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Jérôme Thai1 and Rim Hariss2 and Alexandre Bayen3

Abstract— A common behavioral assumption in the modeling
of traffic networks is the user equilibrium. Since traffic volumes,
resulting from the rational behavior of agents, are easily but
sparsely observable, and delay functions are not directly ob-
servable, we present a mathematical program with equilibrium
constraint (MPEC) framework to impute the delay functions
and centrally control the system from partial observations of
equilibria. We also develop a novel method for solving MPECs
using multi-convex optimization. Our block descent method has
an intuitive interpretation, and numerical experiments demon-
strate its accuracy for structural estimation, and highlight the
importance of sensor placement for toll pricing.

I. INTRODUCTION

Wardrop equilibrium, or user equilibrium (UE), is used as
a common solution concept in the study of traffic models,
typically in transportation and telecommunications networks.
It assumes that each agent has access to the delay function
on each arc and chooses the shortest path from origin to
destination [34]. In reality, delay functions are not known
and are often difficult to estimate. But traffic flows are
easily measurable. For example, they are the most common
types of data on road networks, obtained from loop detectors
and radars. Hence previous work has studied the inverse
problem, which aims at estimating the delay functions given
observations of (approximate) equilibria.

In practice, data often suffers from missing values due to
mistakes in data collection, or limitation from experimental
design [23]. For example, there is often a shortage of
information in transportation networks due to the cost of
deploying sensors in large metropolitan areas. With limited
infrastructure, an optimal placement of the sensors is then
crucial for the accurate estimation of the delay functions
of the underlying traffic model. This problem is particularly
important if a leader wants to “centrally control” the system
to achieve a desirable objective. For instance, inaccurate
delay function estimates can lead to toll strategies [6], [19]
for which the induced response is far from the system-
optimum (SO), or even worse than the UE solution of the
uncontrolled system problem.

Hence the goal of the article is threefold. In the first part,
we are interested in the following (more difficult) inverse
equilibrium problem: given partially-observed equilibria,
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how can we estimate the delay functions and so impute
the missing data? The estimation problem is posed as a
Mathematical Program with Variational Inequality (MPVI)
constraint. In the second part, we develop a novel and
efficient technique to solve Mathematical Programs with
Equilibrium constraints (MPEC) in which constraints are
defined as a Variational Inequality (VI), and we apply the
proposed methodology for the estimation and control of
traffic networks in equilibrium. In the third part, we show that
a good sensor placement is essential to design toll strategies
that minimize the social cost of the system.

A. Literature review on inverse problems

Our work contributes to various disciplines. The problem
of estimating the parameters of the underlying process based
on available observations has been addressed before in many
fields. Iyengar and Kang [20] and Keshavarz, Wang and
Boyd [22] consider the problem of imputing the objective
of a parametric optimization problem from nearly optimal
points. Inverse reinforcement learning in robotics has been
studied by Ng and Russell [26] and Abbeel and Ng [1]
which consists in learning the reward function based on
information about the optimal policy. Burton et al. [11]
studied the inverse shortest path problem of imputing arc
weights from observations of shortest path costs. In control,
Boyd et al. focused on recovering the parameters of the
Lyapunov function given a linear control policy [9, §10.6].
The difference between our work and [20], [22] is that we
focus on the context of VI, which combines generality and
computational efficiency; see [18], [17] for details on VI.

In econometrics, techniques for estimating the parameters
of models given equilibria are generally referred to as
structural estimation. Many of them focused on imputing
demand and production functions [30], [2], [4]. Recent
work of Bertsimas et al. [8] focused on equilibrium models
described by a VI and studied the inverse VI problem from
full observations of (approximate) equilibria. One difference
between our approach and [8] is that we allow partial ob-
servations through a linear observation model. Furthermore,
the imputation problem is posed as a MPEC in which the
parameters of the model are selected such that the induced
response minimizes the observation residual; see [24] for an
overview on the MPEC.

B. Related work in VI and convex optimization

Besides the novel use of the MPEC for estimation, our
work includes key contributions to the MPEC literature: (i)
the reformulation of the MPEC as a penalized single-level

2015 American Control Conference
Palmer House Hilton
July 1-3, 2015. Chicago, IL, USA

978-1-4799-8684-2/$31.00 ©2015 AACC 689



optimization program via LP duality, (ii) sufficient conditions
for the multi-convex structure (as defined in [35]) of the
reformulation, (iii) a novel algorithmic approach exploiting
the structure of the reformulation. Although the application
of LP duality to VI is common, e.g. for toll pricing [6],
for solving the VI problem [3], and for solving inverse VI
problems [8], our analysis extends the works outlined above
to propose a unified framework for the study, estimation, and
control of models described as a VI.

Convex optimization is also closely related to VI; see
review from Scutari et al. [32]. When the map that describes
the VI can be expressed as the gradient of some convex
potential function, the VI problem coincides with the convex
optimization problem. Under some milder assumptions, VI
also coincides with coupled convex optimization problems,
which arise in the study of Nash equilibria. The use of
iterative algorithms such as the Gauss-Seidel scheme [16,
§5], or more specifically coordinate descent methods [35], is
a natural approach to solve such problems. Under different
conditions, Aghassi et al. [3] show that the reformulation
of the VI via LP duality is convex. Building on these
previous works, we decompose our single-level formulation
into blocks of variables and we define sufficient conditions
for which the problem is convex in each block. We also give
an intuitive interpretation of the proposed decomposition, and
apply block coordinate descent to solve estimation and toll
pricing models on the highway network near Los Angeles.

II. TRAFFIC EQUILIBRIA AND VARIATIONAL INEQUALITY

In the traffic equilibrium problem we are given a directed
network (N ,A) with N being the set of nodes indexed by
i and A being the set of directed arcs a = (i, j) ∈ N ×N .
Agents travelling from an origin s ∈ N to a destination
t ∈ N are associated to an origin-destination (OD) pair
(s, t) called a commodity. We are given a set C ⊆ N × N
of commodities and for each k = (sk, tk) ∈ C, a flow of
demand rate dk must be routed from sk to tk. The k-th
commodity flow vector, denoted xk = (xka)a∈A, describes the
flow in commodity k on each arc. Then a commodity flow
vector xk ∈ RA+ is feasible if it satisfies the flow conservation
at every node i ∈ N :

∑
j:(j,i)∈A

xk(j,i) −
∑

j:(i,j)∈A

xk(i,j) =


−dk if i = sk

dk if i = tk

0 otherwise
(1)

With N ∈ {−1, 0, 1}|N |×|A| the node-arc incidence matrix
of the network and bk ∈ R|N | the demand vector associated
to commodity k with entries such that bksk = −dk, bktk = dk,
and bki = 0, ∀ i 6= sk, tk, the system of linear equations (1)
can be cast in matrix format: Nxk = bk, xk � 0, ∀ k ∈ C. If
we let x := (xk)k∈C ∈ R|C|·|A| and b := (bk)k∈C ∈ R|C|·|N |
be the overall vectors of commodity flows and demand vec-
tors, and A = diag(N, · · · ,N) ∈ {−1, 0, 1}|C|·|N |×|C|·|A|
the block-diagonal matrix with N at each of its |C| blocks,
the system of flow conservation equations can be written in
general format: Ax = b, x � 0.

We define the aggregate flow vector v =
∑
k x

k as the
sum of all commodity flows, with entries va =

∑
k x

k
a being

the aggregate flow on each arc. We are also given continuous
positive nondecreasing delay functions sa : RA+ → R, ∀ a ∈
A such that the travel time on arc a for an aggregate flow v is
sa(v). Each delay sa can include additional travel costs such
as the toll incurred on arc a. The functions sa are also called
latency functions in algorithmic game theory [27]. Beckmann
et al. [5] considered the separable case in which the delay
sa(·) only depends on the aggregate flow va on arc a, and
proved UE commodity flows always exist and are optimal
solutions of the convex program:

min
x

z(Zx) s.t. Ax = b, x � 0 (2)

where Z ∈ {0, 1}|A|×|C|·|A| maps x to v, i.e. v = Zx =∑
k xk, and f : RA+ → R is the Beckmann function on v:

z(v) =
∑
a∈A

∫ va

0

sa(u)du (3)

This is known as the arc-flow or link-flow formulation in
traffic assignment [28]. A common alternative is the path-
flow formulation in which we enumerate the set Pk of all
simple paths from sk to tk for k ∈ C and let P := ∪k∈CPk.
A path-flow vector φ := (φp)p∈P describing the flow on
each path is feasible if φp ≥ 0, ∀ p ∈ P and

∑
p∈Pk

φp =

dk, ∀ k ∈ C. Let P ∈ {0, 1}|A|×|P| and U ∈ {0, 1}|C|×|R| be
the arc-route and OD-route incidence matrices respectively,
then the path-flow equilibria are optimal solutions of:

min
φ
z(Pφ) s.t. Uφ = d, φ � 0 (4)

where the aggregate flow is given by v = Pφ. In game
theory, (4) is known as a potential game, the map φ 7→
z(Pφ) is called a potential function, and the equilibria are
given by the Karush-Kuhn-Tucker (KKT) conditions [31].

From our assumptions on sa, (2) and (4) have same
solutions in terms of v [7, §8.6], and the Beckmann function
z is convex [5]. Hence (2) and (4) can be expressed as a
convex program, denoted OP(K, f ):

min f(x) s.t. x ∈ K (5)

where K ⊆ Rn is a convex set, f : K → R a convex function,
and n the dimension of the problem. From the optimality
conditions in convex optimization [10, §4.2.3]:
Theorem 1. With f differentiable and ∇f its gradient, a
feasible point x? ∈ K solves OP(K, f ) if and only if

∇f(x?)T (u− x?) ≥ 0, ∀u ∈ K (6)

The VI problem can be seen as a generalization of (6) where
∇f is replaced by a general map F . Given a set K ⊆ Rn
and a map F : K → Rn, the VI problem, denoted VI(K, F ),
consists in finding x? ∈ K such that:

F (x?)T (u− x?) ≥ 0, ∀u ∈ K (7)

Let S : RA+ → RA+ be the overall delay map such that
its entries S := (sa)a∈A are the arc delay functions of
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the aggregate flow v ∈ RA+ . Since S is the gradient of
the Beckmann function, i.e. ∇z = S, (2) is equivalent to
VI(K, F ) where the pair (K, F ) is given by:

K = {x |Ax = b, x � 0}
F (x) = ZTS(Zx)

(8)

This is another important characterization of traffic equilib-
ria; see Dafermos [13]. We conclude the section with the
notion of system-optimiality (SO), where each agent tries to
minimize the total delay (9); see [28, §2.4]. SO flow solutions
are obtained by solving (2) or (4) where the Beckmann
function z is substituted for the total delay function c:

c(v) = vTS(v) =
∑
a∈A

vasa(va) (9)

We note that xTF (x) = ST (Zx)Zx = c(Zx).

III. STRUCTURAL ESTIMATION WITH MISSING DATA

We consider the traffic equilibrium model described by
VI(K, F ) described by (8), with an unknown delay map S =
(sa)a∈A. We are given the matrices Z, A which encode the
geometry of the network, and a linear observation model
H on the aggregate flow v. For instance, in urban networks,
traffic sensors (such as loop detectors [12]) are usually placed
on a small arc subset Aobs ⊂ A, mostly along highways,
hence the associated observation matrix H ∈ {0, 1}|Aobs|×|A|

has entries such that for all a ∈ Aobs, Haa′ = 1 if a′ = a
and Haa′ = 0 if a′ 6= a.

Changes in the demand vector b affect the set of feasible
flows K, and induce different equilibria x on the network.
However, equilibria are not directly observable, we only
observe linear measurements z := Hv = HZx ∈ RAobs

.
Our goal is to impute the delay map S, or more broadly

the map F from a set of observations consisting of pairs
(bj , zj) of different demands bj and different aggregate flow
measurements zj for j = 1, · · · , N . The feasible sets Kj
associated to demands bj are given by:

Kj = {xj |Axj = bj , xj � 0} (10)

Following standard techniques, we assume for tractability
reasons, that F (·|θ) is restricted to be a finite dimensional
affine parametric model, i.e., there exists basis maps Fi, i =
0, · · · , d and a convex set Θ ⊆ Rd, such that:

F (·|θ) = F0 +

d∑
i=1

θiFi(·), ∀ θ ∈ Θ (11)

where the fixed part F0 of the parametric map is non null.
The shift F0 imposes a normalization on F (·|θ) that excludes
trivial solutions from Θ, e.g. null maps for which the entire
set K is solution to the VI problem.

We also want the basis Fi, i = 0, · · · , d and Θ to include
our prior knowledge on the delay function. For example, if
we know that the true map F is convex, then having Θ ⊆
Rd+ and Fi convex for all i is sufficient to ensure that the
parametric map F (·|θ) is convex.

Based on the measurements zj , one wants to find θ? ∈
Θ such that, for all j, there exists a solution xj of

VI(Kj , F (·|θ?)) that corresponds to the measurements, i.e.
HZxj = zj . Because of noisy data and approximations in
the parametric model, it is generally not possible to fit the
model perfectly to the data and one hopes to minimize the
measurement residuals ‖HZxj − zj‖, ∀ j. This leads to the
following MPEC, where H̃ := HZ

min
θ,v

1
2

∑
j ‖H̃xj − zj‖2

s.t. xj is a solution to VI(Kj , F (·|θ)), ∀ j
θ ∈ Θ

(12)

The MPEC formulation (12) is new to the best of our
knowledge. It aims at estimating general equilibrium models
with map F . In the case of traffic equilibrium, it is standard
to assume sa to be continuous, positive, nondecreasing, and
separable, i.e. only dependent on the aggregate flow va.
Hence S = (sa)a∈A can be expressed as the gradient of
the convex potential function z defined in (3). We include
the prior information on F with the following restrictions on
the choice of the parametric model defined in (11):

(i) Θ is a convex subset of Rd+.
(ii) ∀ i, ∃Si = (sia)a∈A : RA+ → RA+ continuous, positive,

nondecreasing, separable such that Fi(x) = ZTSi(Zx).

Hence, F (·|θ) can also be expressed as the gradient
of a parametric convex potential function f(·|θ) = f0 +∑d
i=1 θifi, where the basis functions are fi(Zx) = zi(Zx)

with zi(v) =
∑
a

∫ va
0
sia(u)du. By convexity, the VI

problems in (12) are equivalent to the convex programs
MP(Kj , f(·|θ)), and are also equivalent to the KKT opti-
mality conditions; we refer, e.g., to [18], [17] for details.

IV. CONSTRAINTS AS A VARIATIONAL INEQUALITY

The program (12) is a MPEC, which is a special class
of optimization problems in which a subset of the decision
variables satisfy an equilibrium condition. MPECs include
programs with VI constraint, bilevel programs in which the
lower level is an optimization process, and programs with
complementary constraints. They arise in many practical ap-
plications such as Stackelberg games in economics, network
design in transportation; see [24].

In the present work, we are interested in solving MPECs
in the context of VIs. We consider the general program over
the sets K ⊆ Rn and Θ ⊆ Rd, with parametric map F (·|θ) :
K → Rn, and upper-level objective g : Rn × Rd → R:

min
θ,x

g(x,θ) s.t.
x is a solution to VI(K, F (·|θ))
θ ∈ Θ

(13)

A mathematical program with VI constraint (MPVI) is a
particular case of semi-infinite programs, which are closely
related to bilevel programs [33]. When F (·|θ) is the gradient
of a potential f(·|θ), a related problem is:

min
θ,x

g(x,θ) s.t.
x is a solution to OP(K, f(·|θ))
θ ∈ Θ

(14)

Both (13) and (14) are difficult to solve because they are
in general not convex (so one only hopes to find a local
optimum) and it is required to solve a mathematical program
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just to check feasibility at one point. They are also NP-
hard problems even in the linear case [15]. Most of existing
approaches utilize the KKT conditions to develop highly
specialized algorithms; see [14] and references therein. Using
LP duality, we present a simple (approximate) single-level
reformulation of (13) with theoretical guarantees, when K is
polyhedral, with standard form:

K = {x ∈ Rn |Ax = b, x � 0} (15)

where A ∈ Rm×n and b ∈ Rm. We first consider the system:

F (x|θ)Tx = bTy
ATy � F (x|θ)

(16)

Lemma 1. Let θ ∈ Θ and K polyhedral given by (15). Then
a feasible point x? ∈ K solves VI(K, F (·|θ)) if and only if
there exists y? ∈ Rm such that (x?,y?) satisfies (16).

The lemma above is a consequence of LP duality. The
proof can be found in [3, Th. 1] and in another form in [17,
§1.2.1]. It leads to the single-level formulation of (13) below,
which has appeared in [19, §1.3] for toll pricing:
Theorem 2. Suppose K is polyhedral given by (15). Then
the program with VI constraint (13) is equivalent to:

min
θ,x,y

g(x,θ) s.t. F (x|θ)Tx = bTy
ATy � F (x|θ)
x ∈ K, θ ∈ Θ

(17)

To circumvent the disjunctive nature1 of the constraint
F (x|θ)Tx = bTy, and since models described by VIs only
approximate the reality, we define the notion of approximate
equilibria, when the equality F (x|θ)Tx = bTy holds
approximately in (16). More precisely, we define the residual:

r(θ,x,y) = F (x|θ)Tx− bTy (18)

More importantly, we have the following relation between
the residual r and the VI problem, due to [8, Th.2]:
Theorem 3. Let θ ∈ Θ, ε > 0 and suppose K is a polyhedron
given by (15). Then a point x̂ ∈ K satisfies:

F (x̂|θ)T (u− x̂) ≥ −ε, ∀u ∈ K (19)

if and only if there exists y with ATy � F (x̂|θ) such that:

r(θ, x̂,y) ≤ ε (20)

In addition, if F (·|θ) is the gradient of a convex potential
function f(·|θ), a point x̂ ∈ K satisfying (19) is such that:

f(x̂)−min
x∈K

f(x) ≤ ε (21)

Hence, a point x̂ ∈ K satisfying (19) or (20) is called an ε-
approximate solution to the VI problem, or an ε-approximate
equilibrium, and it can be seen as a generalization of the
notion of approximate solution to convex programs. This
leads us to consider the following Mathematical program

1The constraint F (x|θ)Tx = bTy prevents the usual constraint
qualifications in nonlinear programming to be satisfied, which reduces
considerably the applicability of standard nonlinear programming techniques
[21], [24]. Numerical issues have been observed in practice in [19].

with Dualized VI constraint (MDVI), which is a penalized
version of (17):

min
θ,x,y

g(x,θ) + λ r(θ,x,y)

s.t. ATy � F (x|θ)
x ∈ K, θ ∈ Θ

(22)

where λ > 0 is the weight on the residual r(θ,x,y) to
be minimized to obtain an approximate equilibrium. (22) is
a reformulation of the standard (13) (or MPEC) and is in
general not convex. However, (22) is easier to solve.

V. A MULTI-CONVEX APPROACH

Convex programs can be solved efficiently by high-quality
software packages such at MOSEK, SeDuMi, CPLEX etc.;
see [10]. This motivates us to cast (22) into a (multi)-convex
optimization framework.

As discussed in Section III, it is preferable to limit
ourselves to affine parametric model F (·|θ) (11), where the
parameters θ belong to a convex subset Θ ⊆ Rd. The
computational benefits of these restrictions become clear
in our latency inference approach, in which the objective
function in (12) is given by:2

g(x,θ) =
1

2
‖H̃x− z‖2 +

µ

2
‖θ‖2 (23)

where µ‖θ‖2 with µ > 0 is a regularization term. Then (22)
is convex with respect to block (θ,y), denoted MPθ|x:

min
θ,y

g(x,θ) + λ(F (x|θ)Tx− bTy)

s.t. ATy � F (x|θ)
θ ∈ Θ

(24)

In addition, if Θ is polyhedral and ‖ · ‖ is the Euclidian
norm, MPθ|x is a quadratic program. MPθ|x can be seen
as an inverse VI problem with an additional cost g, where
(θ,y) is computed such that the solution of VI(K, F (·|θ)) is
approximately x and such that θ minimizes some objective
g. With g = 0, the above program has been proposed in
[8] for the parametric estimation of the VI problem from
complete observations of equilibria.

The optimization in (x,y) is the program, denoted MPx|θ:

min
x,y

g(x,θ) + λ(F (x|θ)Tx− bTy)

s.t. ATy � F (x|θ)
x ∈ K

(25)

In the context of latency inference, where g is given by
(23), MPx|θ is convex if the maps x 7→ F (x|θ)Tx and
x 7→ F (x|θ) are respectively convex and concave over K.
The above program has been proposed in [3, Th. 2] as a
reformulation of the VI (without the additional cost g).

We summarize all the assumptions on F and g and give
sufficient conditions for the multi-convexity of (22):

(a) the map F (x|·) is concave over Θ for all x ∈ K.
(b) the function g(x, ·) is convex over Θ for all x ∈ K.
(c) the function g(·,θ) is convex over K for all θ ∈ Θ.

2We suppose we only observe one equilibrium for clarity, but the analysis
naturally extends to multiple partially-observed equilibria.
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(d) x 7→ F (x|θ)Tx is convex over K for all θ ∈ Θ.
(e) the map F (·|θ) is concave over K for all θ ∈ Θ.

Theorem 4. Suppose K is polyhedral given by (15) and Θ
is a convex subset of Rd. If conditions (a),(b) are satisfied,
then MPθ|x is a convex program. If conditions (c),(d),(e) are
satisfied, then MPx|θ is a convex program. If conditions (a)
to (e) are satisfied, then (22) is a multi-convex program with
blocks (x,y) and (θ,y).

This motivates us to solve (22) via block coordinate
descent (BCD) with blocks (θ,y) and (x,y). Similarly
to the so-called Expectation-Maximization algorithm, we
alternatively update the estimation or control parameters θ
via MPθ|x, and computes the induced response x via MPx|θ,
while minimizing the upper-level objective g. With the multi-
convex structure of the problem, each block can be solved
efficiently. Even though convergence of BCD is not well-
understood or requires restrictive assumptions, such as the
multi-convex structure [35], BCD works well in practice and
has been studied extensively [16], [35], [29].

BCD also solves a sequence of convex programs and it
is particular desirable in latency inference where the block
MPx|θ in the overall problem (26) is separable.

min λ
2 ‖θ‖

2 +
∑N
j=1{

µ
2 ‖H̃xj − zj‖2 + r(θ,xj ,yj)}

s.t. ATyj � F (xj |θ) j = 1, · · · , N
Axj = bj , xj � 0 j = 1, · · · , N
θ ∈ Θ

(26)
With θ fixed, the block (x,y) := ((xj)Nj=1, (y

j)Nj=1) is
separable into N blocks (xj ,yj), which can be updated in
parallel. The associated N programs are denoted MPxj |θ.

VI. DISCUSSION ON THE MULTI-CONVEXITY

Our approach favors the availability of convex program-
ming solvers instead of developing complex specialized
solvers, which has been the focus of the MPEC literature; see
[24], [14]. However, Theorem 4 seems to require restrictive
conditions. In the context of traffic equilibria, we argue that
in our latency inference approach, conditions (a) to (d) rely
on standard assumptions. In control (or design), we argue
that conditions (b),(c),(d) hold in general. Besides, Theorem
4 gives valuable insights on the applicability of convex
programming to MPECs via BCD.

In traffic equilibrium models, it is standard to have positive
nondecreasing convex delays sa, hence the map xTF (x) =
S(Zx)TZx is convex over K. Following our structural
estimation methodology, the affine parametric delay S(·|θ)
is restricted to be positive nondecreasing convex, which en-
sures the convexity of the affine parametric map xTF (x|θ).
Hence conditions (a),(d) are in general satisfied for latency
inference.

We also need conditions (b),(c) to be satisfied. They hold
in many applications, e.g. in latency inference with g given
by (23), in control where one wants to minimize the average
delay xTF (x) (which is convex in general) plus an additional
convex cost h depending on θ; see, e.g., [25], [19].

However, even though condition (a) holds for latency
inference, it may not hold for control or design. For example,
S(v|·) is not concave in network optimization [25], where
S(v|m) = (s(va/ma))a∈A is parametrized by the arc
capacities m = (ma)a∈A.

Unfortunately, condition (e) does not hold in general
because F (·|θ) is convex. Hence, the constraint ATy �
F (x|θ) in MPx|θ is in general not convex. A solution con-
sists in updating the block (x,y) by solving approximately
MPx|θ, with a few steps of, e.g., projected gradient descent,
or sequential LPs with piecewise linear approximation of the
concave constraint.

VII. LATENCY INFERENCE AND TOLL PRICING

Fig. 1. Top: Highway network of L.A. in morning rush hour on 2014-
06-12 at 9:14 AM from Google Maps; bottom: The network in UE with
the resulting delays under demand b4=1.2*b. The congested area is near
central L.A. since it has the higher concentration of employment.

We consider the highway network of the I-210 corridor
near Los Angeles. The roads’ characteristics (geometry,
capacity, free flow delay) are obtained from OpenStreetMaps.
The resulting network has 44 nodes and 122 directed arcs;
see Figure 1. The OD demands are based on data from
the Census Bureau. They represent a quasi-static morning
rush hour model, and are encoded in the demand vector
b. We consider for our parametric model the polynomial
representation sa(·|θ) given by (27), with da and ma the
free flow delay and capacity on arc a:

Parametric : sa(va|θ) = da(1 +
∑6
i=1 θi(va/ma)i) (27)

True : strue
a (va) = da(1− 3.5

3 + 3.5
3−va/ma

) (28)

BPR : sBPR
a (va) = da(1 + 0.15(va/ma)4) (29)

We consider N = 4 partial observations of UE aggregate
flows z1, z2, z3, z4 ∈ RAobs

+ associated to 4 demand vectors
b1,b2,b3,b4 which are scaled versions of b with respective
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factors 0.5, 0.8, 1, 1.2. The measurements are generated by
solving (2) with the ‘true’ delay function (28), chosen to
be hyperbolic and similar to the delay (29) estimated by
the Bureau of Public Roads (BPR), but not polynomial.
The resulting true UE flows x1,x2,x3,x4, with delays
represented in Figure 1, are given as inputs to the observation
model z = H̃x = HZx.

Fig. 2. The 4 sensor configurations. 1) top left: all arcs are observed,
hence H̃ = IZ = Z and we observe the full aggregate flow v; 2) top
right: 10 directed arcs are observed in the congested area; 3) bottom
left: 4 directed arcs are observed in the congested area; 4) bottom right:
4 directed arcs are observed at the boundaries of the region, where the
inflows are already known from the OD demands.

We consider the 4 sensor configurations in Figure 2 and
solve (MDVI-est) to infer delays for the 4 observation models
H̃, with F verifying conditions (a) to (d) given by:

F (x|θ) = ZTS0(Zx) +
∑6
i=1 θiZ

TSi(Zx), θ ∈ Θ := R6
+

S0(v) = (da)a∈A (constant map)
Si(v) = (da(va/ma)i)a∈A, i = 1, · · · , 6

where v = Zx is the aggregate flow. We apply the pro-
posed block descent method where each one of the (θ,y),
(xj ,yj), j = 1, · · · , N blocks is cyclically solved using the
Python software package CVXOPT.3

Treatment of the concave constraint: We first considered
different linear approximations of the constraint ATyj �
F (xj |θ) in MPxj |θ. However, due to the strong convexity of
the hyperbolic delay sa (28), especially for large values of
va, BCD combined with these techniques failed to converge
to satisfactory solutions. The constraint was then relaxed
altogether, and we proceeded to update only block xj in each
(MPxj |θ), independently of yj , the feasibility of the overall
iterates being enforced by the (θ,y) update via MPθ|x.

Tuning of the parameters: We solved (26) for λ =
10−2, 100, 102, 104, 106, µ = 103 and obtained 5 candidate
maps Ŝ, one for each λ. The set of equilibrium flows
{x̂j}4j=1 induced by each of our candidates was computed,
and the best estimate was selected such that the measurement
residual

∑4
j=1 ‖H̃x̂j−zj‖2 is minimized. The best candidate

3CVXOPT is free and available at http://cvxopt.org. Implementation
of the block descent is open source and available at https://github.com/
jeromethai/traffic-estimation-wardrop.

for each of the 4 sensor configurations, the relative error
in aggregate flows

∑4
j=1 ‖v̂j − vj‖1/

∑4
j=1 ‖vj‖1, and the

associated λ are shown in Figure 3.

Fig. 3. Best candidate parameters θ with the associated graph 1 +∑6
i=1 θix

i for each of the 4 sensor configurations shown in Figure 2.
1) top left: when all arcs are observed, the estimated θ fit ‘perfectly’ to
the true one; 2) top right: when 10 arcs are observed in the congested
area, the fit is very good; 3) bottom left: when 4 arcs are observed in the
congested area, the fit is very good; 4) bottom right: when 4 arcs at the
boundaries are observed, the fit is bad. In case 4, the measurements are
‘useless’ because they are already contained in the given OD demands,
which are part of our prior information, thus having no measurements
gives the same results as case 4. The small relative error in case 4 is
due to the fact that at least 23% of the aggregate arc flows (the ones
at the boundaries) are fixed by the flow conservation equations. Hence
comparing the relative errors to the worst case gives another measure
of the accuracy of the estimated θ. In our experiments, the relative
accuracies are 0/9=%, 4/9=44%, 3/9=33%, 9/9=100%.

Toll pricing: The estimated delay function is used to find
a toll τ ∈ RA+ such that the resulting tolled UE flow is an
un-tolled SO flow; see eq. (9). This can be formulated as a
(MPVI) with parametric map and objective; see [19]:

F̂ (x|τ ) = ZT Ŝ(Zx|τ ) with Ŝ(·|τ ) = τ + Ŝ

ĝ(x, τ ) = xT F̂ (x) + τTZx = ĉ(Zx) + τTZx
τ ∈ T := RA+

(30)

where F̂ = F (·|θ̂) or Ŝ = S(·|θ̂) is the estimated map with
imputed parameters θ̂ and ĉ(v) = ŜT (v)Tv is the estimated
total delay function defined in (9) with Ŝ = Ŝ(·|τ = 0) is the
estimated un-tolled delay. The parametric function Ŝ(v|τ ) =
(τa+ ŝa(va))a∈A shifts the imputed delays ŝa by τa, the toll
incurred on arc a. The objective g minimizes the estimated
total delay ĉ and the toll collected τTv. The system (30)
represents our estimated toll pricing model.

We reformulate the (13) as a (22) and apply the same
methodology as the one used for latency inference, since
conditions (a) to (d) also hold. With ctrue(v) = Strue(v)Tv
the true total delay, vSO and vUE the true SO and UE
aggregate flows, we compute the relative loss:

relative loss =
ctrue(vres)− ctrue(vSO)

ctrue(vUE)− ctrue(vSO)
(31)

where vres is the realized flow under the toll vector τ̂
obtained from our estimated toll pricing model. We also use
the estimated equilibrium model to predict the (un-tolled) UE
total delay and compute the relative error to the true value.
The numerical results are provided in Figure 4:
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Fig. 4. Prediction under different OD demands b2,b3,b4 using the
estimated model based on observations provided by each of the 4 sensor
configurations. Because of missing data, the imputed model with delay
Ŝ is different from the true model with delay Strue. Left: relative
loss for different demands and different sensor configurations; right:
relative total delay error for the predicted UE. With full observations
(case 1), the estimated model perform well, with relative losses less
than 20% and relative errors close to 0%. With partial observations
in the congested area (cases 2 and 3), the estimated model performs
moderately well, the relative losses and relative errors are under 60%
and 15% respectively. With observations at the boundaries (case 4),
the estimated model provides a toll (for demand 0.8*b) with relative
loss above 100%, i.e. the tolled UE is worse than the un-tolled UE.

VIII. CONCLUSIONS

The structural estimation of equilibrium models based on
partial observations of equilibria is formulated as a MPEC.
Then, we propose a simple single-level reformulation of the
general MPEC that can be solved efficiently via a block
descent method. The proposed algorithm alternatively up-
dates the parameters of the parametric model and the induced
equilibrium to minimize a common objective function. In the
context of traffic, the proposed reformulation is in general
convex in each block of variable, except for a concave
constraint that can be relaxed, thus the block updates can
be performed with high-quality convex optimization solvers.
This methodology is applied for both the latency inference
and control of traffic equilibria to illustrate the sensitivity of
toll strategies to errors in estimates.
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