleneck scenario, we sampled different desired time headway T from [1.4, 1.8] in the
IDM model to represent different level of traffic congestion. As the bottleneck time headway
increases, the capacity of the simulated bottleneck should decrease, referring to a more severe
congestion.

Shockwave.

For the shockwave scenario, among the drives recorded within Interstate I-24, we select
trajectories collected during morning peak demand intervals (6am - 7am) and exhibit some
degree of sharp oscillations in driving speeds. This amounts to a total of 10 varying trajectories,
seven of which, we note, observe what may deemed as light-to-moderate congestion (e.g.
Figure 6.8), whereby vehicles alternate between free-flowing and congested states of traffic,
while the remaining three exhibit more severe forms of congestion (e.g. Figure 6.7), whereby
driving speeds are consistently slow and stop-and-go behaviors are frequent.

6.6.3 Performance

To make it easier to compare the performance of our proposed controller, baseline experiments
that replace AV with IDM simulated human-driver vehicle are conducted. The expert control
strategy that equipped with global sensing, which utilizes downstream traffic states to acquire
designed velocity, is also evaluated in each experiment for comparison purposes.

Bottleneck

As Table 6.3 shows, among all cases, our expert control strategy with global sensing can
obtain significant energy improvement while maintaining the equivalent level of throughput.
The imitation learning controller with only local sensing successfully matches the expert
behavior of harmonizing the traffic flow as Figure 6.5 describes, and with similar energy
efficiency and throughput, while for the proximity to leader, it tend to be more conservative
with larger gaps as Figure 6.6 illustrates.

CHAPTER 6. DATA-EFFICIENT LEARNING FOR COOPERATIVE DRIVING
THROUGH EXPERT RELABELING 91

Shockwave

Table 6.4 depicts the average performance of the system on all 10 utilized trajectories for
the metrics we described above. We can see significant improvements on energy efficiency
at little cost to the throughput of the system. Comparing to the baseline, the imitation
learning controller provides on average 14.50% savings to energy consumption with only
1.67% reduction on distance travelled by the controlled vehicle. This is true for both heavy
(Figure 6.7) and moderate/light (Figure 6.8) forms of congestion, with benefits from each policy
being achieved through slightly different mechanisms. In particular, as seen in Figure 6.9,
the imitation learning controller maintains both space headway and time headway spread in
a wider range, leaving a more conservative gap with the preceding vehicle within moderate
oscillations.

With the knowledge of the congestion at downstream, the controlled vehicles should
deliberately leave more gap to avoid sharp deceleration, as a result, drive in a smoother
speed and save energy consumption. This behavior propagates to other vehicles immediately
upstream of the automated vehicles as well, resulting in more uniform driving speeds through-
out the platoon. This is for instance true in Figure 6.8, where AVs dampen the magnitude of
oscillations experienced by consecutive vehicles within the platoon. In contrast, oscillations
in driving speeds in fully human-driven setting are amplified by trailing drivers within the
platoon, resulting in the subsequent formation of stop-and-go traffic.

6.7 Chapter Summary

This chapter demonstrates the efficacy of imitation learning systems in deriving traffic
regulation policies for decentralized, mixed-autonomy car-following systems. In it, we
construct a simple expert policy in which labeled actions exploit knowledge of global states
of traffic to assign centralized speed profiles that AVs may adhere to restrict the propagation
of stop-and-go traffic. We then demonstrate that automated systems trained to imitate such
signals succeed in doing so near-perfectly without access to global states and traffic.

6.8 Appendix

6.8.1 Energy model

To analyze the performance of the proposed controller in terms of energy efficiency, we adopt
a semi-principled energy model that has a physics-based component [92]. The model takes
as inputs the instantaneous vehicle speed v, acceleration a, and road grade θ, and outputs
engine speed, engine torque, fuel consumption, gear, transmission output speed, wheel force,
wheel power, and feasibility of the given (v,a,θ) with respect to engine speed and engine
torque. In our training process, we take Toyota RAV4 as the prototype vehicle and simplify

CHAPTER 6. DATA-EFFICIENT LEARNING FOR COOPERATIVE DRIVING
THROUGH EXPERT RELABELING 92

the energy model to a fitted polynomial model of the form

g(v, a) = max(f(v, a), β) (6.8)

where
f(v, a) = C0 + C1v + C2v

2 + C3v
3

+ p0a+ p1av + p2av
2

+ q0a
2
+ + q1a

2
+v

(6.9)

and a+ = max(a,0), and β is the minimum fuel rate, which is not necessarily zero because
different vehicles have different criteria for enacting a fuel cut.

The energy consumption obtained from the model is converted into Miles-Per-Gallon
(MPG) as the metric to indicate energy efficiency.

6.8.2 Safety filter details

To avoid any potential collisions with the preceding vehicle, we add a safety filter to the
proposed controller. Our safety filter design is inspired by the simple idea that the gap
between the preceding vehicle and the subject vehicle should be larger than the minimum
space gap and the headway between the two vehicles should also be larger than the minimum
time headway. We start with the time headway requirement and add a heuristic in terms
of the space gap requirement. The upper bound of the velocity determined by safety filter
design is calculated by Eq. (6.10)

vfs =
s− smin + vlτs +

1
2
alτ

2
s − 1

2
vτs

hmin +
1
2
τs

(6.10)

where s is the space gap between the preceding vehicle and the subject vehicle; smin is the
minimum space gap between the two vehicles; τs is the decision making horizon; al is the
acceleration of the preceding vehicle3; hmin is the minimum time headway between the two
vehicles and the rest of the variables follow the definitions from the above equations.

The detailed design procedure is as follows: Eq. (6.11) shows the requirement on time
headway at time t = t+ τs.

xl(t+ τs)− x(t+ τs)

v(t+ τs)
≥ hmin (6.11)

where xl(t+ τs) is the position of the preceding vehicle at time t+ τs; x(t+ τs) is the position
of the subject vehicle at time t + τs; v(t + τs) is the speed of the subject vehicle at time
t+ τs and the rest of the variables follow the definitions from the above equations. Following

3While multiple estimates for this acceleration may be assigned in practice, we take average on the
previous 5 seconds acceleration of the preceding vehicle as the estimation in the simulations conducted in this
chapter.

CHAPTER 6. DATA-EFFICIENT LEARNING FOR COOPERATIVE DRIVING
THROUGH EXPERT RELABELING 93

simplified dynamics of motion, the position of each the ego and preceding vehicles at time
t+ τs is:

xl(t+ τs) = xl(t) + vl(t)τs +
1

2
al(t)τ

2
s (6.12)

x(t+ τs) = x(t) + v(t)τs +
1

2
a(t)τ 2s (6.13)

where a(t) is the target decision variable, and for a fixed desired speed across the decision-
making horizon may be expressed as:

a(t) =
vdes − v(t)

τs
(6.14)

Plugging in Eq. (6.12), Eq. (6.13), and Eq. (6.14) to solve Eq. (6.11), we can get an initial
upper bound of v:

v ≤
s+ vlτs +

1
2
alτ

2
s − 1

2
vτs

hmin +
1
2
τs

(6.15)

We also want to take the space gap requirement into consideration and get a slightly
tighter upper bound. To achieve this, we add an heuristic by replacing the s in Eq. (6.15)
with s - smin which leads to our final design of the safety filter velocity as Eq. (6.10) shows.

6.8.3 Additional results: Shockwave response

Similar to the subsection prior, for the purposes of completeness, Figures 6.10 to 6.17 provide
illustrations of each of the fully-human driven and mixed-autonomy simulations for all
remaining leading trajectories samples from Interstate I-24. As seen in these figures, the
policy learned via imitation does in fact succeed at providing a close approximation to the
behavior by the expert across all settings, and in doing so restricts the growth in perturbations
by following vehicles for a majority of the time.

CHAPTER 6. DATA-EFFICIENT LEARNING FOR COOPERATIVE DRIVING
THROUGH EXPERT RELABELING 94

(a) Fully human-driven (b) Global sensing (expert) (c) Local sensing (imitation)

Figure 6.10: Simulation results corresponding to Experiment 2 in Table 6.4

(a) Fully human-driven (b) Global sensing (expert) (c) Local sensing (imitation)

Figure 6.11: Simulation results corresponding to Experiment 3 in Table 6.4

CHAPTER 6. DATA-EFFICIENT LEARNING FOR COOPERATIVE DRIVING
THROUGH EXPERT RELABELING 95

(a) Fully human-driven (b) Global sensing (expert) (c) Local sensing (imitation)

Figure 6.12: Simulation results corresponding to Experiment 4 in Table 6.4

(a) Fully human-driven (b) Global sensing (expert) (c) Local sensing (imitation)

Figure 6.13: Simulation results corresponding to Experiment 5 in Table 6.4

CHAPTER 6. DATA-EFFICIENT LEARNING FOR COOPERATIVE DRIVING
THROUGH EXPERT RELABELING 96

(a) Fully human-driven (b) Global sensing (expert) (c) Local sensing (imitation)

Figure 6.14: Simulation results corresponding to Experiment 6 in Table 6.4

(a) Fully human-driven (b) Global sensing (expert) (c) Local sensing (imitation)

Figure 6.15: Simulation results corresponding to Experiment 7 in Table 6.4

CHAPTER 6. DATA-EFFICIENT LEARNING FOR COOPERATIVE DRIVING
THROUGH EXPERT RELABELING 97

(a) Fully human-driven (b) Global sensing (expert) (c) Local sensing (imitation)

Figure 6.16: Simulation results corresponding to Experiment 8 in Table 6.4

(a) Fully human-driven (b) Global sensing (expert) (c) Local sensing (imitation)

Figure 6.17: Simulation results corresponding to Experiment 10 in Table 6.4

98

Part III

Generalizing to Complex-to-model
Dynamics

99

CHAPTER 7

Dissipating Stop-and-go Waves in Closed and Open
Networks via Deep Reinforcement Learning

In this part, we present approaches for alleviating limitations associated with the compu-
tational cost of training RL algorithms in mixed autonomy settings through the use of
simplified auxiliary tasks. As mentioned in Chapter 3.3.2, generating microscopic simulations
of real-world traffic networks is a slow and costly endeavour. This bottleneck arises primarily
from the use of general-purpose traffic microsimulators such as SUMO, which are designed
to recreate a broad range of traffic settings as opposed to efficiently generating millions of
samples for a narrow set of tasks. The process of simulating stop-and-go waves in a single
lane ring road, however, is a relatively light procedure, simply requiring the computation of
a sequence of integrals of a number of car-following and AV models at every timestep This
makes training on a simulated ring road network highly desirable from a deep RL perspective.
A natural question however arises: Are policies learned on a ring road transferable to more
realistic representations of traffic?

In this chapter, we explore the transferability of policies learned on a closed ring road
network to an open highway networks with instabilities arising from an on-ramp merge.
Through this study, we demonstrate that, when trained on a ring road networks exhibiting
similar dynamics and network densities as its target network, learned policies can in fact
perform well on structurally different networks without any exposure to the network. This
result suggests that a considerable portion of training can be performed before exposure more
computationally expensive, albeit accurate, models of traffic.

This chapter is adapted from [82]. Videos of the results are available at: https://sites.
google.com/view/itsc-dissipating-waves.

7.1 Introduction

Traffic congestion is a severe problem in road networks across the world. In the United States
alone, the cost of traffic congestion was estimated to be 305 billion USD in 2017, costing the
average driver in large cities around 2000 USD. Developing new road infrastructure provides a

https://sites.google.com/view/itsc-dissipating-waves
https://sites.google.com/view/itsc-dissipating-waves

CHAPTER 7. DISSIPATING STOP-AND-GO WAVES IN CLOSED AND OPEN
NETWORKS VIA DEEP REINFORCEMENT LEARNING 100

natural means of coping with the ever growing demand for mobility, but is expensive and time
consuming, rendering it infeasible in most situations. Instead, considerable research in the
area of intelligent transportation systems (ITS) has been performed to achieve a more efficient
road usage, thereby increasing the capacity of road networks. This has led to significant
improvements in traffic control methods such as traffic signal control, ramp metering, variable
speed limits, and adaptive cruise control (ACC).

Over the past years, RL has led to a considerable amount of successes in performing
control and strategy-driven tasks, such as playing Atari games at superhuman levels [114],
and outperforming champions in the challenging strategy game Go [152]. This has prompted
researchers in the transportation community to apply RL techniques on a multitude of
intelligent transportation system tasks including traffic signal timing [96, 198, 2], ramp
metering [16, 144], and variable speed limit control [144, 98].

Recently, RL has also been used in conjunction with state-of-the-art microscopic traffic
simulations tools to train automated vehicles to improve traffic conditions through vehicle
to vehicle interactions. In [202, 201], automated vehicles were trained using deep RL to
improve system-level traffic flow conditions in a variety of closed and looped network settings,
where the actions of a single vehicle can quickly propagate and affect the performance of all
other vehicles in the network. In a variable length ring road, for instance, an RL agent with
only local observability and controlling approximately 5% of automated vehicles learned to
successfully dissipate stop-and-go waves within the network, thereby allowing the human-
driven vehicles to travel at their optimal speeds. However, the applicability of the proposed
controllers to open, as opposed to closed, network traffic scenarios is not addressed. This
discrepancy is important, as it unclear whether a small percentage of automated vehicles
interacting in a setting where they have significantly less control can in fact improve traffic.

The present chapter expands on the work described in [202]. The key contributions of
this chapter are as follows:

• Using deep reinforcement learning, this chapter presents a traffic control strategy that
may be employed by a series of connected automated vehicles to dissipate the effects
of stop-and-go waves on open single lane road networks. This controller succeeds at
eliminating nearly all stop-and-go waves in simulation with as little as 10% automated
vehicle penetration.

• We also demonstrate that, through deep reinforcement learning, control strategies
developed to improve traffic conditions in closed networks can be transferred and
fined-tuned to handle realistic open network problems.

The remainder of the chapter is organized as follows. Section 7.2 provides an overview of
RL and transfer learning, and discusses characteristic features differentiating the formation
and propagation of stop-and-go waves in closed and open networks. Section 7.3 outlines the
RL and transfer learning problem formulation for dissipating the formation and propagation
of stop-and-go waves in open straight highway networks. Finally, Section 7.4 presents the

CHAPTER 7. DISSIPATING STOP-AND-GO WAVES IN CLOSED AND OPEN
NETWORKS VIA DEEP REINFORCEMENT LEARNING 101

findings and results of a number of computational experiments conducted over various
automated vehicle penetration rates.

7.2 Preliminaries

7.2.1 MDPs and reinforcement learning

Reinforcement learning problems are generally studied as a discrete-time Markov decision
problem (MDP) [17], defined by (S,A,P , r, ρ0, γ, T), where S ⊆ Rn is an n dimensional
state space, A ⊆ Rm an m dimensional action space, P : S × A × S → R+ a transitional
probability function, r : S → R a bounded reward function, ρ0 : S → R+ an initial state
distribution, γ ∈ (0, 1] a discount factor, and T a time horizon. For partially observable tasks,
which conform to the interface of a partially observable Markov decision process (POMDP),
two more components are required, namely Ω, a set of observations, and O : S × Ω→ R+,
the observation probability distribution.

In a Markov decision process, an agent receives sensory inputs st ∈ S from the the
environment and interacts with this environment by performing actions at ∈ A. The agent’s
actions are defined by a stochastic policy πθ : S × A → R+ parametrized by θ. Common
policies used in continuous control tasks include artificial neural networks with multiple
hidden layers [63] and recurrent neural networks capable of storing internal memory from
previous states [68, 31].

The objective of the agent is to learn an optimal policy:

θ∗ := argmaxθη(πθ) (7.1)

where η(πθ) =
∑T

i=0 γ
iri is the expected discounted return across a trajectory τ = (s0, a0, ...),

s0 ∼ ρ0(s0), at ∼ πθ(at|st), and st+1 ∼ P(st+1|st, at), for all t. In the present chapter, these
policy parameters are iteratively updated using policy gradient methods [163].

7.2.2 Transfer learning between MDPs

Transfer learning techniques in reinforcement learning provide methods of leveraging experi-
ences acquired from training in one task to improve training on another [170]. These tasks
may differ in the agent-space (the observation the agent perceives or the actions it may
perform), and in the MDP-space (such as the transition probability P). For instance, in the
classical cartpole control problem, where a cart moving left and right attempts to balance a
pole vertically, the task may be modified in the second stage of training by increasing the
gravitational force applied to the pole. Common transfer learning practices include sharing
policy parameters θ and state-action pairs < s, a, r, s′ > between tasks. For a survey of
transfer learning techniques, we refer the reader to [170, 126].

CHAPTER 7. DISSIPATING STOP-AND-GO WAVES IN CLOSED AND OPEN
NETWORKS VIA DEEP REINFORCEMENT LEARNING 102

7.2.3 Stop-and-go waves in closed and open networks

The present chapter studies traffic control in the context of microscopic (car-following) models,
where the dynamics of each individual vehicle of index α in a network is described by ordinary
and delayed differential equations of the form:{

dhα

dt
= vl(t)− vα(t)

dvα
dt

= f(hα(t− τ), vα(t− σ), vl(t− κ))
(7.2)

where f is an acceleration equation, vα(t) is the speed of the vehicle, hα(t) is its headway
with the leading vehicle l, and τ , σ, and κ are time delays. These models form the basis for
the transitions of the MDPs studied in this chapter.

The optimal performance of a system of human-driven vehicles following a homogeneous
car-following model is characterized by its uniform equilibrium flow. At this equilibrium, all
vehicles in the network move at a constant speed v∗ and with constant spacing h∗, such that:

f(h∗, v∗, v∗) = 0 (7.3)

Highway traffic does not naturally remain within its uniform equilibrium flow, but rather
experiences the formation of backwards propagating waves sometimes causing part of the
traffic to come to a complete stop. This behavior is often attributed to inherent instabilities in
human driving dynamics. Specifically, linear string stability formalizes how small disturbances
brought about by lane changes, noise, etc. propagate to vehicles upstream and expand until
a jam is formed [66].

Numerous articles have studied the nonlinear traffic properties of the formation and
propagation of stop-and-go waves in the context of closed-network ring roads [155]. Considering
a system of homogeneous vehicles in a closed single lane highway of variable length, the authors
of [122] deduced the existence of two Hopf bifurcation points for densities in which the uniform
flow equilibrium loses stability. These findings denote the existence of stable “stop-and-go"
limit cycles within closed networks of certain densities. This is further illustrated in [156], in
which field experiments performed with 22 vehicles in a 230 m ring road demonstrated the
formation of traffic jams, even in the absence of external perturbations to the network.

Closed-network analysis of microscopic traffic dynamics such as the ones described in the
previous section have shaped the way we attempt to counteract stop-and-go traffic; therefore,
an understanding of the transferability of the subsequent designed controllers to open network
traffic is paramount. In terms of the MDPs these networks produce, the primary disparity
arises from the assumption of periodic boundary conditions at the start and end of the
highways, whereby the state of the last vehicle in the network affects the actions of the first.
The relaxation of this boundary condition, coupled with the concept of convective stability
which asserts that traffic waves can only travel upstream [194], negates the existence of stable
stop-and-go dynamics in finite-length open networks, as any wave that forms eventually
propagates out of the network. Instead, persistent congested patterns within convectively
unstable open networks is attributed to periodic perturbations brought about by bottleneck

CHAPTER 7. DISSIPATING STOP-AND-GO WAVES IN CLOSED AND OPEN
NETWORKS VIA DEEP REINFORCEMENT LEARNING 103

Figure 7.1: Open network highway network of length 700 m and inflow rate 2000 veh/hr with
an on-ramp of inflow rate 100 veh/h. Perturbations from the on-merge lead to the formation
of stop-and-go waves. CAVs with a centralized controller are trained via RL to dissipate
these waves.

structures such as on-ramps, lane closers, etc. [113, 175]. This results in a problem that is
more difficult to solve than the one experienced in closed network geometries, and accordingly
highlights the potential benefits of originally generating control strategies in closed network
settings and attempting to transfer the knowledge.

7.3 Experimental Setup

In this section, we present an experimental setup for studying the effect of mixed autonomy
on open networks via deep RL, and building on recent studies [202, 201], propose similar
ring road representations of the problem to assess the transferability of control strategies
generated for closed networks.

7.3.1 Problem setup

This chapter is concerned with the problem of mixed-autonomy traffic stabilization: specifically,
how a small percentage of automated vehicles stabilize stop-and-go traffic in congested
highways networks.

CHAPTER 7. DISSIPATING STOP-AND-GO WAVES IN CLOSED AND OPEN
NETWORKS VIA DEEP REINFORCEMENT LEARNING 104

Figure 7.2: Closed network highway of length 1400 m with 50 vehicles and a 700 m controlled
region. Periodic perturbations are induced to vehicles near a fixed point, mimicking the
effects of an on-merge. A centralized controller issues commands to CAVs only within a
controllable region.

Network configuration

A scenario is proposed to study the effects of automated vehicle in open networks that exhibit
stop-and-go behavior (see Figure 7.1). This scenario consists of a single-lane highway network
with an on-ramp used to generate periodic perturbations to sustain congested behavior. The
scenario is characterized by a variable highway length Lh in which the system dynamics
are influenced by the presence of automated vehicles, as well as highway and merge inflow
rates, denoted by qh and qm respectively. For the purpose of this study, the following network
parameters are used: Lh = 700 m, qh = 2000 veh/hr, qm = 100 veh/hr. Note that the
on-ramp inflow rate is much smaller than the primary highway inflow rate, and is designed
to be a fixed source of perturbations rather than a realistic on-ramp inflow.

Human-driven vehicles

The longitudinal dynamics of human-driven vehicles in the network are provided by the Intel-
ligent Driver Model (IDM) [174], a microscopic car-following model in which the accelerations
of a vehicle α are defined by its bumper-to-bumper headway hα, velocity vα, and relative
velocity with the preceding vehicle ∆vα = vl − vα, via the following equation:

f(hα, vl, vα) = a

[
1−

(
vα
v0

)δ

−
(
s∗(vα,∆vα)

hα

)2]
(7.4)

CHAPTER 7. DISSIPATING STOP-AND-GO WAVES IN CLOSED AND OPEN
NETWORKS VIA DEEP REINFORCEMENT LEARNING 105

where s∗ is the desired headway of the vehicle, denoted by:

s∗(vα,∆vα) = s0 +max

(
0, vαT +

vα∆vα

2
√
ab

)
(7.5)

where s0, v0, T , δ, a, b are given parameters calibrated to model highway traffic [178]. In
order to simulate stochasticity in driver behavior, exogenous Gaussian noise of N (0, 0.2)
is added to the accelerations, calibrated to match findings in [176]. Finally, right-of-way
dynamics near the merge are specified by the simulator for both human and autonomous
vehicles.

Automated vehicles

In order to model the effect of p% CAV penetration on the network, every 100
p

th vehicle is
replaced with an automated vehicle whose actions are sampled from a centralized (single-agent)
RL policy.

Observations and actions

The observation space of the learning agent consists of locally observable network features.
This includes the speeds vi,lead, vi,lag and bumper-to-bumper headways hi,lag, hi,lag of the
vehicles immediately preceding and following the automated vehicles, as well as the ego speed
vi of automated vehicle i.

The action space consists of a vector of bounded accelerations ai for each automated
vehicle i. In order to ensure safety, these actions are further bounded by failsafes provided by
the simulator at every time step.

In an open network, the number of vehicles, and accordingly the number of automated
vehicles, fluctuates as vehicles enter and exit the network; however, the RL agent continuously
issues a list of actions of fixed size n and requests a list of observations of fixed size m. In
order to consolidate potential mismatches between the size of the state/action spaces and the
number of AVs, we use zero padding.

Reward function

We choose a reward function that promotes high system-level speeds. Let vi(t) and hi(t) be
the speed and time headway of vehicle i at time step t, respectively. The reward function is
defined as follows:

r = ||vdes|| − ||vdes − v(t)|| − α
∑
i∈AV

max
[
hmax − hi(t), 0

]
(7.6)

The first two terms encourage proximity of the system-level velocity to a desired speed
vdes while maintaining a positive reward value to penalize prematurely terminated simulation
rollouts caused by vehicle collisions. The second term, on the other hand, is a penalty used to

CHAPTER 7. DISSIPATING STOP-AND-GO WAVES IN CLOSED AND OPEN
NETWORKS VIA DEEP REINFORCEMENT LEARNING 106

identify local features of congested traffic (namely small time headways). In order to ensure
that this term does not affect the global optimum, the penalty is ignored when time headways
are smaller than a threshold value hmax, and a gain α is used to diminish the magnitude of
the penalty. For this problem, the following constants are chosen: vdes = 25 m/s, hmax = 1 s,
α = 0.1.

7.3.2 Transfer learning from closed network policies

We wish to understand through deep reinforcement learning whether control strategies
developed in a ring can be transferred and fined-tuned to improve traffic in realistic open
network settings. In order to do so, a ring road setup similar to the straight highway depicted
in Section 7.3.1 is designed (see Figure 7.2). The ring has a circumference of 1400 m and a
total of 50 vehicles, approximately matching the densities in straight highway simulations. In
order to reconstruct the effects of the on-merge, vehicles closest to an arbitrary fixed point are
periodically perturbed with a frequency equal to that on the merge inflow rate Fm. Finally,
in order to account for variability in the number of AVs, observation and action data in only
acquired from and provided to automated vehicles within a controllable region of length. In
all other regions of space, the AVs act as human-driven vehicles.

During the RL training process, automated vehicles are initially trained in the ring road
with the same actions, observations, and rewards described. Then after a predefined number
of iterations, the network is replaced with the previously described straight highway network,
and training is continued.

7.3.3 Simulations

Experiments are implemented in Flow, an open-source computational framework for running
deep reinforcement learning experiments in traffic microscopic simulators [202]. Flow enables
the systematic creation of a variety of traffic-oriented RL tasks for the purpose of generating
control strategies for autonomous vehicles, traffic lights, etc. All results presented in this
chapter are reproducible from the Flow repository at: https://github.com/flow-project/
flow.

Simulations are executed in the state-of-the-art traffic micro-simulator SUMO [80] with
simulation time steps of 0.2 s and a total duration of 3600 s. The RL agent is provided
updated state information and generates new actions in increments of 1 s, with the actions
repeated for the next five consecutive simulation steps.

For all experiments in this chapter, we use the Trust Region Policy Optimization
(TRPO) [147] policy gradient method for learning the control policy, linear feature baselines
as described in [44], discount factor γ = 0.999, and step size 0.01. For most experiments, a
diagonal Gaussian MLP policy is used with hidden layers (32, 32, 32) and a tanh non-linearity.

https://github.com/flow-project/flow
https://github.com/flow-project/flow

CHAPTER 7. DISSIPATING STOP-AND-GO WAVES IN CLOSED AND OPEN
NETWORKS VIA DEEP REINFORCEMENT LEARNING 107

Figure 7.3: Left: In the absence of autonomy, waves form and propagate through the network
without any regulation. Right: In the presence of mixed autonomy, the automated vehicles
learn to temporary reduce inflows by slowing down near the start of the network in order
to prematurely terminate propagating waves. In addition, the automated vehicles at times
create safety gaps between themselves and the downstream wave.

7.4 Numerical Results

We illustrate the results for CAV penetration rates ranging from 0% to 10%. RL train-
ing runs for the various experimental setups were executed over five seeds, with training
performance presented over all seeds. Moreover, excluding Figure 7.6, all reported perfor-
mance values are averaged over 10 simulations in order to account for stochasticity between
simulations. Videos of the results are available at: https://sites.google.com/view/
itsc-dissipating-waves.

7.4.1 Performance benefits of mixed autonomy traffic

Figure 7.6 presents the effect of different CAV penetration rates on key congestion performance
factors. In terms of mobility, we witness a 13% increase in throughput as the portion of
automated vehicles in the network increases from 0% to 10%, with vehicles on average moving
at almost twice the speed. Moreover, in terms of energy efficiency, we see that stop-and-go
waves within the network as virtually eliminated at penetration rates of 10%, with smaller
penetration rates also resulting in less frequent and smaller waves in the network.

7.4.2 Spatio-temporal dynamics of automated vehicles

Figure 7.3, as well as the videos mentioned at the start of this section, provide a spatio-
temporal representation of the effect of autonomy on the dynamics of the network. In the
absence of automated vehicles, perturbations induced by the on-merge periodically result

https://sites.google.com/view/itsc-dissipating-waves
https://sites.google.com/view/itsc-dissipating-waves

CHAPTER 7. DISSIPATING STOP-AND-GO WAVES IN CLOSED AND OPEN
NETWORKS VIA DEEP REINFORCEMENT LEARNING 108

Figure 7.4: The automated vehicle acts as
a ramp meter in the controllable region of
traffic, effectively maintaining the density at
approximately 0.36 veh/m. This strategy is
less effective under smaller penetration rates.

Figure 7.5: RL training performance for a
policy trained from a random initial state
(red) and a ring road policy (blue). The
policy trained on the ring road outperforms
human-driven dynamics on the highway.

in the formation of traffic destabilizing stop-and-go waves. This congestive behavior has
a significant effect on the number of vehicles passing through the network, dropping the
throughput from a free-flow value of 2000 veh/hr to an observed value of 1604 veh/hr.

In the presence of mixed autonomy, automated vehicles near the left of the network slow
down or stop in the event of a formation of a wave near the merge, thereby temporarily
blocking off traffic from entering the network and contributing to the propagation of the
downstream jam. For larger CAV penetration rates, this behavior occurs further downstream,
with the automated vehicles slowing down in unison for shorter periods of time, resulting in
fewer and shorter lived waves in the network. Finally, once the upstream jam is partially
cleared, the automated vehicles then resume regular safe car following behavior.

The learned policy for the automated vehicles share many similarities with ramp metering.
As can be seen in Figure 7.4, the automated vehicles succeed in regulating the density of
traffic in the straight highway below its critical value. This control strategy is more stable at
high CAV penetration rates.

Remarkably, the ramp metering and flow synchronization behaviors discussed in previous
paragraphs emerge in the absence of knowledge on the location of the merge or any existing
stop-and-go waves. Instead, it is likely that the centralized/single-agent structure of the
problem allows vehicles to coordinate actions whenever a lead vehicle acquires jam-like
observations such as small headways for heavy fluctuations in speed. This demonstrates the
potential of V2V communication in mitigating traffic congestion.

CHAPTER 7. DISSIPATING STOP-AND-GO WAVES IN CLOSED AND OPEN
NETWORKS VIA DEEP REINFORCEMENT LEARNING 109

Figure 7.6: Spatio-temporal representation of vehicles dynamics within a periodically per-
turbed highway. In the absence of automated vehicles, the network exhibits properties of
convective instability, with perturbations propagating upstream from the merge point before
exiting the network. As the percentage of autonomous penetration increases, the waves are
increasingly dissipated, with virtually no waves propagating from the merge at 10% autonomy.
Top left: 0% CAV penetration, Top Right: 2.5% CAV penetration, Bottom left; 5% CAV
penetration, Bottom right: 10% CAV penetration.

7.4.3 Transfer learning performance

Figure 7.5 presents the training performance of the RL agent for an CAV penetration rate
of 10%. Comparing the transfer learning method mentioned in Section 7.3.2 against purely
training the RL agent in the straight highway, we find that the policy learned on the ring
road initially outperforms human-driven dynamics in the straight highway network, thereby
acting as a “warm start" to the RL training process, which then continues to optimize the
controller parameters for the straight highway. Notably, during the fine-tuning stage, we
do not see a sharp drop in training performance, which would indicate incompatibility of
the ring road policy for the straight road network. This suggests that the MDP structures
presented in closed and open networks are sufficiently similar for control strategies developed
to be somewhat interchangeable.

CHAPTER 7. DISSIPATING STOP-AND-GO WAVES IN CLOSED AND OPEN
NETWORKS VIA DEEP REINFORCEMENT LEARNING 110

7.5 Chapter Summary

This chapter presents a deep RL approach to generating stop-and-go wave regulating con-
trollers in realistic network geometries. This method is demonstrated to achieve near complete
wave dissipation with only 10% autonomous penetration. In addition, penetration rates as
low as 2.5% are revealed to contribute greatly to reductions in the frequency and magni-
tude of formed waves. Finally, a study of controllers generated in closed network scenarios
exhibiting otherwise similar densities and perturbing behaviors confirms the transferability
of closed network policies to open network tasks, and presents the potential role of transfer
reinforcement learning in fine-tuning the parameters of these policies. In future work, we
hope to utilize this interchangeability to solve much larger and numerically more difficult
highway network tasks from primitives learned on ring roads and single lane merges.

111

Part IV

Final Remarks

112

CHAPTER 8

Conclusion and Future Prospects

Reinforcement learning strategies hold the promise of redefining a number of our approaches
to solving sequential decision-making problems. The adoption of data-driven methods to
task solving, coupled with the highly expressive nature of deep neural networks, allows
solutions to such problems to no longer be restricted by human ingenuity and model-based
formulations designed with simplicity and interpretability in mind. Instead, modern search
and optimization frameworks can help guide our understanding of the intricacies of certain
problems, and often succeed in introducing new and novel ways of solving them in a manner
that both augments and enhances our understanding of the original problem to begin with.
This is true for two-player games such as Chess [26] and Go [151, 152] as well as biological
applications such as protein folding [180], and will likely continue to permeate to other fields
as well. However, much research must still be conducted in attempting adopt these techniques
to each new classes of problems in order to develop a thorough understanding of when, where,
and why they may fail to produce meaningful results.

In this document, we explore methods for adapting modern reinforcement learning and
machine learning techniques to the problem of mixed-autonomy traffic, whereby a subset of
vehicles act as automated entities and subsequently attempt to regulate the flow of traffic
through their actions. As part of this research, we present Flow, a flexible learning framework
designed to enable the composition of different traffic control problems for analysis in the
context of reinforcement learning. We demonstrate through their framework that learning-
based solutions for mixed-autonomy traffic are viable, and in fact succeed in producing
interesting and generalizable results on a number of problems. However, similar algorithms
often fail when applied to larger scale tasks. In this document, we focus on challenges
associated with long-term reasoning as well as attempting to learning through computational
expensive or inaccurate models. To these challenges we explore the use of hierarchies
(Chapter 4) for enabling structured exploration through sparsely defined reward signals,
and demonstrate the learning may be made more efficient by coupling supervised learning
techniques with expertly defined traffic regulation strategies (Chapter 5 and 6) and well as
learning in simplified representations of a target network (Chapter 7).

The work presented here takes some steps towards developing reinforcement learning

CHAPTER 8. CONCLUSION AND FUTURE PROSPECTS 113

strategies that can enhance our understanding of viable traffic control solutions and produce
feedback control mechanisms that may be implemented in field experiments. However, a
number of challenges must still be addressed to develop controllers that consistently and
with a high degree of confidence act as would be desired in generic real-world settings. These
challenges, some of which we list below, highlight a number of exciting directions for future
exploration.

Compositional models. Our work on the adoption of hierarchies for enabling long-
term learning focuses primarily of end-to-end learning, whereby policy layers are initialized
randomly and must coordinate with one another to generate meaningful results. However,
the usefulness of hierarchies is not restricted to end-to-end learning. Instead, through
such models, multiple learned lower-level skills may be coupled and sampled at temporally
extended intervals to solve different traffic-oriented problems as they emerge. For instance,
policies trained to coordinate vehicles through an on-ramp merge [82] versus a lane-reduction
bottleneck [185] may be combined through an options-style framework [162] and chosen based
on nearby network structure or other learned probabilities [9]. In this way, policies learned
in simplified representations of traffic may potentially be effectively integrated into a single
unified model for traffic regulation. Much research, however, must still be conducted on
identifying the learned priors needed to solve every variation of traffic control problem, as well
as on identifying methods for smoothly integrating such lower-level skills with one another
and defining the conditions under which each should be utilized.

Data collection and simulation. In this document, we explore applications of reinforce-
ment learning to traffic regulation problems simulated via microscopic traffic flow models.
Such models historically have enabled a number of technological advancements within the
field of intelligent transportation systems, but were not intended to capture the full range
and diversity of behaviors symbolic of human-style driving. These unreplicated behaviors,
however, may be beneficial within the context of RL-based applications, as through the
subtleties of human interactions interesting learned behaviors may emerge. As such, many
advancements in machine learning applications for traffic control may be further enabled by
developing more intricate models of human driving. To this problem, data-driven solutions
may once again play an important role, and are commonly explored, primarily in the context
of imitation learning. However, as has been in the case in other fields, additional data
on human driving behaviors are required. In particular, data on human driving responses
are needed from dense traffic settings whereby suboptimalities in human behaviors may be
addressed by automated vehicles in mixed traffic settings.

Sim-to-real considerations. Finally, we note that simulation-centric methods to learning
will always suffer from what is known as a “sim-to-real gap”, whereby differences between the
simulated and physical world invalidate certain aspects of the learned response. As such, much
research must still be conducted in reducing the gap between the two (as described above)

CHAPTER 8. CONCLUSION AND FUTURE PROSPECTS 114

as well as generating robust learning methods for enabling learned responses to generalize
to variations between both settings. Simple injections of exogenous noise to both observed
states and executed actions are one such solution [71], however more in depth adaptations of
adversarial learning [131] or domain randomization [172] suited for the problem at hand are
more likely needed.

⋆ ⋆ ⋆

We hope the work presented in this thesis provides useful building blocks for future
research revolving vehicle autonomy and role that automated vehicles and machine learning
systems can and should play in the future of transportation and mobility.

115

Bibliography

[1] “"Phantom auto" to Be Operated Here”. In: The Free Lance-Star (June 1932).
[2] Baher Abdulhai, Rob Pringle, and Grigoris J Karakoulas. “Reinforcement learning for

true adaptive traffic signal control”. In: Journal of Transportation Engineering 129.3
(2003), pp. 278–285.

[3] Saleh Albeaik et al. “Limitations and improvements of the intelligent driver model
(idm)”. In: SIAM Journal on Applied Dynamical Systems 21.3 (2022), pp. 1862–1892.

[4] Florent Altché and Arnaud de La Fortelle. “An LSTM network for highway trajectory
prediction”. In: 2017 IEEE 20th international conference on intelligent transportation
systems (ITSC). IEEE. 2017, pp. 353–359.

[5] Marcin Andrychowicz et al. “Hindsight experience replay”. In: Advances in neural
information processing systems 30 (2017).

[6] Marcin Andrychowicz et al. “What Matters In On-Policy Reinforcement Learning?
A Large-Scale Empirical Study”. In: ICLR 2021-Ninth International Conference on
Learning Representations. 2021.

[7] Behrang Asadi, Chen Zhang, and Ardalan Vahidi. “The role of traffic flow preview for
planning fuel optimal vehicle velocity”. In: Dynamic systems and control conference.
Vol. 44182. 2010, pp. 813–819.

[8] AATM Aw and Michel Rascle. “Resurrection of" second order" models of traffic flow”.
In: SIAM journal on applied mathematics 60.3 (2000), pp. 916–938.

[9] Pierre-Luc Bacon, Jean Harb, and Doina Precup. “The option-critic architecture”. In:
Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 31. 2017.

[10] Masako Bando et al. “Dynamical model of traffic congestion and numerical simulation”.
In: Physical review E 51.2 (1995), p. 1035.

[11] Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale. “Chauffeurnet: Learning to drive
by imitating the best and synthesizing the worst”. In: arXiv preprint arXiv:1812.03079
(2018).

[12] William Barbour et al. “Interstate 24 MOTION open road testbed”. In: ().
[13] Andrew G Barto and Sridhar Mahadevan. “Recent advances in hierarchical reinforce-

ment learning”. In: Discrete event dynamic systems 13.1 (2003), pp. 41–77.

BIBLIOGRAPHY 116

[14] Norman Bel Geddes. Magic motorways. New York: Random house, 1940.
[15] Marc Bellemare et al. “Unifying count-based exploration and intrinsic motivation”. In:

Advances in neural information processing systems 29 (2016).
[16] Francois Belletti et al. “Expert Level Control of Ramp Metering Based on Multi-Task

Deep Reinforcement Learning”. In: IEEE Transactions on Intelligent Transportation
Systems 19 (2018), pp. 1198–1207.

[17] Richard Bellman. “A Markovian decision process”. In: Journal of mathematics and
mechanics 6.5 (1957), pp. 679–684.

[18] Moshe E Ben-Akiva, Steven R Lerman, Steven R Lerman, et al. Discrete choice
analysis: theory and application to travel demand. Vol. 9. 1985.

[19] Dimitri P Bertsekas. Constrained optimization and Lagrange multiplier methods. Aca-
demic press, 2014.

[20] Myra Blanco et al. Automated vehicle crash rate comparison using naturalistic data.
Tech. rep. Virginia Tech Transportation Institute, 2016.

[21] Mariusz Bojarski et al. “End to end learning for self-driving cars”. In: arXiv preprint
arXiv:1604.07316 (2016).

[22] Greg Brockman et al. “Openai gym”. In: arXiv preprint arXiv:1606.01540 (2016).
[23] Martin Buehler, Karl Iagnemma, and Sanjiv Singh. The 2005 DARPA grand challenge:

the great robot race. Vol. 36. Springer, 2007.
[24] Martin Buehler, Karl Iagnemma, and Sanjiv Singh. The DARPA urban challenge:

autonomous vehicles in city traffic. Vol. 56. springer, 2009.
[25] Lucian Busoniu, Robert Babuska, and Bart De Schutter. “Multi-agent reinforcement

learning: A survey”. In: 2006 9th International Conference on Control, Automation,
Robotics and Vision. IEEE. 2006, pp. 1–6.

[26] Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu. “Deep blue”. In: Artificial
intelligence 134.1-2 (2002), pp. 57–83.

[27] Jordi Casas et al. “Traffic simulation with aimsun”. In: Fundamentals of traffic simula-
tion. Springer, 2010, pp. 173–232.

[28] Chao Chen et al. “Freeway performance measurement system: mining loop detector
data”. In: Transportation Research Record 1748.1 (2001), pp. 96–102.

[29] Zhiyuan Chen and Bing Liu. “Lifelong machine learning”. In: Synthesis Lectures on
Artificial Intelligence and Machine Learning 12.3 (2018), pp. 1–207.

[30] Fang-Chieh Chou, Alben Rome Bagabaldo, and Alexandre M Bayen. “The lord of the
ring road: a review and evaluation of autonomous control policies for traffic in a ring
road”. In: ACM Transactions on Cyber-Physical Systems (TCPS) 6.1 (2022), pp. 1–25.

[31] Junyoung Chung et al. “Empirical evaluation of gated recurrent neural networks on
sequence modeling”. In: arXiv preprint arXiv:1412.3555 (2014).

BIBLIOGRAPHY 117

[32] Koohong Chung, Jittichai Rudjanakanoknad, and Michael J Cassidy. “Relation between
traffic density and capacity drop at three freeway bottlenecks”. In: Transportation
Research Part B: Methodological 41.1 (2007), pp. 82–95.

[33] Joan Claybrook and Shaun Kildare. “Autonomous vehicles: No driver. . . no regulation?”
In: Science 361.6397 (2018), pp. 36–37.

[34] Felipe Codevilla et al. “End-to-end driving via conditional imitation learning”. In: 2018
IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2018,
pp. 4693–4700.

[35] Graham Cookson and Bob Pishue. “Inrix global traffic scorecard–appendices”. In:
INRIX research (2017).

[36] Shumo Cui et al. “Stabilizing traffic flow via a single autonomous vehicle: Possibilities
and limitations”. In: 2017 IEEE Intelligent Vehicles Symposium (IV). IEEE. 2017,
pp. 1336–1341.

[37] Jifeng Dai et al. “R-fcn: Object detection via region-based fully convolutional networks”.
In: Advances in neural information processing systems 29 (2016).

[38] Peter Dayan and Geoffrey E Hinton. “Feudal reinforcement learning”. In: Advances in
neural information processing systems. 1993, pp. 271–278.

[39] Marc Deisenroth and Carl E Rasmussen. “PILCO: A model-based and data-efficient
approach to policy search”. In: Proceedings of the 28th International Conference on
machine learning (ICML-11). Citeseer. 2011, pp. 465–472.

[40] Charles Desjardins and Brahim Chaib-Draa. “Cooperative adaptive cruise control: A
reinforcement learning approach”. In: IEEE Transactions on intelligent transportation
systems 12.4 (2011), pp. 1248–1260.

[41] Ernst Dieter Dickmanns and Volker Graefe. “Dynamic monocular machine vision”. In:
Machine vision and applications 1.4 (1988), pp. 223–240.

[42] F Dion et al. “Connected corridors: I-210 pilot integrated corridor management system
concept of operations”. In: California PATH, Berkeley, CA (2015).

[43] Alexey Dosovitskiy et al. “CARLA: An open urban driving simulator”. In: Conference
on robot learning. PMLR. 2017, pp. 1–16.

[44] Yan Duan et al. “Benchmarking deep reinforcement learning for continuous control”.
In: International Conference on Machine Learning. 2016, pp. 1329–1338.

[45] Tom Eccles et al. “Biases for Emergent Communication in Multi-agent Reinforcement
Learning”. In: Advances in Neural Information Processing Systems. 2019, pp. 13111–
13121.

[46] Martin Fellendorf and Peter Vortisch. “Microscopic traffic flow simulator VISSIM”. In:
Fundamentals of traffic simulation. Springer, 2010, pp. 63–93.

BIBLIOGRAPHY 118

[47] Carlos Florensa, Yan Duan, and Pieter Abbeel. “Stochastic Neural Networks for
Hierarchical Reinforcement Learning”. In: arxiv preprint arxiv:1704.03012 (2017).

[48] Jakob Foerster et al. “Bayesian action decoder for deep multi-agent reinforcement
learning”. In: International Conference on Machine Learning. PMLR. 2019, pp. 1942–
1951.

[49] Jakob Foerster et al. “Counterfactual multi-agent policy gradients”. In: Proceedings of
the AAAI conference on artificial intelligence. Vol. 32. 2018.

[50] Jakob Foerster et al. “Stabilising experience replay for deep multi-agent reinforcement
learning”. In: arXiv preprint arXiv:1702.08887 (2017).

[51] Jakob N. Foerster et al. “Learning to Communicate with Deep Multi-Agent Rein-
forcement Learning”. In: CoRR abs/1605.06676 (2016). arXiv: 1605.06676. url:
http://arxiv.org/abs/1605.06676.

[52] Scott Fujimoto, Herke van Hoof, and David Meger. “Addressing function approximation
error in actor-critic methods”. In: arXiv preprint arXiv:1802.09477 (2018).

[53] Ross Girshick. “Fast r-cnn”. In: Proceedings of the IEEE international conference on
computer vision. 2015, pp. 1440–1448.

[54] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training deep
feedforward neural networks”. In: Proceedings of the thirteenth international conference
on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings.
2010, pp. 249–256.

[55] Gabriel Gomes, Adolf May, and Roberto Horowitz. “Congested freeway microsimulation
model using VISSIM”. In: Transportation Research Record 1876.1 (2004), pp. 71–81.

[56] Sorin Grigorescu et al. “A survey of deep learning techniques for autonomous driving”.
In: Journal of Field Robotics 37.3 (2020), pp. 362–386.

[57] Jacopo Guanetti, Yeojun Kim, and Francesco Borrelli. “Control of connected and
automated vehicles: State of the art and future challenges”. In: Annual reviews in
control 45 (2018), pp. 18–40.

[58] George Gunter et al. “Are commercially implemented adaptive cruise control systems
string stable?” In: IEEE Transactions on Intelligent Transportation Systems (2020).

[59] Nico Gürtler, Dieter Büchler, and Georg Martius. “Hierarchical Reinforcement Learning
with Timed Subgoals”. In: Advances in Neural Information Processing Systems 34
(2021).

[60] Tuomas Haarnoja et al. “Soft actor-critic: Off-policy maximum entropy deep rein-
forcement learning with a stochastic actor”. In: arXiv preprint arXiv:1801.01290
(2018).

[61] Patrick Hart, Leonard Rychly, and Alois Knoll. “Lane-merging using policy-based re-
inforcement learning and post-optimization”. In: 2019 IEEE Intelligent Transportation
Systems Conference (ITSC). IEEE. 2019, pp. 3176–3181.

https://arxiv.org/abs/1605.06676
http://arxiv.org/abs/1605.06676

BIBLIOGRAPHY 119

[62] Jeffrey Hawke et al. “Urban driving with conditional imitation learning”. In: 2020
IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2020,
pp. 251–257.

[63] Simon Haykin. “A comprehensive foundation”. In: ().

[64] David Held et al. “Automatic goal generation for reinforcement learning agents”. In:
arXiv preprint arXiv:1705.06366 (2017).

[65] Dwight A Hennessy and David L Wiesenthal. “Traffic congestion, driver stress, and
driver aggression”. In: Aggressive Behavior: Official Journal of the International Society
for Research on Aggression 25.6 (1999), pp. 409–423.

[66] Robert Herman et al. “Traffic dynamics: analysis of stability in car following”. In:
Operations research 7.1 (1959), pp. 86–106.

[67] Julia Hirschberg and Christopher D Manning. “Advances in natural language process-
ing”. In: Science 349.6245 (2015), pp. 261–266.

[68] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural
computation 9.8 (1997), pp. 1735–1780.

[69] Carl-Johan Hoel, Krister Wolff, and Leo Laine. “Automated speed and lane change deci-
sion making using deep reinforcement learning”. In: 2018 21st International Conference
on Intelligent Transportation Systems (ITSC). IEEE. 2018, pp. 2148–2155.

[70] Zhenhua Huang et al. “Parameterized batch reinforcement learning for longitudinal
control of autonomous land vehicles”. In: IEEE Transactions on Systems, Man, and
Cybernetics: Systems 49.4 (2017), pp. 730–741.

[71] Kathy Jang et al. “Simulation to scaled city: zero-shot policy transfer for traffic
control via autonomous vehicles”. In: Proceedings of the 10th ACM/IEEE International
Conference on Cyber-Physical Systems. 2019, pp. 291–300.

[72] Michael Janner et al. “When to trust your model: Model-based policy optimization”.
In: Advances in Neural Information Processing Systems 32 (2019).

[73] Natasha Jaques et al. “Social influence as intrinsic motivation for multi-agent deep
reinforcement learning”. In: International Conference on Machine Learning. PMLR.
2019, pp. 3040–3049.

[74] Rui Jiang, Qingsong Wu, and Zuojin Zhu. “Full velocity difference model for a car-
following theory”. In: Physical Review E 64.1 (2001), p. 017101.

[75] Hossein Jula, Elias B Kosmatopoulos, and Petros A Ioannou. “Collision avoidance
analysis for lane changing and merging”. In: IEEE Transactions on vehicular technology
49.6 (2000), pp. 2295–2308.

[76] Alex Kendall et al. “Learning to drive in a day”. In: 2019 International Conference on
Robotics and Automation (ICRA). IEEE. 2019, pp. 8248–8254.

BIBLIOGRAPHY 120

[77] Arne Kesting, Martin Treiber, and Dirk Helbing. “General lane-changing model MOBIL
for car-following models”. In: Transportation Research Record 1999.1 (2007), pp. 86–94.

[78] Woojun Kim, Jongeui Park, and Youngchul Sung. “Communication in multi-agent
reinforcement learning: Intention sharing”. In: International Conference on Learning
Representations. 2020.

[79] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.
In: arXiv preprint arXiv:1412.6980 (2014).

[80] Daniel Krajzewicz et al. “Recent development and applications of SUMO-Simulation of
Urban MObility”. In: International Journal On Advances in Systems and Measurements
5.3&4 (2012).

[81] Abdul Rahman Kreidieh, Zhe Fu, and Alexandre M Bayen. “Learning energy-efficient
driving behaviors by imitating experts”. In: 2022 IEEE 25th International Conference
on Intelligent Transportation Systems (ITSC). IEEE. 2022, pp. 2689–2695.

[82] Abdul Rahman Kreidieh, Cathy Wu, and Alexandre M Bayen. “Dissipating stop-and-
go waves in closed and open networks via deep reinforcement learning”. In: 2018 21st
International Conference on Intelligent Transportation Systems (ITSC). IEEE. 2018,
pp. 1475–1480.

[83] Abdul Rahman Kreidieh et al. “Inter-level cooperation in hierarchical reinforcement
learning”. In: arXiv preprint arXiv:1912.02368 (2019).

[84] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with
deep convolutional neural networks”. In: Advances in neural information processing
systems 25 (2012).

[85] Fabian Kröger. “Automated driving in its social, historical and cultural contexts”. In:
Autonomous Driving. Springer, 2016, pp. 41–68.

[86] Tejas D Kulkarni et al. “Hierarchical deep reinforcement learning: Integrating temporal
abstraction and intrinsic motivation”. In: Advances in neural information processing
systems. 2016, pp. 3675–3683.

[87] Siddharth Krishna Kumar. “On weight initialization in deep neural networks”. In:
arXiv preprint arXiv:1704.08863 (2017).

[88] Jorge A Laval and Carlos F Daganzo. “Lane-changing in traffic streams”. In: Trans-
portation Research Part B: Methodological 40.3 (2006), pp. 251–264.

[89] Ludovic Leclercq, Jorge A Laval, and Nicolas Chiabaut. “Capacity drops at merges: An
endogenous model”. In: Procedia-Social and Behavioral Sciences 17 (2011), pp. 12–26.

[90] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: nature 521.7553
(2015), p. 436.

[91] Donghan Lee et al. “Convolution neural network-based lane change intention prediction
of surrounding vehicles for ACC”. In: 2017 IEEE 20th International Conference on
Intelligent Transportation Systems (ITSC). IEEE. 2017, pp. 1–6.

BIBLIOGRAPHY 121

[92] Jonathan W Lee et al. “Integrated Framework of Vehicle Dynamics, Instabilities,
Energy Models, and Sparse Flow Smoothing Controllers”. In: Proceedings of the
Workshop on Data-Driven and Intelligent Cyber-Physical Systems. 2021, pp. 41–47.

[93] Sergey Levine and Vladlen Koltun. “Guided policy search”. In: International conference
on machine learning. PMLR. 2013, pp. 1–9.

[94] Sergey Levine et al. “End-to-end training of deep visuomotor policies”. In: The Journal
of Machine Learning Research 17.1 (2016), pp. 1334–1373.

[95] Andrew Levy, Robert Platt, and Kate Saenko. “Hierarchical actor-critic”. In: arXiv
preprint arXiv:1712.00948 (2017).

[96] Li Li, Yisheng Lv, and Fei-Yue Wang. “Traffic signal timing via deep reinforcement
learning”. In: IEEE/CAA Journal of Automatica Sinica 3.3 (2016), pp. 247–254.

[97] Shengbo Eben Li et al. “Dynamical modeling and distributed control of connected and
automated vehicles: Challenges and opportunities”. In: IEEE Intelligent Transportation
Systems Magazine 9.3 (2017), pp. 46–58.

[98] Zhibin Li et al. “Reinforcement learning-based variable speed limit control strategy to
reduce traffic congestion at freeway recurrent bottlenecks”. In: IEEE Transactions on
Intelligent Transportation Systems 18.11 (2017), pp. 3204–3217.

[99] Eric Liang et al. “Ray RLLib: A Composable and Scalable Reinforcement Learning
Library”. In: arXiv preprint arXiv:1712.09381 (2017).

[100] Nathan Lichtlé et al. “Deploying Traffic Smoothing Cruise Controllers Learned from
Trajectory Data”. In: 2022 International Conference on Robotics and Automation
(ICRA). IEEE. 2022, pp. 2884–2890.

[101] Nathan Lichtlé et al. “Fuel Consumption Reduction of Multi-Lane Road Networks
using Decentralized Mixed-Autonomy Control”. In: 2021 IEEE International Intelligent
Transportation Systems Conference (ITSC). IEEE. 2021, pp. 2068–2073.

[102] Michael James Lighthill and Gerald Beresford Whitham. “On kinematic waves II. A
theory of traffic flow on long crowded roads”. In: Proceedings of the Royal Society of
London. Series A. Mathematical and Physical Sciences 229.1178 (1955), pp. 317–345.

[103] Timothy P Lillicrap et al. “Continuous control with deep reinforcement learning”. In:
arXiv preprint arXiv:1509.02971 (2015).

[104] Minghuan Liu, Menghui Zhu, and Weinan Zhang. “Goal-Conditioned Reinforcement
Learning: Problems and Solutions”. In: arXiv preprint arXiv:2201.08299 (2022).

[105] Ryan Lowe et al. “Multi-agent actor-critic for mixed cooperative-competitive envi-
ronments”. In: Advances in Neural Information Processing Systems. 2017, pp. 6379–
6390.

[106] Xiao-Yun Lu, J Karl Hedrick, and Michael Drew. “ACC/CACC-control design, stability
and robust performance”. In: Proceedings of the 2002 American Control Conference
(IEEE Cat. No. CH37301). Vol. 6. IEEE. 2002, pp. 4327–4332.

BIBLIOGRAPHY 122

[107] Horia Mania, Aurelia Guy, and Benjamin Recht. “Simple random search provides a
competitive approach to reinforcement learning”. In: arXiv preprint arXiv:1803.07055
(2018).

[108] Roland Marchand. “The Designers Go to the Fair II: Norman Bel Geddes, The General
Motors" Futurama," and the Visit to the Factory Transformed”. In: Design Issues 8.2
(1992), pp. 23–40.

[109] Paula Marchesini and Wilhelmina Adriana Maria Weijermars. The relationship between
road safety and congestion on motorways. SWOV Institute for Road Safety Research
Leidschendam, Netherlands, 2010.

[110] Vicente Milanés and Steven E Shladover. “Modeling cooperative and autonomous
adaptive cruise control dynamic responses using experimental data”. In: Transportation
Research Part C: Emerging Technologies 48 (2014), pp. 285–300.

[111] Vicente Milanés et al. “Cooperative adaptive cruise control in real traffic situations”.
In: IEEE Transactions on intelligent transportation systems 15.1 (2013), pp. 296–305.

[112] Branka Mirchevska et al. “High-level decision making for safe and reasonable au-
tonomous lane changing using reinforcement learning”. In: 2018 21st International
Conference on Intelligent Transportation Systems (ITSC). IEEE. 2018, pp. 2156–2162.

[113] Namiko Mitarai and Hiizu Nakanishi. “Convective instability and structure formation
in traffic flow”. In: Journal of the Physical Society of Japan 69.11 (2000), pp. 3752–
3761.

[114] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”. In:
Nature 518.7540 (2015), p. 529.

[115] Igor Mordatch and Pieter Abbeel. “Emergence of grounded compositional language in
multi-agent populations”. In: Thirty-second AAAI conference on artificial intelligence.
2018.

[116] Nassim Motamedidehkordi, Martin Margreiter, and Thomas Benz. “Shockwave sup-
pression by vehicle-to-vehicle communication”. In: Transportation research procedia 15
(2016), pp. 471–482.

[117] Ofir Nachum et al. “Data-efficient hierarchical reinforcement learning”. In: Advances
in Neural Information Processing Systems. 2018, pp. 3303–3313.

[118] Ofir Nachum et al. “Near-Optimal Representation Learning for Hierarchical Rein-
forcement Learning”. In: CoRR abs/1810.01257 (2018). arXiv: 1810.01257. url:
http://arxiv.org/abs/1810.01257.

[119] Ofir Nachum et al. “Near-optimal representation learning for hierarchical reinforcement
learning”. In: arXiv preprint arXiv:1810.01257 (2018).

[120] Soroush Nasiriany et al. “Planning with goal-conditioned policies”. In: arXiv preprint
arXiv:1911.08453 (2019).

https://arxiv.org/abs/1810.01257
http://arxiv.org/abs/1810.01257

BIBLIOGRAPHY 123

[121] Gordon Frank Newell. “A simplified car-following theory: a lower order model”. In:
Transportation Research Part B: Methodological 36.3 (2002), pp. 195–205.

[122] Gábor Orosz and Gábor Stépán. “Subcritical Hopf bifurcations in a car-following
model with reaction-time delay”. In: Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences 462.2073 (2006), pp. 2643–2670.

[123] Gábor Orosz, R Eddie Wilson, and Gábor Stépán. Traffic jams: dynamics and control.
2010.

[124] Gábor Orosz et al. “Exciting traffic jams: Nonlinear phenomena behind traffic jam
formation on highways”. In: Physical review E 80.4 (2009), p. 046205.

[125] Brian Paden et al. “A survey of motion planning and control techniques for self-driving
urban vehicles”. In: IEEE Transactions on intelligent vehicles 1.1 (2016), pp. 33–55.

[126] Sinno Jialin Pan and Qiang Yang. “A survey on transfer learning”. In: IEEE Transac-
tions on knowledge and data engineering 22.10 (2010), pp. 1345–1359.

[127] Markos Papageorgiou, Habib Hadj-Salem, Jean-Marc Blosseville, et al. “ALINEA: A
local feedback control law for on-ramp metering”. In: Transportation Research Record
1320.1 (1991), pp. 58–67.

[128] Markos Papageorgiou and Apostolos Kotsialos. “Freeway ramp metering: An overview”.
In: IEEE transactions on intelligent transportation systems 3.4 (2002), pp. 271–281.

[129] Harold J Payne. “Model of freeway traffic and control”. In: Mathematical Model of
Public System (1971), pp. 51–61.

[130] Xue Bin Peng et al. “DeepLoco: Dynamic Locomotion Skills Using Hierarchical Deep
Reinforcement Learning”. In: ACM Transactions on Graphics (Proc. SIGGRAPH
2017) 36.4 (2017).

[131] Lerrel Pinto et al. “Robust adversarial reinforcement learning”. In: International
Conference on Machine Learning. PMLR. 2017, pp. 2817–2826.

[132] Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Tech. rep.
Carnegie-Mellon University, 1989.

[133] Charles R Qi et al. “Pointnet: Deep learning on point sets for 3d classification and
segmentation”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2017, pp. 652–660.

[134] Joseph Redmon et al. “You only look once: Unified, real-time object detection”. In:
Proceedings of the IEEE conference on computer vision and pattern recognition. 2016,
pp. 779–788.

[135] Paul I Richards. “Shock waves on the highway”. In: Operations research 4.1 (1956),
pp. 42–51.

[136] Stéphane Ross and Drew Bagnell. “Efficient reductions for imitation learning”. In:
Proceedings of the thirteenth international conference on artificial intelligence and
statistics. JMLR Workshop and Conference Proceedings. 2010, pp. 661–668.

BIBLIOGRAPHY 124

[137] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. “A reduction of imitation learning
and structured prediction to no-regret online learning”. In: Proceedings of the fourteenth
international conference on artificial intelligence and statistics. JMLR Workshop and
Conference Proceedings. 2011, pp. 627–635.

[138] Meead Saberi and Hani S Mahmassani. “Empirical characterization and interpretation
of hysteresis and capacity drop phenomena in freeway networks”. In: Transporta-
tion Research Record: Journal of the Transportation Research Board, Transportation
Research Board of the National Academies, Washington, DC (2013).

[139] Tim Salimans et al. “Evolution strategies as a scalable alternative to reinforcement
learning”. In: arXiv preprint arXiv:1703.03864 (2017).

[140] Tim Salzmann et al. “Trajectron++: Dynamically-feasible trajectory forecasting with
heterogeneous data”. In: European Conference on Computer Vision. Springer. 2020,
pp. 683–700.

[141] Wouter J Schakel, Victor L Knoop, and Bart van Arem. “Integrated lane change
model with relaxation and synchronization”. In: Transportation Research Record 2316.1
(2012), pp. 47–57.

[142] Tom Schaul et al. “Universal value function approximators”. In: International conference
on machine learning. 2015, pp. 1312–1320.

[143] Oliver Scheel et al. “Attention-based lane change prediction”. In: 2019 International
Conference on Robotics and Automation (ICRA). IEEE. 2019, pp. 8655–8661.

[144] Thorsten Schmidt-Dumont and Jan H van Vuuren. “Decentralised reinforcement
learning for ramp metering and variable speed limits on highways”. In: IEEE TRANS-
ACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 14.8 (2015), p. 1.

[145] Julian Schrittwieser et al. “Mastering atari, go, chess and shogi by planning with a
learned model”. In: Nature 588.7839 (2020), pp. 604–609.

[146] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv preprint
arXiv:1707.06347 (2017).

[147] John Schulman et al. “Trust region policy optimization”. In: International conference
on machine learning. PMLR. 2015, pp. 1889–1897.

[148] Toru Seo et al. “Traffic state estimation on highway: A comprehensive survey”. In:
Annual reviews in control 43 (2017), pp. 128–151.

[149] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. “Safe, multi-agent,
reinforcement learning for autonomous driving”. In: arXiv preprint arXiv:1610.03295
(2016).

[150] David Silver et al. “Deterministic policy gradient algorithms”. In: ICML. 2014.

[151] David Silver et al. “Mastering the game of Go with deep neural networks and tree
search”. In: nature 529.7587 (2016), pp. 484–489.

BIBLIOGRAPHY 125

[152] David Silver et al. “Mastering the game of go without human knowledge”. In: Nature
550.7676 (2017), p. 354.

[153] Silvia Siri et al. “Freeway traffic control: A survey”. In: Automatica 130 (2021),
p. 109655.

[154] Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks from
overfitting”. In: The journal of machine learning research 15.1 (2014), pp. 1929–1958.

[155] Raphael E Stern et al. “Dissipation of stop-and-go waves via control of autonomous ve-
hicles: Field experiments”. In: Transportation Research Part C: Emerging Technologies
89 (2018), pp. 205–221.

[156] Yuki Sugiyama et al. “Traffic jams without bottlenecks—experimental evidence for
the physical mechanism of the formation of a jam”. In: New journal of physics 10.3
(2008), p. 033001.

[157] Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. “Learning Multiagent Commu-
nication with Backpropagation”. In: CoRR abs/1605.07736 (2016). arXiv: 1605.07736.
url: http://arxiv.org/abs/1605.07736.

[158] Sainbayar Sukhbaatar et al. “Learning goal embeddings via self-play for hierarchical
reinforcement learning”. In: arXiv preprint arXiv:1811.09083 (2018).

[159] Liting Sun et al. “A fast integrated planning and control framework for autonomous
driving via imitation learning”. In: Dynamic Systems and Control Conference. Vol. 51913.
American Society of Mechanical Engineers. 2018, V003T37A012.

[160] Richard S Sutton. “Dyna, an integrated architecture for learning, planning, and
reacting”. In: ACM Sigart Bulletin 2.4 (1991), pp. 160–163.

[161] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

[162] Richard S Sutton, Doina Precup, and Satinder Singh. “Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement learning”. In: Artificial
intelligence 112.1-2 (1999), pp. 181–211.

[163] Richard S Sutton et al. “Policy gradient methods for reinforcement learning with
function approximation”. In: Advances in neural information processing systems. 2000,
pp. 1057–1063.

[164] Darbha Swaroop and J Karl Hedrick. “String stability of interconnected systems”. In:
IEEE transactions on automatic control 41.3 (1996), pp. 349–357.

[165] Eckhard Szimba and Martin Hartmann. “Assessing travel time savings and user benefits
of automated driving–A case study for a commuting relation”. In: Transport Policy 98
(2020), pp. 229–237.

[166] Alireza Talebpour and Hani S Mahmassani. “Influence of connected and autonomous
vehicles on traffic flow stability and throughput”. In: Transportation Research Part C:
Emerging Technologies 71 (2016), pp. 143–163.

https://arxiv.org/abs/1605.07736
http://arxiv.org/abs/1605.07736

BIBLIOGRAPHY 126

[167] Alireza Talebpour, Hani S Mahmassani, and Samer H Hamdar. “Modeling lane-
changing behavior in a connected environment: A game theory approach”. In: Trans-
portation Research Procedia 7 (2015), pp. 420–440.

[168] Ardi Tampuu et al. “Multiagent cooperation and competition with deep reinforcement
learning”. In: PloS one 12.4 (2017), e0172395.

[169] Haoran Tang et al. “# exploration: A study of count-based exploration for deep
reinforcement learning”. In: Advances in neural information processing systems 30
(2017).

[170] Matthew E Taylor and Peter Stone. “Transfer learning for reinforcement learning
domains: A survey”. In: Journal of Machine Learning Research 10.Jul (2009), pp. 1633–
1685.

[171] Charles Thorpe et al. “Vision and navigation for the Carnegie-Mellon Navlab”. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 10.3 (1988), pp. 362–
373.

[172] Josh Tobin et al. “Domain randomization for transferring deep neural networks
from simulation to the real world”. In: 2017 IEEE/RSJ international conference on
intelligent robots and systems (IROS). IEEE. 2017, pp. 23–30.

[173] Emanuel Todorov, Tom Erez, and Yuval Tassa. “Mujoco: A physics engine for model-
based control”. In: 2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems. IEEE. 2012, pp. 5026–5033.

[174] Martin Treiber, Ansgar Hennecke, and Dirk Helbing. “Congested traffic states in
empirical observations and microscopic simulations”. In: Physical review E 62.2 (2000),
p. 1805.

[175] Martin Treiber and Arne Kesting. “Evidence of convective instability in congested
traffic flow: A systematic empirical and theoretical investigation”. In: Transportation
Research Part B: Methodological 45.9 (2011), pp. 1362–1377.

[176] Martin Treiber and Arne Kesting. “The Intelligent Driver Model with stochasticity–New
insights into traffic flow oscillations”. In: Transportation Research Part B: Methodolog-
ical (2017).

[177] Martin Treiber and Arne Kesting. “Traffic flow dynamics”. In: Traffic Flow Dynamics:
Data, Models and Simulation, Springer-Verlag Berlin Heidelberg (2013).

[178] Martin Treiber and Arne Kesting. “Trajectory and Floating-Car Data”. In: Traffic
Flow Dynamics. Springer, 2013, pp. 7–12.

[179] Martin Treiber, Arne Kesting, and Christian Thiemann. “How much does traffic
congestion increase fuel consumption and emissions? Applying a fuel consumption
model to the NGSIM trajectory data”. In: 87th Annual Meeting of the Transportation
Research Board, Washington, DC. 2008, p. 71.

BIBLIOGRAPHY 127

[180] Kathryn Tunyasuvunakool et al. “Highly accurate protein structure prediction for the
human proteome”. In: Nature 596.7873 (2021), pp. 590–596.

[181] Ardalan Vahidi and Antonio Sciarretta. “Energy saving potentials of connected and
automated vehicles”. In: Transportation Research Part C: Emerging Technologies 95
(2018), pp. 822–843.

[182] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural information
processing systems 30 (2017).

[183] Alexander Sasha Vezhnevets et al. “Feudal networks for hierarchical reinforcement
learning”. In: arXiv preprint arXiv:1703.01161 (2017).

[184] Eugene Vinitsky et al. “Benchmarks for reinforcement learning in mixed-autonomy
traffic”. In: Conference on robot learning. PMLR. 2018, pp. 399–409.

[185] Eugene Vinitsky et al. “Optimizing Mixed Autonomy Traffic Flow With Decentralized
Autonomous Vehicles and Multi-Agent RL”. In: arXiv preprint arXiv:2011.00120
(2020).

[186] Kay W Axhausen, Andreas Horni, and Kai Nagel. The multi-agent transport simulation
MATSim. Ubiquity Press, 2016.

[187] Zia Wadud, Don MacKenzie, and Paul Leiby. “Help or hindrance? The travel, energy
and carbon impacts of highly automated vehicles”. In: Transportation Research Part
A: Policy and Practice 86 (2016), pp. 1–18.

[188] Jane X Wang et al. “Evolving Intrinsic Motivations for Altruistic Behavior”. In: Pro-
ceedings of the 18th International Conference on Autonomous Agents and MultiAgent
Systems. 2019, pp. 683–692.

[189] Jiawei Wang et al. “Leading cruise control in mixed traffic flow: System modeling, con-
trollability, and string stability”. In: IEEE Transactions on Intelligent Transportation
Systems (2021).

[190] Jun Wang et al. “Safety of autonomous vehicles”. In: Journal of advanced transportation
2020 (2020).

[191] Meng Wang et al. “Game theoretic approach for predictive lane-changing and car-
following control”. In: Transportation Research Part C: Emerging Technologies 58
(2015), pp. 73–92.

[192] Pin Wang and Ching-Yao Chan. “Formulation of deep reinforcement learning architec-
ture toward autonomous driving for on-ramp merge”. In: 2017 IEEE 20th International
Conference on Intelligent Transportation Systems (ITSC). IEEE. 2017, pp. 1–6.

[193] Pin Wang, Ching-Yao Chan, and Arnaud de La Fortelle. “A reinforcement learning
based approach for automated lane change maneuvers”. In: 2018 IEEE Intelligent
Vehicles Symposium (IV). IEEE. 2018, pp. 1379–1384.

BIBLIOGRAPHY 128

[194] Jonathan A Ward and R Eddie Wilson. “Criteria for convective versus absolute
string instability in car-following models”. In: Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences 467.2132 (2011), pp. 2185–2208.

[195] Christopher JCH Watkins and Peter Dayan. “Q-learning”. In: Machine learning 8.3-4
(1992), pp. 279–292.

[196] Junqing Wei et al. “A behavioral planning framework for autonomous driving”. In:
2014 IEEE Intelligent Vehicles Symposium Proceedings. IEEE. 2014, pp. 458–464.

[197] Michael Weinberg and Jeffrey S Rosenschein. “Best-response multiagent learning in non-
stationary environments”. In: Proceedings of the Third International Joint Conference
on Autonomous Agents and Multiagent Systems-Volume 2. IEEE Computer Society.
2004, pp. 506–513.

[198] MA Wiering. “Multi-agent reinforcement learning for traffic light control”. In: Machine
Learning: Proceedings of the Seventeenth International Conference (ICML’2000). 2000,
pp. 1151–1158.

[199] Ronald J Williams. “Simple statistical gradient-following algorithms for connectionist
reinforcement learning”. In: Machine learning 8.3-4 (1992), pp. 229–256.

[200] Bohan Wu, Jayesh K Gupta, and Mykel Kochenderfer. “Model primitives for hierarchi-
cal lifelong reinforcement learning”. In: Autonomous Agents and Multi-Agent Systems
34.1 (2020), pp. 1–38.

[201] Cathy Wu et al. “Emergent behaviors in mixed-autonomy traffic”. In: Conference on
Robot Learning. PMLR. 2017, pp. 398–407.

[202] Cathy Wu et al. “Flow: A Modular Learning Framework for Mixed Autonomy Traffic”.
In: IEEE Transactions on Robotics (2021).

[203] Cathy Wu et al. “Variance reduction for policy gradient with action-dependent factor-
ized baselines”. In: arXiv preprint arXiv:1803.07246 (2018).

[204] Zonghan Wu et al. “A comprehensive survey on graph neural networks”. In: IEEE
transactions on neural networks and learning systems 32.1 (2020), pp. 4–24.

[205] Lingyun Xiao and Feng Gao. “A comprehensive review of the development of adaptive
cruise control systems”. In: Vehicle system dynamics 48.10 (2010), pp. 1167–1192.

[206] Yang Xing et al. “An ensemble deep learning approach for driver lane change intention
inference”. In: Transportation Research Part C: Emerging Technologies 115 (2020),
p. 102615.

[207] H Michael Zhang. “A non-equilibrium traffic model devoid of gas-like behavior”. In:
Transportation Research Part B: Methodological 36.3 (2002), pp. 275–290.

[208] Dongbin Zhao, Bin Wang, and Derong Liu. “A supervised actor–critic approach for
adaptive cruise control”. In: Soft Computing 17.11 (2013), pp. 2089–2099.

BIBLIOGRAPHY 129

[209] Hao Zhou and Jorge Laval. “Longitudinal motion planning for autonomous vehicles
and its impact on congestion: A survey”. In: arXiv preprint arXiv:1910.06070 (2019).

[210] Yin Zhou and Oncel Tuzel. “Voxelnet: End-to-end learning for point cloud based 3d
object detection”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2018, pp. 4490–4499.

[211] Zeyu Zhu and Huijing Zhao. “A survey of deep rl and il for autonomous driving policy
learning”. In: IEEE Transactions on Intelligent Transportation Systems (2021).

	Introduction
	Early developments in vehicle autonomy
	Machine learning in automated driving
	Thesis overview and contributions

	Review of Machine Learning Frameworks
	Markov decision processes
	Reinforcement learning
	Imitation learning

	Learning Traffic Regulation Policies in Simulation
	Microscopic traffic flow models
	Reinforcement learning in mixed-autonomy traffic
	Benchmarks for RL in mixed-autonomy traffic
	Chapter Summary

	Learning Across Long Time Horizons
	Inter-Level Cooperation in Hierarchical Reinforcement Learning
	Introduction
	Related work
	Preliminaries
	Cooperative hierarchical reinforcement learning
	Experiments
	Chapter Summary
	Derivation of cooperative manager gradients
	Cooperative HRL as goal-constrained optimization
	Environment details
	Algorithm details

	Exploiting Expert Demonstrations
	Learning Energy-Efficient Driving Behaviors by Imitating Experts
	Introduction
	Related Work
	Experimental Setup
	Numerical Results
	Chapter Summary

	Data-efficient Learning for Cooperative Driving through Expert Relabeling
	Introduction
	Preliminaries
	Problem statement
	Expert control mechanism
	Experimental Setup
	Numerical Results
	Chapter Summary
	Appendix

	 Generalizing to Complex-to-model Dynamics
	Dissipating Stop-and-go Waves in Closed and Open Networks via Deep Reinforcement Learning
	Introduction
	Preliminaries
	Experimental Setup
	Numerical Results
	Chapter Summary

	 Final Remarks
	Conclusion and Future Prospects
	Bibliography

