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Abstract 

This paper provides a procedure to generate C1 or 
CO, PC1 solutions of a one-dimensional Hamilton- 
Jacobi equation with nonsmooth Hamiltonian, based 
on the method of characteristics. The C1 solutions con- 
structed are classical solutions. We prove on examples 
the CO, PCl constructed solutions to be the viscosity 
solutions, with help of a minimaw-viscosity equivalence. 
We show how shock waves and voids are generated by 
initial conditions. We show with twedimensional ex- 
amples how this technique might be applied to differ- 
ential games. 

1 Introduction 

This paper presents a procedure for constructing the 
unique Crandall-Evans-Lions viscosity solution [5] to 
a Hamilton-Jacobi equation (HJE). Our algorithm is 
based on the method of characteristics; by itself, the 
method of characteristics is known to  provide a local 
solution to the HJE, hut not a global solution due to 
the appearance of shocks and voids. The key result of 
this paper is that, while there are many different possi- 
ble ways of constructing a “solution” to the HJE from 
the families of characteristics, the construction which 
matches characteristics across shocks and fills voids ac- 
cording to their initial value, yields the viscosity solu- 
tion for a range of examples. While we have not yet 
proven this for the general HJE in [5], we believe this 
to be the case. Ideally, we seek a continuously differ- 
entiable solution, but in most cases we will at best be 
able to produce a viscosity solution. These ideas have 
already been exploited by Isaacs 191, Bqar and Olsder 
121 in the context of semipermeable surfaces. We use an 
equivalence shown by Clarke [4] between the viscosity 
solution the minimax solution to  then prove that the 
result is a viscosity solution. 
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There are three motivating factors in this research. 
First, viscosity solutions to the HJE are known to be 
solutions to  optimal control [5] and differential game 
[7, 9, 21 problems; our interest lies in the application 
of these solutions to  the construction of reachable sets 
of states [13]. We use reachable set computation in 
order to verify safety of certain hybrid systems, such 
as protocols for collision avoidance in air traffic con- 
trol, and modal logic of flight management systems 
(see the example in [lo]). The formulation and effi- 
cient computation of reachable sets using a Hamilton- 
Jacobi framework is a subject of ongoing research; we 
draw inspiration from Aubin and his group [l] who have 
developed analytical and numerical (Saint-Pierre 1121) 
tools based on set valued analysis for computing reach- 
able sets. Second, while there exist numerical tech- 
niques to compute the viscosity solution of HJE (most 
prominently are the level set methods of Osher and 
Sethian 1111 which we have applied in [lo] to reachable 
set calculation), there do not exist practical methods 
for constructing analytic nor numerical solutions based 
on the method of characteristics. Such a method could 
complement existing techniques by providing valuable 
information about the solution in and around a shock 
or void, which is usually where the approximation in- 
herent in existing techniques tends to deteriorate, and 
could also be used for validation of numerical codes. 
Third, solving for the characteristics is the most popu- 
lar method in control problems (for HJE, the method of 
characteristics corresponds to solving Hamilton’s equa- 
tions), thus a correct method of constructing a viscosity 
solution from characteristics would be of great interest. 

Section 2 presents the HJE for an Isaacs differential 
game, presents the different existing classes of solutions 
to  this equation and explains a procedure used to check 
that a given analytic solution is the viscosity solution. 
Section 3 gives a procedure to construct a CO, PC1 so- 
lution of a HJE in lD,  which deals with an arbitrary 
number of shocks and voids. Section 4 presents a fully 
worked out texthook-style example that can be solved 
entirely by hand. Section 5 shows possible applications 
of these methods to  multi-dimensional systems and dif- 
ferential games. 
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2 Problem description 

We consider a dynamical system with state x, control 
input U, and disturbance input d. In safety analysis, U 
attempts to  keep the system safe in spite of the worst 
possible action of d, which models uncertainty in the 
system. For single-input single-output systems, 

X = fden(xi d) (1) 

wherexE R", fdrn : Rn x U x D -+ R" (with U C !E, 
D c R). We assume that system safety is assured if 
the system remains outside an unsafe set of states, de- 
scribed by the subzero level sets of a function Jo(x): 
{x : Jo(x) < 0).  The evolution over time of this func- 
tion is denoted J ( t , x )  and given hy the following H J E  

where H' is the optimal Hamiltonian of the sys- 

with H(x ,  E , u , d )  = (fdyn(x,u,d), E), t and z are 
dropped in J for brevity. The optimal input and worst 
disturbance are given by: (u*(x, g ) , d * ( x ,  E)) = 
(argmax,,, argmind)(H(x, %,U, d)). Reachahility com- 
putations have been based on the result (see [13]) that 
the set of points that can reach the unsafe set in finite 
time is given by the subzero level sets of the func- 
tion limt,_, (min,Ett,tol J ( T ,  x))  where J( . ,  .) is the 
viscosity solution to (2). Here, we focus on computing 
analytically the viscosity solution to  HJE (2). Our task 
is therefore to  compute a "weak" solution of (Z) ,  and 
prove that it is the viscosity solution. We summarize 
the most common "weak" solutions (see Bardi [3] for a 
complete classification): 
(A) Classical solution: CI solution of (Z), definition 
which we adopt here (sometimes C, in literature); 
(B) Weak solution: a.e. solution of (2 ) ,  see Evans (61, 
Chapter 3 for a more precise description; 
(C) Minimaz solution: see below, (Clarke [4]); 
(D) Vanishing viscosity solution: limit of the solu- 
tion of + H(x,  %,U*,$) = cV2J when t + 0 (if 
this limit exists); smoothness assumptions on H are re- 
quired in appropriate functional spaces (see Evans [6] 
Chapter 10 for full detail) for this solution to exist; 
(E) viscosity solution: bounded uniformly continu- 
ous function J satisfying J ( 0 , x )  = Jo(x) such that: 
Vv E C,([O,ca[,R"), if J - v has a local maximum 
(minimum) at (to,xo) E [O,m[xRn, then wt(to,m) + 
H*(ux(to,xo),xo) I 0 (2 0). 
The existence and uniqueness of a solution of type (E) 
has been proved by Crandall et al. 151, however, the 
criterion (E) is not of great practical use. Instead, we 
will use an equivalence between (C) and (E) given by 
Clarke et al. [4] in the context of nonsmooth analysis: 
we rewrite (1) as the following diflerential inclusion: 

(3) 

tern, given by: H * ( x , S )  = m a x , m i n d H ( x , ~ , u , d )  BJ 

x(t) E F(x(t))  a.e. Vt E [a, b] 

where F : R" -+ R" is a set valued function. In 
control applications of viability (Aubin [l]), F ( x )  := 
fdrn(x, D) (no U). We will assume that F satisfies the 
following standing hypotheses (Clarke et al. [4]): 
(a) Vx, F ( x )  is nonempty, compact, convex; 
(h) F is upper semicontinuous: Vx, Ve, 36 s.t. 
IIx' - x I I  < 6 j F(x') c F ( x )  + tB (B: unit hall); 
(c) 3y > 0, 3c > 0, VX, v E F ( x )  * llvll I Y I I x J I  + c. 

We define the lower Hamiltonian associated to  F: 
H ( x , p )  := min,EF(x)(p,v), and the lower HJE as: 

- + H  x,- = o  
aJ at ( :) (4) 

A m i n i m a  solution of (4) is defined as the unique con- 
tinuous function J : ] - cu,to] x R" + R satisfying 
V(t,x) E] - q t o ]  x E 

(4 infvEF(x)DJ(t ,x;l ,v) I 0 
(b) sup,,,(x)DJ(t,x;-l,-v) 5 0 ( 5 )  
( 4  J(T ,  .) = Jo( . )  

Here D J ( t , x ; l , v )  is the subderivate of J at X = (t ,x) 
in the V = (1,v) direction, defined by D J ( X , V )  := 
liminfw,v, Q O $ [ J ( X  + OW) - J ( X ) ] .  Clarke et al. 
[4] show that (5) is equivalent to the viscosity solution 
defined by Crandall et al. [5]. In this paper, we will 
reduce the original HJE (2) to  its lower Hamiltonian 
version (4) in order to apply the minimax criterion (5). 
By the equivalence shown by Clarke 141, we will thus 
have a proof that our analytically constructed solution 
is the viscosity solution of (2). 

Several methods can be used to construct solutions of 
the HJE. The most applicable to our problem is the 
method of characteristics, presented in various forms 
depending on the context, and analogous to the ret- 
rograde path integration method of Isaacs [9]. The 
method of characteristics reduces (2) to  an ODE sys- 
tem, known as Hamilton's equations (see Evans [SI): 

P(s) = - - D x H ' ( p ( s ) , x ( s ) )  
J ( s )  = D P H ' ( P ( s ) , X ( S ) ) . P  - H * ( p ( s ) , x ( s ) )  (6) I 54s) = - D , H ' ( p ( s ) , x ( s ) )  

where s is a dummy integration variable (t  in the 
present study). The initial conditions of (6) can he de- 
rived from Jo(x) under certain assumptions (nonchar- 
acteristic boundary data, i.e. it is possible to relate 
the value of J to  its value on the boundary). The tra- 
jectories (x(t), t) obtained by integrating (6) are called 
characteristics. Integration of (6) when possible relates 
the value of J ( t ,  x) to Jo(xo), where x is obtained from 
xo by integrating (6) in the interval [t,to]. This en- 
ables the solving of (2) locally, but not globally due to  
intersecting characteristics (leading to  multivalued sc- 
lutions), or voids (in which this method does not pro- 
vide any solution). 
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3 Construction of CO solutions of a 1D 
Hamilton-Jacobi equation 

In this section, we construct the viscosity solution to 
the one-dimensional version of (2) with linear input 
and disturbance. Sections 3.1 and 3.2 respectively solve 
the cases in which there is a single shock or a single 
void. Section 3.3 generalizes this to a problem with 
an arbitrary number of shocks and voids. We consider 
a differential game with input U E U = [-1,1] and 
disturbance d E D = [-1,1] acting on a dynamical 
system of the following form: 

k.=fdyn(z,%d) =f (z)+U.gi (z )+d .gz(Z)  (7) 

n o m  now on, x = z E R, j, g, h : W + W are chosen 
so that the standing hypotheses hold. In one dimen- 
sion, the optimal input and worst disturbance can be 
computed explicitly and the HJE associated to (7) is 

Defining W )  = [ f ( 4  - I l g1(4  - Igz(41 I f ( 4  + 
I 1g1(%)1 - Igz(z)l I 1, we can rewrite ( 8 )  
in the form of (4). This formulation re- 
duces the maw, mind H ( z ,  J,, U, d) operator to 
mindH(z,J,,u*(z,Jz,d),d), where u*(z,Jz,d) = 
argmax,H(z,JZ,u,d). In other words, we treat a 
differential game problem as a control problem in 
order to be able to apply (5). We use the following 
notations and assumptions (which could be weakened, 
in particular the assumption that # 0) to simplify 
the construction: 
( 4  Rewrite (81, as Jt+(f(z)+d I Ig2(z)/-lg1(~)1 I ) J z  = 
0 and call 4o(z) := S+(z) = f ( z )  f I 191(2)1- Igz(z)l 1, 
with U = fl .  U is thus determined by the sign of the 
gradient (see Figure 1). Let us assume that qbr is at 
least CO, and Vz E E ,  &(a) # 0; 
(b) Let z. E W be arbitrary for now. Call 
@,(z) = s,", & and assume it is defined; 
(c) Assume { (z(t) , t)  : 3z0 E R, s.t. z = 
@;'(+,(zo)+t-to) } = WxW+ This statement means 
that each family of characteristics (z(t), t), defined in 
the previous section, spans R+ x Iw; 
(d) Assume that J ( t , x )  = JO(+; ' (+~(S)  - (t - t o ) ) )  
is the C1 solution of Jt + &(z)J ,  = 0 obtained with 
the classical method of characteristics for U = f l .  

Figure 1: Problems usually encountered using characteristics: 
Separation or void (top), collap~e or shock (bottom) 

3.1 Single CO, PCl shock construction procedure 
We now show how to construct a Co,PC1 weak so- 
lution of (4): we find the domains of validity of the 
characteristics and explain how to  construct the sc- 
lution when they intersect. The present construction 
is in forward time. The same procedure applies in 
backward time with appropriate sign changes. Assume 
here that JO is decreasing in ] - q z J ,  and increas- 
ing in z E [z., CO[ (i.e. U = +1 for z E] - o3,zC] and 
U = -1 for z E [z,,co[). JO has thus a local mini- 
mum at a,. A shock appears instantaneously at 2,: 
call zo(t) = +;'(+,,(zC) + (t - to)) the respective char- 
acteristics emanating from zc. Then, ~ ( t )  < z+(t) at 
least in a vicinity of (z,,to), which means the charac- 
teristics cross and the solution is not uniquely defined. 

Initial data matching: Since Jo(x,) is a local minimum 
of JO (in fact global) and JO is CO, then 3(a1,zr) E 
[-m,zc] x [zC,co] and 3m :]zlrze] -+ [zc,ap[ bijective, 
such that Vz E]zr,z,], Jo(z )  = Jo(m(z)). Consider 
the set {(t,z)lt 2 OAz-(t) 5 5 < z+(t)}. In this set, 
consider the curve z = &(t) defined by the solution of 
the following system: 

(9) 
t - to = ++(z) - ++(s) 

s €121 1 zcl { t - to = @-(z) - +-(m(s) )  

We now define J which is by construction a CO a.e. 
solution of (8): 

(10) 
J ( t , x )  = J ~ ( @ ; ' ( B + ( z )  - ( t  - t o ) ) )  if z 5 sdt) 
J ( t , z )  = J o ( B I ' ( B - ( z )  - ( t  - t o ) ) )  if z > &(t) 

Thus, we have matched the initial data: we defined 
regions in which the two families of characteristics are 
valid, such that the overall J ( t , z )  is CO because each 
intersecting pair of characteristics originate from points 
with same initial value J(to,z) = Jo(z).  This is called 
by Isaacs [9] a dispersal surface. 

Construction procedure for a single shock: 

2 

3 
4 

Generate the bijection m :]zr, zc] -i [zc, z7[ 

Solve equation (9) and construct z = S,(t); 
Define J ( t , z )  according to (10). 

s.t. vx E]zr,z,], Jo(z) = Jo(m(z));  

Ezample: Consider the following HJE: 

d E [-1,1] 
J(1,z) = + if z E iw_ 

(5, t) E ax]  - M, 11 

. J ( I , ~ )  = if z E i& (11) 

Here we trivially have zc = 0, m : 50 + -a0 1 2 ,  51 = 
-CO, x, = w: the shock can be solved analytically: 
t = 1 +3s, (S,(t) = ; ( t  - 1)). 
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Claim: The viscosity solution of (11) is given by': 

(12) 
J ( t ,  z) = Jo(z + t - 1) for z 5 y 
J ( t , z )  = Jo(z - t + 1) for z 2 

3.2 Single Cl void construct ion p rocedure  
When Jo is C1 and characteristics separate, we are able 
to construct a C1 solution, which is then the classical 
(therefore viscosity and unique) solution of HJE. 

Plateau construction: We now assume that JO is CI, is 
increasing in z E] - 03, zc] and decreasing in [zc, 03[. 

(i.e. U = -1 for z E] - 03,z,] and U = +1 for 
5 E [zc, m[). A void appears instantaneously at 2,: call 
zc(t )  = +;'(+,(s,) + (t - to)) the respective charac- 
teristics emanating from z,. Then, z-( t )  5 z+(t) in a 
neighborhood of (zc, to ) :  a void appears (the character- 
istics separate). JO is C1, so it follows that JA(z,) = 0. 

Plateau construction for a single void: 

J ( t , z )  = J o ( @ ~ ' ( k ( z )  - (t - to))) if z 5 z-(t)  
J ( t , z )  = Jo(z,) if z - ( t )  5 z 5 z + ( t )  
J ( t , z )  = Jo(+p;'(++(z) - ( t  - to)))  if z + ( t )  5 z 

This solution solves (8) a.e. and is Cl by assump 
tion in the interior of the three domains above. The 
continuity of the derivatives on the boundary of the 
void (characteristics emanating from 2.) is given by: 

equality is only true on the boundary of the void). The 
solution is thus Cl on R x  R+. This procedure will also 
work when JO is Co,PCl, but will then only provide a 
CO, PCI function (see example below). 

Ezample (Co,PCl solution)2: We use our procedure to 
solve the following HJE, inpired by Clarke et al. [4]: 

a J / a ( t , z )  = J&)4&)(-1, I/@&)) = (0,O) (this 

d E [-1,1] 
J ( l , ~ ) = J o ( z ) + 1  (13) 
(z, t) E a x ]  - m,1] 

'Pmf: We have F ( z )  = [-1,1]. To apply criterion (5) to  
show tha t  (12) is a minimax solution of equation (11), we will 
have to evaluate the suhderivate in the two domains separated 
by the shock, as well as on the shock. First domorn: Vz < 9, 
D J ( t , z ; I , v )  = J k ( z  + t - l ) (u  + 1). Since z < ?=j', we have 
z+t-1 50, J h ( s + t - l )  ~ O , s o t h a t i n f , s [ - l , l ~ D J ( t , z ; l , u ) =  
0 5 0. Similarly sup,,~_,, ,~DJ(t,s;-I,--u) = 0 5 0. Sec- 
ond domain: Vz > 9, D J ( t , z ; l , u )  = JA(z  ~ t + l ) (v  - 
1). Since z > 9, we have z - t + 1 2 0, Jh(z - t + 
1) 5 0, so that  infuE[-l , l iDJ(f ,z; l ,V) = 0 5 0. Again 
sup,,l-l,,lDJ(t,z;-l,-v) = 0 5 0. On the shock: z = k$, 
D J ( t , z ; l , u )  =min{J~(4z)(v+l).J~(-2s)(v-l)) w i t h 2  5 0,so 
tha t  inf,E[-l,l] D J ( t , z ;  1,v) 5 0. Similarly, D J ( t , z ; - 1 , - U )  = 
min{-JA(4z)(v + I ) ,  -Jh(-Zz)(v  - l ) ) ,  with z 5 0 which again 
providessup,e[-l,llDJ(t,z;-l,-u) 5 0. 

2Remnrks: (A) J(z,t)  = lzl + t - 1 V( t , z )  E] - m,I] x W, 
obtained by filling the whole space with characteristics solves 
(13) &e., hut is not the viscosity solution. Here: D J ( t , z ;  1 ,u )  = 
luli1,whichvialates (5). (B) If Jo(z) = s2/(1+zz) E Gl(W,W), 
wehave J ( t , z )  = Jo(z+t-1)farz 5 ( t - l ) ,  J ( t , z )  = Jo( z - t+ l )  

is 6, (the classical therefore viscosity solution). 
for z >_ - ( t  - l), J ( t , Z )  = 0 for (t  - 1) 5 z <_ -(t - I ) .  J ( t , Z )  

Claim: The viscosity solution of (13) is given by 
J ( t , z )  = Jo(max(O, IzI + t - 1)). The proof is simi- 
lar to  that of the previous example. 

3.3 General initial data 
If Jo E Co(R,R) is arbitrary, we can generalize the 
previous results and construct a CO,PCI solution: 

1 
2 

Compute locations zt of extrema of Jo(z);  
Identify the Z: corresponding to  shocks: 
4+ for z 5 z:, 4- for z 2 
and the z; corresponding to  voids: 
4- for z 5 g:, #+ for z >_ 2. 
We get: ... 5 z:-' 5 2 5 
Generate the matchings mi of the 2:; 
Construct the shocks, fill the (z , t )  space with 
segments of characteristics, and void space; 

in the domains filled with characteristics, 
J ( t , z )  = J o ( 2 )  in the voids. 

5 z:+2 5 ___; 
3 
4 

5 J( t , z )  = Jo(@.,'(+&) - ( t  - t o ) ) )  

4 A fully worked out example  

Figure 2: Characteristics pattern for (14), domains given by (17). 
Two voids appear at z = -4  and z = 8, two shocks 
appear at  z = 4 and z = 12. 

We now apply our technique to  solve a problem with 
initial data generating multiple shocks and voids. Con- 
sider 5 = 1z + l lu + 12 - lid (all quantities in R), for 
which we solve the following H J E  

(14) 
a J  aJ + d ( l l  -z l  - 11 +zl)- = o  

at ax 
with t E t 5  and J ( 0 , z )  = Jo(r )  given by: 

V I  E] - m , 4 ]  

V I  E [12,m] 

w 
Jo(z) = I +  (?)'e- (9)') VzzE [4,12] (15) 

l(r-11) i' + 1+(.-11)2 

Claim: The viscosity solution is given by (18) below. 

Proof: Two shocks appear in the (z, t)  plane for t = 0 
at local maxima of J o ( t , z )  (z = 4 and 12). Two voids 
appear for t = 0 at local minima (z = -4 and 8), 
see Figure 2. The equations of the shocks can be ob- 
tained in parametric form with appropriate matchings: 

J-1 whered(s) = 1 + ( q ) 2 ( 2 - ( q ) 2 ) , V ~ ~  
rnl(S) = &+2 - JGmI, rnz(s) = 11 + m[l+ 
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[4,8] and +(s) = ( 7 ) ' ( 2  - (e)*), Vs E [8,12]. The 
equations of the two shocks are given by solving the 
matching problems for ml and m2: 

(16) 
( t ( s ) , z ( s ) )  = ( $ ( m l ( S )  - s ) , + ( m l ( ~ )  +s)) 
( t ( s ) , z ( s ) )  = (4(s - mz(s)), 5(m2(s) + 4) 

For each of them we solve for the shock t + S,(t), given 
by (16). We now define the different subdomains Di of 
ax] - m,O] which are displayed on Figure 2: 

t >  f ( 2 + 4 )  
( t < f ( 2 + 4 )  A t < - f ( 5 + 4 ) } A  
2 5 -1) U ( t  5 f l og ( - z )  - 4 A -1 5 2 5 0 )  

f > - f ( 2 + 4 )  A 2 5 - 1  
t z W - 4  A t 5 w  A - 1 < 2 < 0  - 
t 2 f log(-2) A T 5 -1 

2 > 1  A t s - i ( 2 - 1 )  
t > - + ( 2 - 4 ( 2 - & ) )  A z < X l ( t )  

(17) 
0 5 2 5 1  

t > f & - 8 )  A t > - i ( z - 8 )  A z ( t ) > X i ( t )  
-_ 5 t 5 - I ( Z  - 4(2 -a)) 

Here z = X l ( t )  and z = X 2 ( t )  are the explicit solutions 
of (16). We summarize the viscosity solution and its 
proof in the following array (and denote jk = JA(zo)): 

Di characteristic J ( t ,  z )  D J ( t , z ; l , u )  

D1 
D* 
U .  
Dn 
Ds 
U6 
D, 
0 8  

De 
Dlo -+l Jo(2t + z) 3; ( " + 2 )  
D u  void Jo(W 0 
Dm -9 J o ( =  + 2 t )  3; . ( " + 2 )  
0 1 3  7 J o ( z  - 2 t )  3; ( " - 2 )  

(181 
The computation of D J ( t ,  z; -1, -U) in this particular 
case changes the sign of the quantity in the last column 
of (18) and is therefore not displayed here. Here F ( z )  = 
[-IIl-zl-ll+z1 Il-zl-ll+zJI]. Inbothcases, 
the proof directly follows from (18) and identifies this 
solution as the minima,  therefore viscosity solution. 

Figure 3: viscosity solution f ( t .  z )  for equation (14) for various 
times. The eRect shocks (edges) and voids (plateaux) 
are clearly visible. 

5 Application to differential games 

5.1 One chance collision example (Isaacs [9]) 

1-7.5 

Figure 4: ~ o ~ u t i o n ( ~ l )  of equation (19) for M ~ ~ o ~ ~  times. U = 2, 
D = -1. Left column: solution (21) to HJE ( l o ) .  
Hight column: mi" over time of (21). z E (--15,20], 
y E [-IO. 191. In red (thick): J ( t , z ,  U) = 25 level set. 
'The shock (kink in the iSovalue lines) is clearly visible. 

We present a modified version of the one chance colli- 
sion game, from Isaacs [9]. Consider two aircraft head- 
ing at  each other. Aircraft 1 can choose any input 
( u I , ~ )  such that u 1  2 0, u2 _> 0, UI +u2  = U E 4;  
aircraft 2 can pick any (dl ,  d2) such that d l  5 0, dz 5 0, 
dl +d2 = D E E. We will assume U > -D (aircraft 1 
is faster than aircraft 2). The relative kinematics of the 
twoaircraftare ( i , y )  = ( - u l + d l , - u 2 + d 2 )  whichcan 
herewrittenas(5,y) = (-u+d,u-d-(U--D)) where 
U = ul,  d = dl,  and thus U E [O,U], d E [D,O]. The 
cost J ( t , z ,  y) is defined as the squared relative distance 
between the two aircraft, and the HJE is thus: 

d J  a J  a J  _ -  (u -d ) ( -  - - ) - ( U  -D)- = o  
at ax ay ay 

(19) 

with J(O,z,  y)  = Jo(z ,  y) = z2 + y2, and t E K .  The 
optimal input and worst disturbance are thus: 

(20) 
if J,(t ,z ,y) - J & , ~ , Y )  2 0, (U*,d*)  = ( 0 , D )  
if J,( t ,z ,y)  - J & , ~ , Y )  5 O,(u',d*) = (U,O) 

A shock surface appears, given by z = y spliting the 
(z, y, t) space in two domains where the method of char- 
acteristics applies. We can give a simple interpretation 
of (20): if aircraft 2 lies in the set z 2 y, aircraft one 
tries to escape along y, aircraft 2 tries to catch up along 
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z. If aircraft 2 lies in the set y 2 z, the situation is 
reversed.' Our method gives the following CO, PC1 so- 
lution to the problem (displayed in Figure 4): 

(21) 
vz 2 y : J ( t , z ,y )  = J o ( z - D t , y + U t )  
VZ 5 y : J ( t , z ,y )  = J o ( z + U t , y - D t )  

5.2 Proportional navigation, missile guidance 

Figure 5: Void generated by separating characteristics of equa- 
tion (22), between the two surfaces. Outside the void, 
Characteristics emanating from the t = 0 plane. 

Consider the problem of Gutman and Leitmann [a], an 
example of void generated by separating characteris- 
tics: ( i , y )  = ( y , ~  + d) with I u ~  5 U ,  Id1 5 D given. 
We consider the case D > U .  The HJE is therefore: 

for t E E and J(O,z,  y) = zz. The dynamics represent 
linearized equations of a missile pursuing an aircraft, in 
the neighborhood of a collision course. The inputs U 
and d represent the accelerations of aircraft and missile 
normal to the line of sight. The terminal payoff above 
is the squared miss distance which the aircraft with 
thrust U wants to maximize and the missile with thrust 
d wants to  minimize. D > U indicates that the missile 
has higher thrust than the aircraft. A void appears 
as shown in Figure 5. Interpretation of the void is 
given in [a] (ana was realized before the invention of 
the viscosity solution [5]). Our method produces a C1 
(classical) solution J( t ,z ,y) ,  shown on Figure 6 

(. - y(t - to) - Y ( t  - ta)*)2 if y 2 + - Y ( t  - fa)  

O i f L + & ? 5  L-- (e  * ( t  - to)  < Y < - +ct - to) 
(z - y(t - t o )  + w(t - to)')' if y 5 + + w(t - t o )  

(23) 

6 Conclusion 

The present work is a first step in the quest for a set 
of rules to  apply when integrating the HJE with the 
method of characteristics. We ultimately seek a pro- 
cedure which will overcome all difficulties of the classi- 
cal method of characteristics and guarantees that the 
result computed following these rules is the viscosity 
solution. In this paper, we compute the characteris- 
tic solutions analytically for low dimensional problems; 

Figure 6: Classical (therefore viscosity) solution of (22) for m i -  
(IUS times. The solution is CI. The plateau left by the 
void is clearly visible between the limits sets by the 
inequalities in (23). 

numerical computation of the characteristic surfaces is 
possible in higher dimensions, yet we are conscious that 
this method will become more complicated in higher 
dimensions due to  the geometrical complexity of n- 
manifold intersections. In addition, we would like to  
provide a general proof that our algorithm gives the 
viscosity solution, rather than an a posteriori veril- 
cation. Finally, the general relationship between the 
viscosity solution and reachability remains a research 
problem of great interest to  us. 
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