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[1] This article investigates the performance of Monte Carlo-based estimation methods
for estimation of flow state in large-scale open channel networks. After constructing a state
space model of the flow based on the Saint-Venant equations, we implement the optimal
sampling importance resampling filter to perform state estimation in a case in which
measurements are available at every time step. Considering a case in which measurements
become available intermittently, a random-map implementation of the implicit particle filter
is applied to estimate the state trajectory in the interval between the measurements. Finally,
some heuristics are proposed, which are shown to improve the estimation results and lower
the computational cost. In the first heuristics, considering the case in which measurements
are available at every time step, we apply the implicit particle filter over time intervals of a
desired size while incorporating all the available measurements over the corresponding time
interval. As a second heuristic method, we introduce a maximum a posteriori (MAP)
method, which does not require sampling. It will be seen, through implementation, that the
MAP method provides more accurate results in the case of our application while having a
smaller computational cost. All estimation methods are tested on a network of 19 tidally
forced subchannels and 1 reservoir, Clifton Court Forebay, in Sacramento-San Joaquin
Delta in California, and numerical results are presented.
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1. Introduction
[2] Data assimilation is the process of integrating obser-

vations or measurements into a mathematical model of a
physical system, to estimate some quantities of interest.
Recently, data assimilation has provided rapid advances in
geosciences such as meteorology, oceanography, and hydrol-
ogy [Brasseur and Nihoul, 1994; Haidvogel and Robinson,
1989; Malanotte-Rizzoli, 1996; Kalnay, 2003; Andreadis
et al., 2007; Biancamaria et al., 2010; Durand et al., 2008;
Madsen and Skotner, 2005; Neal et al., 2009]. Different
methods for assimilating data include variational data
assimilation [Navon, 1997]; Kaipio and Somersalo, 2004;

Castaings et al., 2006; Le Dimet and Talagrand, 1986;
Wu et al., 2009], filtering-based methods [Evensen, 2009;
Kuznetsov et al., 2003; Moradkhani et al., 2005; Wang
et al., 2009; van Leeuwen, 2010; Weare, 2009; Tossavainen
et al., 2008; Neal et al., 2007], optimal statistical interpola-
tion [Molcard et al., 2003], or the Newtonian relaxation
[Ishikawa et al., 1996; Paniconi et al., 1996].

[3] Open channels are examples of the so-called distrib-
uted parameter systems in which the dynamics of the system
can be modeled by a set of partial differential equations
(PDEs). For modeling the water flow in rivers and open
channels, the Saint-Venant equations, which are a set of
coupled first-order hyperbolic nonlinear PDEs, are com-
monly used [Chow, 1988; Cunge et al., 1980; Litrico and
Fromion, 2009]. Solving the PDEs requires an accurate
knowledge of the boundary conditions, which are usually
obtained from measurements of sensors installed at appropri-
ate locations. Nevertheless, noise and inaccuracies in the
measurements of the boundary conditions, as well as model-
ing assumptions (simplifications made to construct the math-
ematical model), can lead to a mismatch between the values
computed by the model and the actual state of the system.
When additional observations (measurements) of the system
are available, it is desirable to incorporate these measure-
ments into the model to reduce the mismatch between the
values computed by the model and the actual system
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throughout the whole domain of interest. Different state esti-
mation methods can be used to estimate the state of the sys-
tem with streaming data using the available observations
obtained from the system. In distributed parameters systems,
for which the system is typically high dimensional, it is
important that state estimation methods with appropriate
computational complexity are used so that real-time state
estimation becomes tractable. An efficient real-time estima-
tion method can be used in various applications such as flood
monitoring, real-time flow studies, and emergency response
in cases such as levee break or gate malfunctions.

[4] In the last decade, sequential Monte Carlo methods,
also known as particle filters, have attracted a lot of atten-
tion among researchers and practitioners [Gordon et al.,
1993; Liu and Chen, 1998; Arulampalam et al., 2002;
Doucet et al., 2000, 2001]. Particle filters and their varia-
tions have been extensively applied to estimation problems
in geosciences, such as meteorology and hydrology, due to
their generality and scalability. More specifically, particle
filters can be applied to nonlinear systems, and they do not
require Gaussianity assumptions on the noises. In Giustarini
et al. [2011] and Matgen et al. [2010], particle filters have
been used to assimilate water stage measurements of rivers
obtained from the synthetic aperture radar (SAR) into hy-
draulic models. In Moradkhani et al. [2005], the authors use
the particle filter to estimate parameters as well as the state
in a hydrologic model. In particle filters, the posterior proba-
bility density function (pdf) is approximated by a number of
particles with their corresponding weights. These particles
are propagated forward, and their weights are updated at ev-
ery time step. A larger number of particles result in more
accurate results, while it increases the computational cost of
the method. Nonetheless, particle filters have shown to en-
counter different problems when implemented on various
systems. The most critical issue observed in implementations
of particle filters is the degeneracy problem [Doucet et al.,
2000]. When degeneracy happens, almost all of the particle
weights vanish after a number of iterations meaning that
most of the samples get too far from the actual state of the
system, and, consequently, they no longer contribute to
approximating the posterior density function. Different meth-
ods have been developed to deal with the degeneracy prob-
lem among which sampling importance resampling (SIR)
filter is a most commonly used approach [Kitagawa, 1996].
In the SIR filter, after each time step, the density function is
resampled so that the samples with small weights are dis-
carded and more probable samples are duplicated according
to their weights.

[5] A more subtle issue that usually arises with particle
filters is that, even with resampling, a lot of particles end
up having small weights meaning that they correspond to
low-probability regions. Hence, the number of particle con-
tributing to the approximation of the posterior density func-
tion is usually smaller than the actual number of particles,
and most of the computational effort is wasted on unlikely
particles. To overcome this problem, implicit particle filter
is introduced in Chorin and Tu [2009], Chorin et al.
[2010], and Morzfeld et al. [2012]. Implicit particle filtering
is a method to obtain high-probability samples from the
density function. Implicit sampling requires solving an
underdetermined equation for each particle at every time
step when a measurement becomes available. While the

cost of sampling can be higher in implicit filters, more
accurate results may be obtained with a smaller number of
particles as the particles belong to the high-probability
region of the density function.

[6] In the current article, our goal is to evaluate the per-
formance of different types of Monte Carlo methods for
real-time state estimation of water flow in complex net-
works of open channels. In particular, we are interested to
see how implicit particle filters, developed recently, per-
form in a practical application compared to particle filters
in terms of both accuracy and computational complexity.
After constructing a state space model for the network
under consideration from the Saint-Venant equations, we
apply a number of state estimation methods to incorporate
some available measurements into the model in two situa-
tions: when measurements of the system are available at
every time step and when the measurements become avail-
able intermittently. Given the observation model is linear
and we assume the noises are Gaussian, we apply the opti-
mal SIR filter to the system in which case the conditional
density pðxk jxk�1; zkÞ, which is chosen as the importance
density, happens to be a Gaussian density function. We
also consider a case in which measurements of the system
become available intermittently; that is, we do not have
measurements at every time steps, and we apply the implicit
particle filter to incorporate these measurements to obtain
estimates. We use the random-map method [Morzfeld et al.,
2012] to solve the implicit sampling equation. In this
method, the samples are parametrized via a random map,
and samples are obtained by solving an algebraic equation of
one variable, for each sample, which is obtained from substi-
tuting the random map in the implicit sampling equation.

[7] We also consider a few different heuristics to improve
the estimation results and to reduce the computational cost
of the methods. We consider a case in which observations
are available at every time step. However, we apply the
implicit particle filter and do the sampling over time inter-
vals of a desired length. We change the implicit filter equa-
tions slightly to incorporate all the available measurements
during the interval. As will be seen, this heuristic method is
very effective in the case of the system under consideration.
We believe that this block-sampling implementation of
implicit particle filter when measurements are available at
every time step can be beneficial in the case of dynamic sys-
tems with band-diagonal structure, i.e., systems where the
value of the state at each cell is determined by the value of
the state at the neighboring cells at the previous time step.
Note that most physical system lie in this category, since, in
such systems, information propagates in space continuously
with time. We will elaborate more on this in section 5.1.

[8] As a second heuristics, we propose a maximum a pos-
teriori (MAP) estimation method to calculate the state trajec-
tory over the time interval between two measurements at
time steps k þ 1 and k þ r, which maximizes the posterior
density function in this interval. This requires the knowledge
of the conditional pdf pðxk jz1:kÞ (z1:k represents the collection
of all measurements up to time step k), which we approxi-
mate by a Gaussian density function, the mean and covari-
ance of which are calculated from the estimation over the
previous interval. As will be seen, this amounts to a probabil-
istic version of weak constraint 4D-Var [Tremolet, 2006,
2007], which is a variational data assimilation method used
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in meteorology. In cases in which the posterior density is
symmetric or almost symmetric and the approximation of
conditional density pðxk jz1:kÞ with a Gaussian density is not
too inaccurate, the MAP method may provide more accurate
estimates while having a much lower computational cost
than the implicit filter.

[9] The rest of this article is organized as follows: In
section 2, the one- (1-D) Saint-Venant equations are pre-
sented, and a state space model of the flow in a network of
open channels is constructed. In section 3, we review the
optimal SIR filter and the implicit particle filters. The
random-map implementation of the implicit particle filter
and its application is reviewed in section 4. We propose two
heuristic methods in section 5 to perform the data assimila-
tion to improve performance and lower the computational
cost in the case of system under consideration. Section 6
provides information about the implementation of methods
in a network of open channels in Sacramento-San Joaquin
Delta in California. In this section, the numerical results are
presented, and the performance of different estimation
methods is compared. Finally, we conclude this article in
section 7.

2. Flow Model
2.1. Saint-Venant Model

[10] The Saint-Venant model is among the most common
models used for modeling the flow in open channels and
irrigation systems Chow [1988], Cunge et al. [1980]. In 1-D
case, Saint-Venant equations are two coupled first-order
hyperbolic PDEs derived from conservation of mass and
momentum. For prismatic channels with no lateral inflow,
these equations can be written as follows [Strum, 2001]:

T
@H

@t
þ @Q

@x
¼ 0; (1)

@Q

@t
þ @

@x

Q2

A

� �
þ @

@x
ðghcAÞ ¼ gAðSb � Sf Þ; (2)

for ðx; tÞ 2 ð0; LÞ �R
þ, where L is the river reach (m),

Qðx; tÞ is the discharge or flow (m3 s�1) across cross section
Aðx; tÞ ¼ TðxÞHðx; tÞ, Hðx; tÞ is the stage or water depth
(m), T(x) is the free surface width (m), Sf ðx; tÞ is the fric-
tion slope (m m�1), Sb is the bed slope (m m�1), g is the
gravitational acceleration (m s�2), and hc is the distance of
the centroid of the cross section from the free surface (m).

[11] The friction slope is empirically modeled by the
Manning-Strickler formula [Litrico and Fromion, 2009]:

Sf ¼
n2Q2P4=3

A10=3
(3)

with Qðx; tÞ ¼ Vðx; tÞAðx; tÞ the discharge across cross sec-
tion Aðx; tÞ and average velocity V ðx; tÞ ; P the wetted pe-
rimeter, i.e., the perimeter of the wetted portion of the cross
section; and n the Manning roughness coefficient (s m�1/3).

[12] In the case of subcritical flow, the boundary condi-
tions are taken to be upstream flow Qð0; tÞ and downstream

stage HðL; tÞ or downstream flow QðL; tÞ and upstream
stage Hð0; tÞ [Litrico and Fromion, 2009].

[13] For channels with nonrectangular cross sections, three
correction parameters, �, �, and � can be introduced through
the following equations: A ¼ �TH , P ¼ �ð2T þ HÞ, and
hc ¼ �H . These parameters are calculated based on the aver-
age stage.

2.2. Discretization

[14] We use the Lax diffusive scheme [Chaudhry,
2008; Strum, 2001], which is a first-order explicit scheme
to discretize the equations at internal grid points. Using f
to represent the state variables, Q and H, the derivatives
become

@f

@t
¼ f kþ1

i � 1
2 ðf k

iþ1 þ f k
i�1Þ

�t
; (4)

@f

@x
¼ f k

iþ1 � f k
i�1

2�x
; (5)

using traditional finite difference discretization notation,
with subscript i for space and superscript k for time.

[15] Applying this scheme to equations (1) and (2), we
obtain the following set of finite difference equations:

Akþ1
i ¼ 1

2
Ak

i�1 þ Ak
iþ1

� �
� �t

2�x
Qk

iþ1 � Qk
i�1

� �
(6)

Qkþ1
i ¼ 1

2
Qk

i�1 þ Qk
iþ1

� �
� �t

2�x

Q2

A
þ gAhc

� �k

iþ1

"

� Q2

A
þ gAhc

� �k

i�1

#
þ�t

�k
iþ1 þ �k

i�1

2

 !
;

(7)

where

� ¼ gA Sb � Sf

� �
: (8)

[16] This scheme is stable, provided that the Courant-
Friedrich-Lewy condition holds, i.e.,

�t

�x
jV þ Cj � 1; (9)

where C ¼ ffiffiffiffiffiffi
gD
p

is the wave celerity with D ¼ A=T the hy-
draulic depth (m), and V is the average velocity.

[17] However, the equations above may only be used for
interior grid points. At the boundaries, these equations cannot
be applied since there is no grid point outside the domain.
Therefore, another method needs to be used to compute the
unknown variables at the boundaries. Here, we use the
method of specified time intervals to compute these variables
[Chaudhry, 2008]. In this method, after computing the char-
acteristics, the boundary grid point is projected backward to
the previous time step along its corresponding characteristic
curve. After computing the variables at the projected point,
which is usually done by using linear interpolation, the
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characteristic equations are used to compute the unknown
variable at the boundary grid point at the next time step.

[18] Denoting the projected points corresponding to the
upstream and downstream boundary conditions by subscripts
L and R, respectively, the resulted update equations for
upstream stage and downstream velocity read as follows:

Hkþ1
1 ¼ Hk

L þ
Ck

L

g
V kþ1

1 � V k
L

� �
þ Ck

L�t Sk
fL
� Sb1

� �
; (10)

V kþ1
N ¼ V k

R þ g
Hk

R � Hkþ1
N

Ck
R

� g�t Sk
fR
� SbN

� �
; (11)

where the velocity and wave celerity at projected points
can be calculated as follows:

V k
L ¼

V k
1 þ � Ck

1V k
2 � Ck

2V k
1

� �
1þ � �V k

1 þ V k
2 þ Ck

1 � Ck
2

� � ; (12)

Ck
L ¼

Ck
1 þ �V k

L Ck
1 � Ck

2

� �
1þ � Ck

1 � Ck
2

� � ; (13)

V k
R ¼

V k
N þ � Ck

N V k
N�1 � Ck

N�1V k
N

� �
1þ � �V k

N þ V k
N�1 þ Ck

N � Ck
N�1

� � ; (14)

Ck
R ¼

Ck
N þ �V k

R Ck
N�1 � Ck

N

� �
1þ � Ck

N � Ck
N�1

� � ; (15)

where � ¼ �t/�x, Ck
i is the wave celerity at cell i at time

k, and N is the number of cells.

2.3. Internal Conditions for Confluence in Channel
Network

[19] To apply this model to a channel network, it is nec-
essary to impose networked internal boundary conditions at
every confluence in the channel network. Here, the internal
boundary condition constraints are briefly described for a
simple confluence as in Figure 1, which comprises three
channels.

[20] The constraints corresponding to the internal bound-
ary conditions of stage and discharge are as follows:

H1 ¼ H2 ¼ H3;

Q1 ¼ Q2 þ Q3;

where H1, H2, and H3 represent the stages in the cross sec-
tions 1, 2, and 3, respectively, and Q1, Q2, and Q3 are the
discharges at the three cross sections. The first equation is
simply consistency of stage in all channels at the junction,
and the second equation is just the conservation of mass at
the junction.

[21] The discretized equations obtained from the Lax
scheme and the method of specified time intervals along
with the internal boundary constraints assembled to obtain a
state space model for the entire network of interest is writ-
ten in a compact form as follows:

xkþ1 ¼ f xk ; ukð Þ; (16)

where xk is the state vector at time k, which consists of dis-
charge and stage at all cells throughout the whole network
excluding the external boundary condition variables, and the
input vector uk contains the external boundary conditions.

2.4. Stochastic State Space Model

[22] In the state space model (16), the uncertainties can
be categorized as the modeling errors and the input (bound-
ary conditions) uncertainties. The former resulted from
modeling simplifications and the uncertainties in the pa-
rameters of shallow water equations, such as the Manning
coefficient or uncertainties in the bathymetry data due to
incomplete knowledge of them. For more detailed uncer-
tainty analysis of the shallow water equations, see Liu
[2009]. The effect of modeling uncertainties, as well as
inaccuracies in measurements of the inputs, is commonly
considered as an additive noise term in the state equation
(16) to obtain a stochastic equation:

xkþ1 ¼ f xk ; ukð Þ þ vk : (17)

[23] The noise vk is usually assumed to be zero-mean
white Gaussian and

E½vkvT
l � ¼ Qk�kl; (18)

where �kl is the Kronecker delta, which is one if k and l are
equal and is zero otherwise.

[24] x0 2 Rm is the initial state which is also assumed to
be Gaussian and

x0 ¼ N x0;P0ð Þ; (19)

where x0 and P0 are the initial guesses for state and error
covariance.

[25] Similarly, the errors and uncertainties in the meas-
urements can be taken into account by adding a noise term
to the measurement model to obtain

zk ¼ g xkð Þ þ ek ; (20)
Figure 1. Illustration of internal and external boundary
conditions for a channel network.

RAFIEE ET AL.: STATE ESTIMATION IN OPEN CHANNELS VIA SEQUENTIAL MONTE CARLO

4



where g is the function that relates the measurements to the
state vector and ek is the measurement noise of the sensors
which is assumed to be zero-mean white Gaussian and

E½ekeT
l � ¼ Rk�kl: (21)

We also assume that the process and measurement noises
and the initial conditions are all uncorrelated.

3. Optimal SIR Filter
[26] In Bayesian estimation, the goal is to recursively cal-

culate the conditional pdf p xk jz1:kð Þ, where xk is the state vec-
tor at time k and z1:k is the set of measurements obtained up
to time step k. Assuming the initial state pdf p x0ð Þ is known,
the pdf p xk jz1:kð Þ may be calculated recursively in two steps,
prediction step and update step. The prediction step uses the
state space model to propagate the conditional pdf forward
in time. In other words, it calculates p xk jz1:k�1ð Þ, given
p xk�1jz1:k�1ð Þ via the Chapman-Kolmogorov equation:

p xk jz1:k�1ð Þ ¼
Z

p xk jxk�1ð Þp xk�1jz1:k�1ð Þdxk�1: (22)

[27] In the update step, when the measurements zk

become available, the conditional pdf is updated using the
Bayes’ rule:

p xk jz1:kð Þ ¼ p zk jxkð Þp xk jz1:k�1ð Þ
p zk jz1:k�1ð Þ ; (23)

where

p zk jz1:k�1ð Þ ¼
Z

p zk jxkð Þp xk jz1:k�1ð Þdxk ; (24)

[28] While the above set of equations theoretically solves
the Bayesian estimation problem, analytic solutions are trac-
table only in certain simplified cases, e.g., Kalman [1960]
filter for linear systems with Gaussian noise. For more gen-
eral cases, different approximate solutions have been
devised. Extended Kalman filters [Anderson and Moore,
1979], approximate grid-based filters, unscented Kalman fil-
ters [Julier and Uhlmann, 1997; Wan and van der Merwe,
2000; Haykin, 2001], and particle filters [Doucet et al.,
2001] are the examples of these approximate methods.

[29] Particle filtering is a sequential Monte Carlo method
that calculates approximate solutions to the above equa-
tions for a general case of nonlinear systems with arbitrary
process and measurement noises. The basic idea behind
particle filters is that the posterior pdf p x0:k jz1:kð Þ, where
x0:k ¼ fxj; j ¼ 0; . . . ; kg is the set of all state vectors up to
time k, is approximated using a number of particles or ran-
dom samples with their corresponding weights (probabil-
ities). In other words,

p x0:k jz1:kð Þ �
XNs

i¼1

wi
k� x0:k � xi

0:k

� �
; (25)

where xi
0:k is the ith sample, wi

k is its corresponding weight
(the weights are normalized so they sum to one), and Ns is
the number of samples. The estimates are computed using

the particles, and their associated weights and the weights
are chosen using the principle of importance sampling
[Bergman, 1999].

[30] A common problem with the sequential importance
sampling particle filter is the degeneracy problem. How-
ever, a good choice of importance density can reduce the
degeneracy of the particles. In this work, we choose the im-
portance density q xk jxi

k�1; zk

� �
to be

q xk jxi
k�1; zk

� �
¼ p xk jxi

k�1; zk

� �
¼ p zk jxk ; xi

k�1

� �
p xk jxi

k�1

� �
p zk jxi

k�1

� � :
(26)

[31] It has been shown [Doucet et al., 2000] that this
choice of importance density minimizes the variance of
true weights, w�ik defined as w�ik ¼ p xi

k jz1:k

� �
=q xi

k jxi
k�1; zk

� �
,

which, in turn, maximizes the effective sample size defined
as Neff ¼ Ns

1þVar w�i
kð Þ

. We assume that the process and mea-

surement noises are mutually independent and independent
and identically distributed Gaussian and

vk�1 � N 0;Qk�1ð Þ; (27)

ek�1 � N 0;Rk�1ð Þ: (28)

[32] With this assumption, for systems with nonlinear
dynamics and linear measurement model

xk ¼ fk xk�1ð Þ þ vk�1; (29)

zk ¼ Hkxk þ ek ; (30)

it has been shown that p xk jxi
k�1; zk

� �
is Gaussian [Doucet

et al., 2000; Del Moral, 1998] and

p xk jxk�1; zkð Þ ¼ N mk ;�kð Þ; (31)

p zk jxk�1ð Þ ¼ N Hkfk xk�1ð Þ;Qk�1 þ HkRkHT
k

� �
; (32)

with

��1
k ¼ Q�1

k�1 þ HT
k R�1

k Hk ; (33)

mk ¼ �k Q�1
k�1fk xk�1ð Þ þ HT

k R�1
k zk

� �
: (34)

[33] With this choice of importance density, the weights
update equation simplifies to [Arulampalam et al., 2002]

wi
k / wi

k�1p zk jxi
k�1

� �
; (35)

¼ wi
k�1

Z
p zk jx0k
� �

p x0k jxi
k�1

� �
dx0k ; (36)

[34] When the measurements are obtained, equation (32)
can be used to calculate p zk jxi

k�1

� �
to update the weights

using equation (35).
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[35] When sample impoverishment still occurs even with
the choice of optimal importance density, resampling can
be applied whenever the effective sample size becomes too
small [Carpenter et al., 1999]. A pseudocode description
of the resampling algorithm is provided in Algorithm 1
[Arulampalam et al., 2002]. The algorithm generates a new
set of particles fxj�

k g
Ns

j¼1 with equal weights 1/Ns. In this
resampling method, the particles with small weights, which
correspond to the low-probability regions of the posterior
density function, are discarded, and the particles with larger
weights are replicated according to their weights to keep
the sample size constant.

Algorithm 1: Resampling algorithm
fxj�

k ;w
j
k ; i

jgNs

j¼1

h i
¼ RESAMPLE fxi

k ;w
i
kg

Ns

i¼1

h i
Initialize the CDF: c1 ¼ 0
for i ¼ 2 to Ns do

Construct CDF: ci ¼ ci�1 þ wi
k

end for
Start at the bottom of the CDF: i ¼ 1
Draw a starting point: u1 � U 0;N�1

s

	 

for j ¼ 1 to Ns do

Move along the CDF: uj ¼ u1 þ j�1
Ns

while uj > cj do
i ¼ iþ 1

end while
Assign sample: xj�

k ¼ xi
k

Assign weight: wj
k ¼ 1

Ns

Assign parent : i j ¼ i
end for

[36] Algorithm 2 illustrates the particle filter with
resampling.

Algorithm 2: Particle filter with resampling
fxj�

k ;w
j
kg

Ns

j¼1

h i
¼ PF fxi

k�1;w
i
k�1g

Ns

i¼1; zk

h i
for i ¼ 1 to Ns do

Draw xi
k � q xk jxi

k�1; zk

� �
¼ p xk jxi

k�1; zk

� �
from (31)

Assign the particle a weight, wi
k , using (36).

end for

Calculate total weight: t ¼
XNs

i¼1

wi
k

for i ¼ 1 to Ns do
Normalize: wi

k ¼
wi

k

t

end for
Calculate N̂ eff ¼ 1XNs

i¼1

wi
k

� �2

if N̂ eff < NT then
Resample using algorithm 1:

fxi
k ;w

i
k ;�g

Ns

i¼1

h i
¼ RESAMPLE fxi

k ;w
i
kg

Ns

i¼1

h i
end if

[37] It is worth noting that high effective sample size
does not guarantee the effectiveness of the particle filter.
Even in cases in which the degeneracy does not happen,
i.e., a sufficient number of weights are not zero, the particle
filter may not perform efficiently if all particles belong to a

low-probability region. As an example of an extreme case,
if all particles correspond to a low-probability region where
the density function is almost uniform, the normalized
weights will be all nonzero; however, the particles are not
approximating the density function well. This motivates the
implicit particle filter, which is the subject of the following
section.

4. Implicit Particle Filter
[38] As discussed in the previous section, the main issue

with the particle filters is the fact that many of the particles
end up in low-probability regions, and, consequently, a con-
siderable amount of computational effort is wasted in propa-
gating these particles forward while they do not contribute
to the approximation of the posterior density. Implicit parti-
cle filters have been developed to solve this problem [Chorin
and Tu, 2009; Chorin et al., 2010; Morzfeld et al., 2012].
The basic idea behind implicit particle filters is to create
samples with high probability. Although the computational
cost per particle is, in general, higher in implicit filters, a
better accuracy may be obtained by using a smaller number
of particles than traditional particle filters. From another
point of view, the implicit particle filter does not model the
tails of the posterior. However, it should be noted that the
tails of the posterior are not of statistical significance and
particles corresponding to the tails of the posterior do not
contribute to point estimates, which are normally taken as
the mean of the density function.

[39] We consider a case in which intermittent observa-
tions are available. Suppose that we have a collection of Ns

particles, fxj
k ; for j ¼ 1; . . . ;Nsg, and we have a set of

observations z0:k up to time step k. We consider a case in
which the next observation of the system, zkþr, becomes
available at time k þ r. We can write the posterior as
follows:

P xj
0:kþrjz0:k ; zkþr

� �
¼ P xj

0:k jz0:k

� �
�P xj

kþ1jxk

� �
	 	 	P xj

kþr�1jx
j
kþr�2

� �
�P xj

kþrjx
j
kþr�1

� �
P zkþrjxj

kþr

� �
=Zk ;

(37)

where Zk is a normalization factor. The goal of implicit
sampling is to obtain high-probability samples from
P xj

0:kþrjz0:k ; zkþr

� �
. This is done by defining a function

Fj xkþ1:kþrð Þ via Morzfeld et al. [2012]

exp �Fj xj
kþ1:kþr

� �� �
¼ P xj

kþ1jxk

� �
	 	 	P xj

kþr�1jx
j
kþr�2

� �
�P xj

kþrjx
j
kþr�1

� �
P zkþrjxj

kþr

� �
=Zk :

(38)

A high-probability sample can be obtained by solving the

following algebraic equation for xj
kþ1:kþr :

Fj xj
kþ1:kþr

� �
� �j ¼

1

2
�T

j �j; (39)

where �j is a sample from a zero-mean Gaussian distribu-
tion, P� ¼ N 0; Ið Þ, and �j ¼ min Fj Xð Þ. It is clear that,
with this sampling method, we obtain a sample with high
probability.
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[40] The weights corresponding to the particles are cal-
culated as follows:

wj
kþ1 / wj

kþ1 exp ��j

� �
J ; (40)

where J ¼
���det

@xj
kþ1:kþr

@�j

��� is the Jacobian of the map between
�j and the particle trajectory xj

kþ1:kþr.
[41] In the special case of the system considered in this

article in which the observation model is linear and the pro-
cess noise and measurement noise are assumed to be Gaus-
sian, the function Fj will have the following form:

Fj xj
kþ1:kþr

� �
¼ log

1

2	ð Þ nrþmð Þ=2

Ykþr

i¼k

1ffiffiffiffiffiffiffiffiffiffiffi
detQi
p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detRkþr
p

 !

þ 1

2

Xkþr�1

i¼k

xiþ1 � f xi; uið Þð ÞT Q�1
k xiþ1 � f xi; uið Þð Þ

þ 1

2
zkþr � Hkþrxkþrð ÞT R�1

kþr zkþr � Hkþrxkþrð Þ:

(41)

[42] To implement the implicit particle filter for the sys-
tem considered, the main tasks at each time step are calcu-
lating min Fj Xð Þ, the Jacobian of the implicit map J, and
solving equation (39) for each particle to obtain a sample.
In what follows, we elaborate on how we handle each one
of these problems for our application.

4.1. Calculating the Minimum of Implicit Sampling
Functions

[43] To calculate min Fj Xð Þ, we use the Newton method
for which we need to calculate the Jacobian and Hessian of
Fj. Note that the function Fj is in general a different func-
tion for each particle. Therefore, the Jacobian and Hessian
must be calculated for each particle individually. This may
make the implicit sampling procedure computationally ex-
pensive in cases in which the Jacobian and Hessian of Fj

cannot be calculated analytically. Fortunately, in our case,
we can calculate the partial derivatives for the interior grid
points analytically. Moreover, we use a numerical method
to calculate the partial derivatives at boundary points. This
reduces the computational cost of the implicit sampling
significantly.

[44] We can write the Jacobian, Jj, of Fj as follows:

J j xj
kþ1:kþr

� �
¼ Akþ1; . . . ;Akþrð Þ; (42)

Akþ1 ¼ Xkþ1 � f xkð Þð ÞT Q�1
k ; (43)

Ai ¼ Xiþ1 � f xið Þð ÞT Q�1
i � Xkþ1 � f xkð Þð ÞT Q�1

i Jf xið Þ
for i ¼ k þ 2; . . . ; k þ r � 1;

(44)

Akþr ¼ Xkþrþ1 � f xkþrð Þð ÞT Q�1
kþr�1

þ Hxkþr � zð ÞR�1
kþr�1H ;

(45)

where Jf xj
k

� �
is the Jacobian matrix of the system’s state

space function f, which we calculate analytically for interior

grip points and numerically at the boundary points in each
channel. The analytical partial derivatives of f for interior
grid points are provided in Appendix A.

[45] The Hessian of Fj can be written as a band block-
diagonal sparse matrix where the diagonal blocks are as
follows:

HF ¼

D1 C1 0 	 	 	 0

CT
1 D2 C2

. .
. ..

.

0 CT
2

. .
. . .

.
0

..

. . .
. . .

.
Dr�1 Cr�1

0 	 	 	 0 CT
r�1 Dr

0
BBBBBBBBBB@

1
CCCCCCCCCCA

with

Ci ¼ �Jf xiþ1ð ÞT Q�1
iþ1;

Dr ¼ Q�1
r þ HT

kþrR
�1Hkþr;

Di ¼ Q�1
i þ Jf xið ÞT Q�1

iþ1Jf xið Þ þ Ll
i; i < r;

Ll
i ¼ xiþ1 � f xið Þð ÞT Q�1

iþ1Hl
f xið Þ;

where Hl
f xið Þ ¼ @2fs

@xl@xt

h i
s;t

is a slice of the Hessian matrix of

the system’s state space function f, which we calculate
analytically for interior grid points and numerically at the
boundary points in each channel. The analytical partial
derivatives of f for interior grid points are provided in
Appendix A. Note that fs denotes the sth component of f.

[46] To obtain the initial seed for the Newton method in
computation of min Fj Xð Þ, we run the forward simulation
with the mean of particles as initial condition, and we run a
few steps of Newton method to polish the initial guess of
the minimizing solution. We use a line-search method to
find a proper step size for the Newton method.

4.2. Solving the Sampling Equation via a Random
Map

[47] To solve equation (39), we use the random-map
method introduced by Morzfeld et al. [2012]. Assuming
that the level sets of the function Fj are closed, the follow-
ing map is considered as the map between �j and xj

kþ1:kþr :

xj
kþ1:kþr ¼ 
j þ �jL

T
j �j; (46)

where �j ¼ �j=
ffiffiffiffiffiffiffiffi
�T

j �j

q
is the direction of the sample �j of the

Gaussian reference variable �j � N 0; Ið Þ ; 
j is the location

of the minimum of Fj, i.e., Fj 
j

� �
¼ �j ; and Lj 2 Rnr�nr is

an invertible matrix chosen deterministically. It has been
observed that taking Lj as the Cholesky factorization of the
inverse of the Hessian, i.e., H�1

j ¼ LjLT
j is a good choice

for Lj specially if Fj is nearly quadratic.
[48] Note that, in equation (46), only �j is unknown after

the reference Gaussian variable is sampled. By substituting
equation (46) in equation (39), one obtains an algebraic
equation for the single scalar �j, which can be easily solved.
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This will yield a sample for the particle trajectory xj
kþ1:kþr.

Assuming the level sets of function Fj are closed, solving
equation (46) for �j corresponds to a solution of equation
(39) in a specific direction, LT

j �j.

4.3. Calculating the Jacobian of the Implicit Sampling
Function

[49] By differentiating equation (46), we obtain the fol-
lowing equation [Morzfeld et al., 2012]:

@xj
kþ1:kþr

@�j

¼ LT
j �j

@�j

@�j

 !
þ �LT

j

@�j

@�j

: (47)

[50] After some manipulations, the Jacobian of the
implicit map can be written as follows:

J ¼ 2jdetLjj�1�nr=2
j

�����rn�1
j

@�j

@�j

����; (48)

where �j ¼ �T
j �j and

@�j

@�j
can be calculated numerically.

[51] A pseudocode description of the implicit particle
filter is presented in Algorithm 3.

Algorithm 3: Implicit particle filter with resampling

fxj
k ;w

j
kg

Ns

j¼1

h i
¼ Imp-PF fxj

k�1;w
j
k�1g

Ns

j¼1; zk

h i
for j ¼ 1 to Ns do

Calculate �j ¼ min Fj Xð Þ .
Draw a sample �j � N 0; Ið Þ
Calculate the Hessian of Fj, Hj and set Lj ¼ cholðH�1

j Þ
Substitute the random map, equation (46) in the sam-

pling equation (39) and solve for �j to obtain a sample tra-
jectory xj

kþ1:kþr.
Calculate the Jacobian of the implicit map using (48).
Update the particle weight, wj

k , using equation (40).

end for

Calculate total weight: t ¼
XNs

j¼1

wj
k

for j ¼ 1 to Ns do
Normalize: wj

k ¼
wj

k

t

end for
Calculate N̂ eff ¼ 1XNs

j¼1

wj
k

� �2

if N̂ eff < NT then
Resample using algorithm 1:

fxj
k ;w

j
k ;�g

Ns

j¼1

h i
¼ RESAMPLE fxj

k ;w
j
kg

Ns

j¼1

h i
end if

5. Heuristics
5.1. Implicit Particle Filter With Block-Sampling

[52] In this section, we consider a case in which observa-
tions are available at every time step. It is known that, in the
case of systems with linear observation model and Gaussian
noises when measurements are available at every time step,
the implicit particle filter becomes equivalent to the optimal
SIR filter [Morzfeld et al., 2012]. Nonetheless, as a heuristic
method, we use the implicit particle filter to do the sampling
every r time steps while using the measurements at all time

steps instead of sampling at every time step. We believe
that, for systems with band-diagonal structure, i.e., systems
in which the value of each state at the next time step is
determined by the current values of its neighboring states,
this heuristic method may improve the estimation results.
The shallow water model used in the current article is an
example of such a system. As can be seen in the discretized
Saint-Venant equations in section 2.2, the value of flow or
stage at each cell is determined by values of flow and stage
at its neighboring cells at the previous time step. In such
systems, the information is propagated in space one cell ev-
ery time step. Therefore, a measurement provides informa-
tion about the value of the state at a cell, which is r cells
far from the location of the measurement at r time steps
before. This suggests that using all the measurements
obtained over a block of time steps and performing the
sampling over the block may improve the results. To
implement this method, the implicit function needs to be
slightly modified as follows so that the filter uses all the
available measurements:

P xj
0:kþrjz0:kþr

� �
¼ P xj

0:k jz0:k

� �
�P xj

kþ1jxk

� �
	 	 	P xj

kþr�1jx
j
kþr�2

� �
P xj

kþrjx
j
kþr�1

� �
�P zkþ1jxj

kþ1

� �
	 	 	P zkþrjxj

kþr

� �
=Zk ;

(49)

Fj xj
kþ1:kþr

� �
¼ log

1

2	ð Þ nrþmð Þ=2

Ykþr

i¼k

1ffiffiffiffiffiffiffiffiffiffiffi
detQi
p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detRkþr
p

 !

þ 1

2

Xkþr�1

i¼k

xiþ1 � f xi; uið Þð ÞT Q�1
k xiþ1 � f xi; uið Þð Þ

þ 1

2

Xkþr

i¼kþ1

zi � Hkþrxkþrð ÞT R�1
kþr zi � Hkþrxkþrð Þ:

(50)

Moreover, the Jacobian and Hessian must be changed
accordingly.

5.2. MAP Estimation

[53] The idea investigated in this section is to propagate
the maximum-probability trajectory obtained in the mini-
mization step of the implicit particle filter forward and to
use that as the estimates. This significantly reduces the
computational cost of the method, as there will be no need
to create particles. Moreover, the minimization problem
needs to be solved only once instead of once for each parti-
cle. The simplest thing to do would be to calculate
max xkþ1:kþr P xkþ1; . . . ; xkþrjxk ; zkþrð Þ using xk as a deter-
ministic vector obtained from the maximization over the
previous time interval. However, this does not take into
account the uncertainty in the value of xk. To account for
the uncertainty in xk, one can consider xk as a random vari-
able. Considering xk as a random variable, we aim to find
the MAP estimate of the state trajectory over the interval
between time steps k þ 1 and k þ r, i.e., the solution of the
following optimization problem:

x̂k:kþr ¼ arg maxxk:kþr P xk ; . . . ; xkþrjz1:kþrð Þ: (51)

RAFIEE ET AL.: STATE ESTIMATION IN OPEN CHANNELS VIA SEQUENTIAL MONTE CARLO

8



The cost function in equation (51) can be factored as
follows:

P xk:kþrjz1:kþrð Þ ¼ P xk:kþrjz1:kð ÞP zkþrjz1:k ; xk:kþrð Þ
P zkþrjz1:kð Þ

¼ P xk jz1:kð ÞP xkþ1:kþrjxkð ÞP zkþrjxkþrð Þ
P zkþrjz1:kð Þ :

(52)

Defining the function ~F as

exp �~F xk:kþrð Þ
� �

¼ P xk jz1:kð ÞP xkþ1:kþrjxkð ÞP zkþrjxkþrð Þ; (53)

we have

x̂k:kþr ¼ arg minxk:kþr
~F xk:kþrð Þ: (54)

Now, we explain how we solve the above optimization
problem. It can be readily seen that

~F xk:kþrð Þ ¼ F xkþ1:kþrð Þ � log P xk jz1:kð Þð Þ; (55)

where F is the function defined in equation (38). The poste-
rior density function P xk jz1:kð Þ is not generally available,
but we approximate it with a Gaussian density, N x̂k ;Kkð Þ.
The mean, x̂k , is the estimate of xk obtained from solving
the MAP estimation over the previous interval. To find the
covariance, we approximate P xk�r:k jz1:kð Þ with a Gaussian
density with covariance being equal to the inverse of the
Hessian of P xk�r:k jz1:kð Þ, which is already available to us
from solving the MAP estimation over the previous time
interval. We then obtain the covariance of the marginal den-
sity P xk jz1:kð Þ, which is the desired covariance matrix Kk.

[54] For the case of the system under consideration, we
can write

~F xk:kþrð Þ ¼ log
1

2	ð Þ nrþmð Þ=2

Ykþr

i¼k

1ffiffiffiffiffiffiffiffiffiffiffi
detQi
p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detRkþr
p

 !

þ 1

2

Xkþr�1

i¼k

xiþ1 � f xi; uið Þð ÞT Q�1
k xiþ1 � f xi; uið Þð Þ

þ 1

2
zkþr � Hkþrxkþrð ÞT R�1

kþr zkþr � Hkþrxkþrð Þ

þ 1

2
ðxk � x̂kÞT K�1

k xk � x̂kð Þ:

(56)

The optimization problem (54) can be solved using the
Newton method with the forward simulation predicted state
trajectory as the initial seed to obtain an optimal solution.
Note that ~F xk:kþrð Þ has one additional quadratic term than
F xkþ1:kþrð Þ and the calculated Jacobian and Hessian of
F need to be slightly changed to obtain those of ~F xk:kþrð Þ.

[55] It is not hard to see that the above approach is simi-
lar to the weak constraint 4D-Var method, where a cost
function consisting of quadratic terms accounting for model
error, measurement error, and error in the initial conditions
is minimized [Tremolet, 2006, 2007].

[56] Figure 2 shows a flowchart of the MAP estimation
algorithm presented in this section.

[57] Note that in cases in which the posterior density
P xkþ1; . . . ; xkþrjxk ; zkþrð Þ is symmetric, the MAP estimates
will be more accurate than the estimates obtained from the
weighted average of the particles, and as the number of
particles converges to infinity, the weighted average esti-
mate converges to the MAP estimate, which is the trajec-
tory that maximizes the posterior density. In cases in which
the posterior density P xkþ1; . . . ; xkþrjxk ; zkþrð Þ is close to

Figure 2. Flowchart of the MAP estimation heuristic method where T is the desired length of the
experiment.
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symmetric and the approximation of P xk jz1:kð Þ with a Gaus-
sian density is reasonable, we expect that the MAP method
introduced above to be a very appealing estimation method,
as it may provide more accurate estimates with a much
lower computational cost than the optimal SIR and the
implicit particle filter. As we apply the method for the sys-
tem under consideration, we will see in section 6 that this is
the case for this system. In other words, we obtain more
accurate results with a smaller computational cost by using
the MAP method.

[58] As a side remark, note that the implicit particle filter
and the MAP method do not require the linearity of the
measurement model and can be applied to systems with
nonlinear measurement model without any changes. How-
ever, the optimal SIR filter is only valid for systems with
Gaussian noise and linear observation model. Other ver-
sions of the particle filters must be used for systems with
nonlinear observation model.

6. Implementation
6.1. Experiment Setup

[59] We consider a network of 19 subchannels and 1 res-
ervoir in the southern part of Sacramento-San Joaquin to
implement the data assimilation methods. The Sacramento-
San Joaquin Delta, in northern California, is the hub of Cal-
ifornia’s water system. This complex network covers
738,000 acres interlaced with more than 1150 km of tidally
influenced channels and sloughs, and approximately 50%
of California’s average annual streamflow flows to the
delta. Figure 4 shows a map of the delta.

[60] The network considered for implementation consists
of the Clifton Court Forebay and its surrounding channels,
which are parts of the Old River, the Italian Slough, the
Mendota Canal, the West Canal, the Victoria Canal, and
the Grant Line Canal, and is located on the northern side of
Tracy. Clifton Court Forebay is a regulated reservoir at the
head of the State Water Project’s California Aqueduct.
There are five radial gates, which control the flow into the
forebay. The inflow is measured indirectly. The California

Department of Water Resources (DWR) Delta Field Divi-
sion calculates the difference in expected storage from the
actual measured storage, which is used to calculate the
inflow into the forebay. Figure 5 shows a satellite picture of
the area and a map of the network with the channel config-
uration of the network, considered in building a 1-D model
of the flow. As can be seen in Figure 5, this network con-
sists of 1 reservoir, 19 subchannels, and 10 junctions. The
total length of the channels in the network is 38,420 m.
Table 1 presents the name and some geometry information
about the channels. The channels are represented by their
parent nodes from Figure 5.

[61] Figure 3 shows a flow diagram of the experiment.
We use the Delta Simulation Model II (DSM2) to obtain
measurements for boundary conditions and data assimilation
as well as to evaluate our results. DSM2 is a 1-D mathemati-
cal model, developed in the DWR, for dynamic simulation
of hydrodynamics, water quality, and particle tracking in
the delta. DSM2 can calculate stages, flows, velocities,
transport of individual particles, and mass transport proc-
esses for conservative and nonconservative constituents,
including salt, water temperature, dissolved oxygen, and
dissolved organic carbon. We use DSM2 since there are not
enough U.S. Geological Survey (USGS) sensor stations in
the area of interest to obtain boundary conditions and addi-
tional flow measurements needed for the data assimilation.
DSM2 is one of the reference models used by the DWR for
operations and will be considered in this work as the ground
truth. Figure 6 compares the discharge and stage at the
upstream of Old River (node 4 in Figure 5) generated by
DSM2 with the USGS sensor measurements for 10–12 June
2006 and illustrates the applicability of DSM2 as a model-
ing tool to compute discharge and stage at locations where
we need them for boundary conditions or as virtual sensor
measurements. Note that DSM2 is a model of the whole
delta and node 4 is one of its internal grid points. The moti-
vation for using a different model for producing the meas-
urements is to avoid committing the so-called inverse crime
(which is the act of using the same model as both the for-
ward and inverse models in a data assimilation experiment
[Kaipio and Somersalo, 2004]) and assess the performance
of the data assimilation methods in a more realistic setting.

6.2. Numerical Results

[62] We perform an experiment for a period of 25 h
using historical data corresponding to 12 June 2006. We
obtain the boundary conditions and measurements used for
data assimilation from DSM2. As boundary conditions, dis-
charge is imposed at nodes 1, 7, 15–17, and stage is
imposed at nodes 4 and 12. Figure 7 shows the boundary
conditions. The Tracy Pumping Plant is located at node 15,
and, as can be seen in Figure 7b, there is a constant outflow
soon after the experiment starts and there is no outflow at
node 1 for the period of the experiment. To model the mea-
surement noise, we add a zero-mean Gaussian noise with a
variance of 5 ft6 s�2 and 0.05 ft2 to the boundary conditions
for discharge and stage measurements, respectively.

[63] The number of cells in each subchannel is chosen in
a way that the spatial step size in the subchannel is close to
and not smaller than 900 ft, and the temporal step size is
chosen to be 15 s. This choice of spatial step size results in
204 cells for the full network. Since, at each internal cell,

Figure 3. A flow diagram of the experiment.

RAFIEE ET AL.: STATE ESTIMATION IN OPEN CHANNELS VIA SEQUENTIAL MONTE CARLO

10



there are two states, discharge and stage, and there is one
state at the boundary cells, we will have a 401-dimensional
system. We run DSM2 with a spatial step size of 5000 ft
and a temporal step size of 15 min. We run DSM2 starting
1 day earlier so that the effects of inaccurate initial condi-
tions are washed away and the DSM2 results are close to
reality from the beginning of the experiment.

[64] Figure 8 shows the stage at two different locations
computed by our model, the forward simulation, compared
to the stage at the corresponding locations obtained from
DSM2. As can be seen in Figure 8, the stage obtained from
the forward simulation and DSM2 match closely. This is
true at all locations throughout the network. However, there
is a discrepancy between the discharge computed by the

Figure 4. The Sacramento-San Joaquin Delta, image adapted from Lund et al. [2007]. The small box
on the southern part of the delta is the network considered for implementation of the methods proposed
in the current article.
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forward simulation and DSM2. This is due to the fact that
the bathymetry used for the forward simulation is different
than that of DSM2. DSM2 computes the water surface (rel-
ative free surface elevation with respect to a datum), and
we use the same bathymetry used for the forward simula-
tion to convert the water surface to stage. This decreases
the sensitivity of stage to bathymetry, which explains the
lower discrepancy in stage computed by DSM2 and the for-
ward simulation.

[65] To perform data assimilation, we only focus on
assimilating discharge to improve the forward simulation
results. We use six discharge measurements at the middle
of channels 3–4, 6–8, 9a10, 10–11, 5–11, and 13–14, the
locations of which are shown by red stars in Figure 5b. The
process and measurement noises are assumed to be zero-
mean white Gaussian noise. The measurement noise is
assumed to be zero-mean Gaussian, as it is an assumption
commonly made in accordance with the central limit theo-
rem. The covariance of the noise is approximated by calcu-
lating the sample covariance obtained from historical data.
We assume that the noises on different measurements are
uncorrelated. At each cell, the process noise on discharge is
assumed to be correlated with the discharge at its four
neighboring cells from each side. The variance on discharge
at each cell is taken to be 25 ft6 s�2, and the correlations are
taken to be 20 ft6 s�2, 12 ft6 s�2, 8 ft6 s�2, 4 ft6 s�2 with the
discharge at the neighboring cells, respectively. These
approximations of the noise variance were chosen based on
the sample variances of the process noise at a few locations
in the network, and other variances and correlations were
approximated accordingly. The sensor measurements are
obtained from DSM2, and a zero-mean Gaussian noise with
a variance of 50 ft6 s�2 is added to these measurements to
simulate the uncertainty in the measurements.

[66] Using these flow measurements, the optimal SIR fil-
ter is applied. Figure 9 shows the results of the forward
simulation and the SIR filter with 1000 particles compared
with the corresponding results obtained from DSM2. The
discharges at six locations in the network are illustrated for

the period of the experiment. As can be seen in this figure,
the SIR filter improves the model results significantly. To
quantify the performance of the methods rigorously, we
calculate the relative error throughout the whole domain at
each time step using the following formula:

E kð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNcells

i¼1

Q̂
k

i � Qk
i

� �2

XNcells

i¼1

Qk
i

� �2

vuuuuuuut ; (57)

where Qk
i and Q̂

k

i are the true value of the flow and the esti-
mated flow at cell i and time step k, respectively.

[67] The implicit particle filter is also applied for two
cases, a case with sparse measurements and a case in which
measurements are available at every time step, but we
apply the first heuristic method to perform the sampling
over intervals of 10 time steps while using all the available
measurements. Figure 10 shows the time evolution of the
relative error corresponding to the forward simulation, the
SIR filter with 1000 particles, and the implicit particle filter
with 50 particles while using measurements at every time
step and performing block sampling. It can be seen in this
figure that the relative error of the forward simulation has
large peaks corresponding to more than 60% error. The
SIR filter reduces the relative error to below 20% almost at
all times. It can also be seen that using the implicit particle
filter with the block-sampling heuristic method discussed
in section 5.1 improves the results further. The relative
error corresponding to the implicit particle filter with block
sampling remains below 10% most of the time. The authors
believe the fact that the decrease in average relative error is
small as the number of particles increases is due to the fact
that the posterior density is close to symmetric and is unim-
odal. The point estimates are taken as the mean of the pos-
terior, which is approximated by the weighted average of
the particles. In the case of implicit particle filter, we think
that the average relative error will converge to a value
smaller or equal to the one obtained from the MAP method,
as the number of particles tends to infinity.

[68] The MAP estimation method proposed in section 5.2
is also implemented for both cases of sparse measurements
and measurements available at every time step. Figure 10
compares the time evolution of the relative error of the
implicit particle filter with block sampling with 50 particle
and the MAP method for the case where measurements are
available at every time step. As can be seen in this figure,
the MAP method improves the relative error compared to
the implicit particle filter almost at all times.

[69] We implement different estimation methods dis-
cussed in previous sections for different scenarios and to
compare the performance of different methods in different
cases, we calculate the average of the relative error per
time step over the period of the experiment as follows:

E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXT

k¼1

XNcells

i¼1

Q̂
k

i � Qk
i

� �2

XT

k¼1

XNcells

i¼1

Qk
i

� �2

:

vuuuuuuut (58)

Table 1. The Names and Geometry Information of the Subchan-
nels in the Open Channel Network in Sacramento-San Joaquin
Delta in California Used for the Implementations

Channel River Length
Average
Width

Average
Depth

1–2 Italian Slough 14,198 234.0 14.0
2–3 Italian Slough 2723 203.4 16.4
2–5 Italian Slough 3227 437.5 10.3
3–4 Old River 4754 351.3 21.8
3–5 Old River 5022 351.2 22.0
5–6 Old River 4313 238.4 13.0
5–11 West Canal 10,041 253.0 28.0
6–7 Victoria Canal 8760 386.5 18.3
6–8 Old River 2722 276.3 15.2
8–9 Old River 2793 109.0 11.7
8a9 Old River 5347 157.1 9.0
9–10 Old River 2456 109.0 11.7
9a10 Old River 5062 157.1 9.0
10–11 Old River 7744 198.4 12.4
11–13 Old River 2609 266.0 19.0
13–14 Old River 3857 245.0 17.8
14–16 Old River 12,089 176.0 10.0
14–15 Mendota Canal 12,500 196.0 18.0
13–17 Grant Line Canal 15,831 404.0 16.0
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[70] In the cases of SIR filter and the implicit particle fil-
ter, the relative error is a random variable due to the random-
ness in propagation of the particles. Therefore, we perform
the assimilation 10 times for each scenario in these cases to
calculate the mean and variance of the relative error.

[71] In Table 2, the average relative error is provided for
the forward simulation, the optimal SIR, and implicit parti-
cle filters with block-sampling for a few different number of
particles, as well as, the MAP method. As can be seen in
this table, performing data assimilation using the optimal
SIR filter reduces the average error of the model from about
23% to around 10%, which is a significant improvement.
More interestingly, using the implicit particle filter with
block sampling reduces the average error to about 8%. As
discussed before, this is due to the fact that using more
measurements before sampling results in more accurate
samples, specially in cases where information propagates in
space continuously with time. Also, note that increasing the
number of particles improves the results slightly. Unfortu-
nately, we were not able to run the methods for larger num-
ber of particles due to the required computational time. For
instance, implementing the implicit particle filter with 50
particles for the period of the experiment on a 2.6 GHz
dual-core desktop takes a few days. Finally, note that the
MAP method improves the results further and reduces the
average relative error to about 7%. It is remarkable that
the MAP method provides the best estimate considering
the fact that the computational cost of the MAP method is

also less than other methods. In the MAP method, the mini-
mization is solved only once at every time interval in con-
trast to once for every particle in the case of the implicit
particle filter, and there is also no need to solve the sam-
pling equation.

[72] Note that the particle filters even with one particle
decrease the model error significantly by taking advantage of
the six additional discharge measurements used for the data
assimilation. In other words, when the particle filters are
applied, extra discharge measurements are incorporated into
the model even with one particle as opposed to the forward
simulation, which only takes advantage of the boundary con-
ditions. In the optimal SIR case, the importance density is
chosen as p xk jxi

k�1; zk

� �
, and the measurements not only

affect the weight updates but also affect the importance den-
sity and hence the particles. In the case of the implicit parti-
cle filter, the measurements directly affect the location of the
minimizer of Fj Xð Þ.

[73] We also consider a case in which sparse measure-
ments are available. We assume that measurements become
available at every 10 time steps, and we implement the
implicit particle filter and the MAP method to incorporate
the sparse measurements into the model. Note that it is not
necessary to assume the time interval between the measure-
ments to be fixed, although the implementation is done
with this assumption. Table 3 shows the relative error in
the case of sparse measurements resulted from using the
implicit particle filter and the MAP method. As can be seen

Figure 6. A comparison of the DSM2 prediction of (a) flow and (b) stage at node 4 in Figure 5 and
USGS sensor measurements, corresponding to 10–12 June 2006.
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in this table, the MAP method provides a smaller average
error than the implicit filter.

[74] Finally, in the case in which measurements are avail-
able at every time step, we investigate the effect of r, i.e.,
the length of the sampling time interval, on the performance
of the methods for the case of the implicit particle filter with
block sampling and the MAP method. Table 4 provides the
relative error corresponding to four different values of r.
Note that when r is taken to be 1, the implicit particle filter
has the same error as the optimal SIR filter. This is consist-
ent with the fact that, in the case of a linear observation
model and Gaussian noise, the implicit particle filter recov-
ers the optimal SIR filter. It is also interesting to see that r
¼ 5 provides the least error in both cases. We think that this
is for two reasons. First, the dimension of the problem
increases with r. More precisely, the dimension of the state
trajectory over the interval increases linearly with r. There-
fore, larger inaccuracies will result from numerical proc-
esses, e.g., solving the minimization problem, as the
dimension of the problem increases. Second, as r becomes
large, some of the measurements used for the estimation of
the state trajectory may become irrelevant, i.e., the measure-
ments obtained at the end of the interval may not contain
relevant information about the state at the beginning of the
interval if the length of the interval, r, is too large.

[75] Finally, to compare the computational complexity of
each of the methods discussed, we provide the average com-
putational time per time step for each case, while imple-
mented on a 2.6 GHz dual-core desktop computer, in Table 5.
It should be emphasized that the programs are not currently

written in an efficient way specially in the case of the implicit
particle filter. As can be seen in this table, the computational
time of the implicit filter with 10 particles is almost the same
as that of the optimal SIR with 500 particles. Nonetheless, as
seen in Table 2, the implicit filter with 10 particles produces
an average error of about 8%, while the optimal SIR produces
an average error of about 10%. Also, note that the MAP
method has a lower average computational time than the
implicit filter. In fact, it can be seen that the computational
time of the MAP method is almost that of the implicit filter
divided by the number of particles. This is because, in the
MAP method, the minimization, which is the most costly step
of the implicit filtering, is done once as opposed to once for
every particle in the case of implicit filters.

[76] Note that, in all cases of particle filters, the algo-
rithms can be easily parallelized by distributing the particle
among the machines. Each machine can be responsible for
the propagation of a certain number of particles, and as the
number of machines increases, larger number of particles
can be handled in the same amount of time, which can
result in a better accuracy.

7. Conclusion
[77] We investigated the performance of different Monte

Carlo methods applied for the estimation of water flow in
an open channel network consisting of 19 subchannels and
1 reservoir in Sacramento-San Joaquin Delta in California.
Starting from 1–D Saint-Venant equations, we constructed
a state space model of the flow in the network of interest.

Figure 8. The stage computed by the forward simulation compared to DSM2 results at channels
(a) 5–11 and (b) 8–9.
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Considering a case in which measurements are available at
every time step, we implemented the optimal SIR filter. We
also considered a case in which sparse measurements are
available, i.e., measurements become available at every r
time steps, where r could be a random integer in general
(although we considered a fixed r in this work). We imple-
mented a random-map implementation of the implicit particle
filter implemented to incorporate the sparse measurements
into the model.

[78] In the case in which measurements are available at
every time step, we proposed a heuristic method to obtain
better estimates than the optimal SIR filter. It is known
that, for systems with linear observation model and Gaus-
sian noise when r ¼ 1, the implicit particle filter is equiva-
lent to the optimal SIR filter. However, in such a case, we
implemented the implicit particle filter over time intervals
of a desired length, and we incorporated all the measure-
ments available within the interval to obtain an estimate of
the state trajectory over the interval. It was seen through
implementation that this implementation of implicit parti-
cle filter with block sampling provides a more accurate esti-
mate than the optimal SIR. We think that this will be the
case in systems with a band-diagonal dynamic structure,
for which the value of each state component is determined
by the value of its neighboring components at the previous
time step. In such systems, the information propagates one
cell in space per one time step. As a result, a measurement
at a given location contains information about the value of
state r components away r time steps ago. Therefore, per-
forming estimation over time intervals using all the avail-
able measurements may create more accurate samples.

[79] As a second heuristics, we posed the estimation
problem as a MAP estimation in which the goal is to maxi-
mize the posterior density of the state trajectory over the
interval, given all measurements. We believe that, in cases
in which the posterior density is symmetric or close to sym-
metric, this method may provide more accurate estimates
than the implicit filtering. By approximating the conditional
density of the state at the beginning of the interval with a
Gaussian density, we were able to solve the corresponding
optimization problem with the same computational cost as
the optimization problem in the case of implicit filters. It
was observed that, for the case of estimation problem con-
sidered in this article, this method provides more accurate
estimates than the implicit particle filter while having a
much lower computational cost.

[80] We think the application presented in this article
can help the practitioners to assess the utility of additional
measurements of the system, which can be used in data
assimilation such as the bones presented to improve the
model outputs. It was seen that in the implementation con-
sidered in the current article, using six internal discharge
measurements led to an improvement of the error from
over 20% to less than 10%.

[81] The implicit particle filter and the proposed MAP
method can be applied in many practical problems in geo-
sciences and hydraulics. The traditional particle filters have
been applied for different estimation problems in hydrology,
for instance, to assimilate the SAR data into hydrologic
models to estimate the water level [Giustarini et al., 2011;
Madsen and Skotner, 2005; Matgen et al., 2010] and dis-
charge [Neal et al., 2009] in rivers and for flood modeling.
We believe that the implicit particle filter can produce more
accurate results in such applications. Applying the implicit
particle filter to such problems to which the particle filters
have been previously applied and performing a quantitative
comparison between the two is a topic of future research.

Table 2. Average Relative Error Corresponding to the Forward
Simulation, the Optimal SIR, the Implicit Particle Filter with
Block-Sampling (IMP PF with BS) for a Few Different Number of
Particles, and the MAP Method, for a Case Where Measurements
Are Available at Every Time Step

Method
Number

of Particles
Error (%):

Mean/Variance

Forward simulation – 23.36
SIR 1 10.87/0.63
SIR 10 10.41/0.48
SIR 100 10.28/0.39
SIR 1000 10.15/0.30
IMP PF with BS 1 8.03/0.41
IMP PF with BS 10 7.74/0.26
IMP PF with BS 50 7.55/0.21
MAP – 6.92

Table 3. Average Relative Error Corresponding to the IMP PF,
for 10 and 50 Particles, and the MAP Method, for a Case in Which
Measurements Are Available at Every 10 Time Steps

Method
Number

of Particles
Error (%):

Mean/Variance

IMP PF 1 14.31/0.47
IMP PF 10 13.88/0.32
IMP PF 50 13.68/0.27
MAP – 11.72

Table 4. Average Relative Error Corresponding to the IMP PF
with BS, for 10 Particles, and the MAP Method, for a Case in
Which Measurements Are Available at Every Time Step, for Four
Different Values of r

r IMP PF with BS MAP

1 10.89/0.48 10.38
5 7.52/0.22 6.20
10 7.74/0.26 6.92
20 9.83/0.35 8.96

Table 5. Average Computational Time of the Methods Per Time
Step, for the Optimal SIR, the IMP PF with BS, and the MAP
Method

Method
Number

of Particles
Average Computation

Time/Time Step (s)

SIR 10 0.14
SIR 50 0.54
SIR 500 5.16
IMP PF with BS 10 5.24
IMP PF with BS 50 25.57
MAP – 0.55
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Appendix A

[82] The nonzero terms of the Jacobian matrix of the state
space function corresponding to interior grid points are as
follows:
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[83] The nonzero terms of the Hessian matrix of the state
space function corresponding to the interior grid points are
as follows:
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