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Abstract

In this article, we propose a computational method for solving the Lighthill-Whitham-Richards (LWR)
partial differential equation (PDE) semi-analytically for arbitrary piecewise-constant initial and boundary
conditions, and for arbitrary fundamental diagrams. For piecewise-constant initial and boundary condi-
tions, and arbitrary fundamental diagrams, we show that the solution to the LWR PDE at any location and
time can be computed exactly and semi-analytically for a very low computational cost using the cumulative
number of vehicles formulation of the problem. We implement the proposed computational method on a
representative traffic flow scenario to illustrate the exactness of the analytical solution. The computational
cost of the method is shown to be lower than the cost of the Godunov scheme (also known as Cell Trans-
mission Model in the transportation engineering literature). A toolbox implementation available for public
download is briefly described, and posted at http://traffic.berkeley.edu/downloads/.
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1. Introduction

1.1. Background

One of seminal traffic flow models for highways is presented in [27] and [33], and results in the so called
Lighthill-Whitham-Richards (LWR) model or kinematic wave theory. Although more sophisticated models
of traffic flow are available, the LWR model is widely used to model highway traffic [32] and more recently for
urban traffic [18]. The LWR partial differential equation (PDE) is a first order scalar hyperbolic conservation
law that computes the evolution of a density function (the density of vehicles on a road section). This PDE
has multiple solutions in general, among which the entropy solution [2] is recognized to be the physically
meaningful solution.

The LWR PDE can be numerically solved using a variety of computational methods, such as first order
numerical schemes, for instance in [19, 10, 11]. Classical numerical methods often require a computational
grid, and yield an approximate solution of the PDE. Some exceptions exist however, such as the wave
tracking methods, see for instance [21, 28]. In the present article, we propose a new algorithm for solving
the LWR PDE that does not require a computational grid, and which can be used to compute exactly the
solutions to the LWR PDE for any concave fundamental diagram, and for any piecewise constant initial and
boundary conditions semi-analytically.
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The algorithm presented in this article uses the cumulative number of vehicles [32] function (CVN
function) as an intermediate computational abstraction. The CVN function is the integral form of the
density function, and solves a Hamilton-Jacobi (HJ) PDE [13, 14], while the density function itself solves
the LWR PDE. As the solution to a Hamilton-Jacobi equation with concave Hamiltonian, the CVN function
can be computed at any point by minimizing a functional (or cost function), see [12, 4] for more details. An
approximate minimization can be done numerically for example using dynamic programming (DP), which is
used in [13]. The present article is also based on the variational method as [13], but unlike the latter, does
not use a dynamic programming approximation for solving the HJ PDE.

We assume that the data used to simulate traffic evolutions is generated by Eulerian (fixed) sensors. This
measurement data yields initial and boundary conditions, which are here assumed to be piecewise constant.
Lagrangian data (originating from mobile sensors) could also be used as internal boundary conditions [25],
but this is outside the scope of this article. Instead of solving the LWR PDE directly, we compute the
solution to the corresponding HJ PDE, as well as its derivatives using a semi analytic method.

To the best knowledge of the authors, only front tracking [28, 21] and dynamic programming [13] methods
can compute the solutions to the LWR PDE exactly, for specific classes of initial/boundary conditions and
fundamental diagrams. The proposed method extends these computational methods for situations in which
the initial/boundary conditions are piecewise constant and the fundamental diagram is an arbitrary concave
function. Unlike the front-tracking methods, our computational method is not event-based, and can compute
the solution at any given point without any knowledge or computation of prior events. Unlike dynamic
programming methods used to compute the CVN function, our computational method is exact and can also
compute the derivatives of the CVN function (that is, the solution to the LWR PDE) exactly, whereas the
former method require (inexact) numerical differentiation. Most notably, the proposed method does not
require to grid the space-time domain to compute the solution at a given point provided by the user.

Note that this method could also be extended to more complex initial/boundary conditions (for instance
piecewise linear [28]), at the expense of a greater complexity. Symmetrically, we show in this article that the
method can be simplified in the case of triangular fundamental diagrams. Triangular fundamental diagrams
are of great importance and relevance for modeling and control applications, see [13, 10] for instance.

The rest of this article is organized as follows. Section 2 defines the LWR and HJ PDEs investigated in
this article. Section 3 introduces the concept of partial solutions, which are used later as building blocks
of the solution to the HJ PDE. In this section, we also show that the partial solutions can be computed
analytically for any concave fundamental diagram (smooth or not). We also compute the solution to the
LWR PDE on a traffic flow scenario to illustrate the algorithm’s exactness, and compare its computational
cost with the Godunov scheme (a first-order finite difference scheme). The properties of the resulting solution
are investigated in Section 4. Finally, Section 5 presents a fast algorithm specific to triangular fundamental
diagrams, for which additional simplifications can be made.

2. Modeling

2.1. The LWR PDE

We quickly summarize standard material related to the LWR PDE and its connection to the Hamilton-
Jacobi PDE through the so-called Moskowitz equation. We consider a one-dimensional, uniform section of
highway, limited by x0 upstream and xn downstream. For a given time t ∈ [0, tm] and position x ∈ [x0, xn],
we define the local traffic density k(x, t) in vehicles per unit length, and the instantaneous flow q(x, t) in
vehicles per unit time. The conservation of vehicles on the highway is written as follows [27, 33, 17]:

∀x, t ∈ [x0, xn]× [0, tm],
∂k(x, t)

∂t
+
∂q(x, t)

∂x
= 0 (1)

For first order traffic flow models, flow and density are related by the fundamental diagram Q : (x, t, k(x, t)) 7→
q(x, t), which is an empirically measured law [20]. Through this article, we consider the homogeneous prob-
lem [14] in which the fundamental diagram is a function of density k only, i.e. q(x, t, k(x, t)) = Q(k(x, t)).
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Figure 1: Left: Generic concave fundamental diagram. Right: Triangular fundamental diagram.

The fundamental diagram is a positive function defined on [0, κ], where κ is the maximal density (jam
density). It ranges in [0, qmax] where qmax is the maximum flow (capacity). It is assumed to be differentiable
at 0 and κ, with Q′(0) = vf > 0 the free flow speed, and Q′(κ) = w < 0 the congested wave speed [27].
We assume that the fundamental diagram is concave and continuous. Both assumptions are not dictated
by physical laws but are required for the mathematical well-posedness of the approach. Non-concave and
non-continuous fundamental diagrams are sometimes necessary to model specific traffic patterns [24, 15]
but they require a separate mathematical treatment. Examples of fundamental diagrams satisfying all the
above assumptions are shown in Fig. 1.

The introduction of the fundamental diagram yields the Lighthill-Whitham-Richards (LWR) PDE :

∀x, t ∈ [x0, xn]× [0, tm],
∂k(x, t)

∂t
+
∂Q(k(x, t))

∂x
= 0 (2)

2.2. The Moskowitz function

The cumulated vehicle count N(x, t), also called Moskowitz function [30], represents the continuous
vehicle count at location x and time t. It has been developed for instance in [32, 13, 14] in the context of
transportation engineering, and goes back to [29, 30].

In the Moskowitz framework, one assumes that all vehicles are labeled by increasing integers as they
pass the entry point x0 of a highway section, and that they cannot pass each other. If the latest car that
passed an observer standing at location x and time t is labeled n, then bN(x, t)c = n. This count function is
interpolated continuously between the discrete labels. The Moskowitz function contains traffic information
that one can infer from experimental traffic measurements as long as vehicles do not pass each other. In
this situation, the isolines of N(x, t) correspond to vehicle trajectories.

Moreover, local density k(x, t) and flow q(x, t) can be computed from the vehicle count using the equalities

k(x, t) = −∂N(x, t)

∂x
(3)

q(x, t) =
∂N(x, t)

∂t
(4)

Introducing the Moskowitz function in (2) yields the Hamilton-Jacobi PDE [32, 13, 14, 8, 9] in which
the fundamental diagram Q plays the role of Hamiltonian [16]:

∂N(x, t)

∂t
−Q

(
−∂N(x, t)

∂x

)
= 0 (5)
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Figure 2: Different piecewise-constant encodings of the same noisy initial condition kini and upstream boundary condition qup.
For clarity, the downstream boundary condition has not been included in this figure. Left: example of uniformly sampled kini
and qup, leading to xi = iδx and tj = jδt. Right: example of unevenly spaced xi and ti.

2.3. The Cauchy problem

Equation (5) is a scalar Hamilton-Jacobi partial differential equation, which can be solved using an initial
condition function Nini(x), an upstream boundary condition function Nup(t) and a downstream boundary
condition function Ndown(t). In general, finding such solutions while enforcing arbitrary boundary conditions
is impossible with experimental data because the data is not necessarily consistent with the model, and
contains measurement errors, leading to ill-posed problems. Weak boundary conditions were introduced in
[5, 26, 34] to resolve this problem by integrating situations in which prescribed boundary conditions do not
apply. In the context of the Hamilton-Jacobi equation, we can introduce the Cauchy problem:

∀x, t ∈ [x0, xn]× [0, tm],


∂N(x, t)

∂t
−Q

(
−∂N(x, t)

∂x

)
= 0

N(x, 0) $ Nini(x)
N(x0, t) $ Nup(t)
N(xn, t) $ Ndown(t)

(6)

where $ represents the imposition of a weak boundary condition as developed in [34]. Note that weak
boundary conditions are related to the concept of demand and supply, see for instance [10, 11].

2.4. Piecewise affine initial and boundary conditions

For the rest of the article, we use piecewise constant conditions on density and flow, which translate to
piecewise-affine conditions on the Moskowitz function. Piecewise constant conditions on density and flow
are a natural way to encode discrete measurements in the model, and are used in the Cell Transmission
Model (CTM) [10]. A graphical representation of the studied domain is shown in Fig. 2.

Let m and n ≥ 1 be integers, x0 < x1 < · · · < xn and t0 < t1 < · · · < tm the space-time discretization for

initial and boundary conditions where t0 = 0. We assume that the initial densities (k
(i)
ini)0≤i≤n−1 ∈ Rn+, the

upstream flows (q
(j)
up )0≤j≤m−1 ∈ Rm+ and the downstream flows (q

(j)
down)0≤j≤m−1 ∈ Rm+ are given (known), as

in Figure 2. The initial densities are thus decomposed as piecewise constant in their respective measurement
intervals:

∀x ∈ [xi, xi+1[, k(x, 0) = k
(i)
ini (7)

and let the upstream and downstream flows also be prescribed as piecewise constant:

∀t ∈ [tj , tj+1[, q(x0, t) = q(j)up (8)

q(xn, t) = q
(j)
down (9)
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Figure 3: Left: illustration of a piecewise constant initial density and upstream flow conditions. Right: corresponding
piecewise affine Moskowitz function. For clarity, downstream boundary conditions are not shown.

Note that no assumption is made regarding the uniformity of the grid: the spacings xi − xi−1 and
ti − ti−1 are not necessarily uniform over i. The method proposed next can handle arbitrary grids and
spatio-temporal discretization of the data. However, for notational simplicity, we will not write the method
in its full generality in this article. In the toolbox posted online [37], we have coded a general implementation
of the method which takes arbitrary measurement intervals [xi, xi+1] and [tj , tj+1].

The initial condition of the Moskowitz PDE is obtained by integrating the initial condition of the LWR
PDE assuming that Nini(x0) = 0 and :

∀x ∈ [xi, xi+1],Nini(x) = −
∫ x

x0

k(χ, 0)dχ = −
i−1∑
m=0

(xm+1 − xm)k
(m)
ini − (x− xi)k(i)ini (10)

Similarly, the upstream and downstream boundary conditions of the Moskowitz PDE, assuming that
Nup(0) = 0 and Nini(xn) = Ndown(0) are given by:

∀t ∈ [tj , tj+1],Nup(t) =

∫ t

0

qup(τ)dτ =

j−1∑
m=0

(tm+1 − tm)q(m)
up + (t− tj)q(j)up (11)

∀t ∈ [tj , tj+1],Ndown(t) = Nini(xn)+

∫ t

0

qdown(τ)dτ = Nini(xn)+

j−1∑
m=0

(tm+1− tm)q
(m)
down +(t− tj)q(j)down (12)

3. Analytical solutions to the Moskowitz HJ PDE and LWR PDE

3.1. Solutions to the Hamilton-Jacobi equation

In order to compute the analytical solution of equation (6) with conditions of the type (10), (11), (12),
we define (based on [8, 4]) the following convex transform associated with the fundamental diagram, also
used by Daganzo [14]:

∀u ∈ [w, vf ], R(u) = sup
k∈[0,κ]

(Q(k)− u · k) (13)

Note that R is a convex function, since it is the supremum of affine functions. The function −R is the
Legendre-Fenchel transform of the function Q (fundamental diagram).

We aggregate the initial and boundary conditions into a single value condition function c(x, t):
5



c(x, t) =

 Nini(x) t = 0
Nup(t) x = x0
Ndown(t) x = xn

With this definition of initial, upstream and downstream boundary conditions, the domain of definition
of c is Dom(c) = ({x0, xn} × [0, tm]) ∪ ([x0, xn]× {0}).

Variational theory as known since [1] is a possible method for solving the HJ PDE (5). A possible use
of variational theory is presented in [12] in the context of this problem. The mathematical foundations of
variational theory can be found in [4] for the specific case of the HJ PDEs. From [4], the solution associated
with the value condition function c, denoted by Nc, is the infimum of an infinite number of functions of the
value condition:

Nc(x, t) = inf {c(t− T, x− Tu) + TR(u)}
s. t. (u, T ) ∈ [w, vf ]× R+ and (t− T, x− Tu) ∈ Dom(c)

(14)

Equation (14) is well known in the Hamilton-Jacobi literature and often referred to as Lax-Hopf formula
[4, 16]. Note that it can be solved using dynamic programming methods [12], which are proven to be
exact for homogeneous problems under two conditions: a concave, piecewise-affine fundamental diagram,
and the computation of the Moskowitz function on a uniform grid (jδx, iδt)i,j which has to be invariant
by any translation of vector (δx, δx/wi) for each wave speed wi [12]. These conditions can be restrictive
based on the data used for practical applications since they dictate a sampling frequency. Also, they can be
computationally intensive.

In this article, we present a method which guarantees an analytical solution, and has the same compu-
tational complexity for arbitrary grids and concave fundamental diagrams. In addition, we show that this
method enables us to compute the solution to the associated Cauchy problem (6) exactly.

For this, we first decompose the piecewise affine value condition function c in affine, locally-defined value
conditions indexed by ini, up and down based on the condition (initial, upstream, downstream), and i or j
depending on the sampling interval:

∀x ∈ [xi, xi+1[, c
(i)
ini(x, 0) = Nini(x) (15)

∀t ∈ [tj , tj+1[, c
(j)
up (x0, t) = Nup(t) (16)

∀t ∈ [tj , tj+1[, c
(j)
down(xn, t) = Ndown(t) (17)

where Nini, Nup and Ndown are defined in (10),(11),(12). One can note that the functions c
(i)
ini, c

(j)
up

and c
(j)
down are restrictions of the piecewise-affine function c on intervals on which it is affine. We also define

the induced solution components N
c
(i)
ini

, N
c
(j)
up

and N
c
(j)
down

respectively associated with (15),(16) and (17)

when computed by (14) as follows. The induced solution components must be understood as the partial
solution to a subset of the initial problem, since we assume that we have no information and do not impose
any value on the other initial and boundary condition domains. The contribution of the present article is
the construction of the full solution of the problem from these partial solutions.

In general, the Moskowitz function Nc, solving the HJ PDE (5) for the value condition c, cannot be
computed analytically using (14) for arbitrary piecewise affine initial and boundary conditions. However,
the induced Moskowitz components defined above can be computed analytically using (14). These partial
computations involve the minimization of a convex function [9] which we present later in the article. Using
the minimum property [32], also known as inf-morphism property [4], the Moskowitz function Nc, solving
the HJ PDE (5) for the value condition c is the minimum of the induced Moskowitz components. This
fundamental property [4] is the basis of the algorithm presented in this article.

3.2. Solution components associated with affine conditions

In this section, we use the notation Q′ for the derivative of the fundamental diagram (which only depends
on one argument). Note that we have assumed earlier thatQ has a right derivative vf in 0 and a left derivative
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w in κ. A full mathematical treatment of these derivatives is available in [8, 9], using subgradients, which is
outside of the scope of this article, but enables the proper treatment of nonsmooth fundamental diagrams
such as the triangular diagram.

We now present the computation of the partial components of the solution.

3.2.1. Initial conditions

We want to compute the solution component induced by an affine, locally defined initial condition indexed
by i:

∀x ∈ [xi, xi+1], N
(i)
ini(x) = −kix+ bi (18)

with bi = kixi−
∑i−1
l=0(xl+1− xl)k(l)ini allowing for the continuity of the initial conditions in (0, xi). Using

the results of [9], the analytical solution to the problem associated with (6) with this sole initial condition
can be written as

N
c
(i)
ini

(x, t) =


tQ(ki)− kix+ bi : xi + tQ′(ki) ≤ x ≤ xi+1 + tQ′(ki)
tR(x−xi

t )− kixi + bi : xi + tw ≤ x ≤ xi + tQ′(ki)

tR(x−xi+1

t )− kixi+1 + bi : xi+1 + tQ′(ki) ≤ x ≤ xi+1 + tvf

(19)

k
c
(i)
ini

(x, t) = −
∂N

c
(i)
ini

∂x (x, t) =


ki : xi + tQ′(ki) ≤ x ≤ xi+1 + tQ′(ki)
−R′(x−xi

t ) : xi + tw ≤ x ≤ xi + tQ′(ki)

−R′(x−xi+1

t ) : xi+1 + tQ′(ki) ≤ x ≤ xi+1 + tvf

(20)

3.2.2. Upstream boundary conditions

We now compute the solution component induced by an affine, locally defined upstream boundary
condition indexed by j.

∀t ∈ [tj , tj+1],N(j)
up (t) = qjt+ dj (21)

with dj = kjxj +
∑i−1
l=0(tl+1 − tl)q(l)up . Following [9], we define the freeflow density function Kup, which

is the inverse of the restriction of the fundamental diagram Q to the domain [0, kc]:

Kup(q) = min{k ∈ [0, κ]|Q(k) = q}

Using the results of [9], one can prove that:

N
c
(j)
up

(x, t) =


dj + qjtj+1 + (t− tj+1)R( x−x0

t−tj+1
) : 0 ≤ x− x0 ≤ Q′(Kup(qj))(t− tj+1)

dj + qjt−Kup(qj)(x− x0) : Q′(Kup(qj))(t− tj+1) ≤ x− x0 ≤ Q′(Kup(qj))(t− tj)
dj + qjtj + (t− tj)R(x−x0

t−tj ) : Q′(Kup(qj))(t− tj) ≤ x− x0 ≤ vf (t− tj)
(22)

k
c
(i)
up

(x, t) = −
∂N

c
(i)
up

∂x
(x, t) =


−R′( x−x0

t−tj+1
) : 0 ≤ x− x0 ≤ (t− tj+1)Q′(Kup(qj))

Kup(qj) : Q′(Kup(qj))(t− tj+1) ≤ x− x0 ≤ Q′(Kup(qj))(t− tj)
−R′(x−x0

t−tj ) : Q′(Kup(qj))(t− tj) ≤ x− x0 ≤ vf (t− tj)
(23)

3.2.3. Downstream boundary conditions

Finally, the same process can be repeated for the downstream boundary:

∀t ∈ [tj , tj+1], N
(j)
down(t) = pjt+ bj (24)

with bj = kjxj +
∑i−1
l=0(tl+1 − tl)q

(l)
down. In a symmetric way from the upstream case, we define the

congestion density function Kdown, which is the inverse of the restriction of the fundamental diagram Q to
the domain [kc, κ]:

Kdown(q) = max{k ∈ [0, κ]|Q(k) = q}
7
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Figure 4: Example of affine initial condition (thick line in black) and induced solution component, for the Greenshields
fundamental diagram. Left: Three-dimensional representation of the Moskowitz function. Right: Two-dimensional plot of
the density and associated vehicle trajectories. Note that the visualization requires the calculation of the Moskowitz function
on a regular grid for display purposes, but the algorithm does not: it can compute the value of the function at any arbitrary
point (x, t) without computing it at nearby points or anywhere else. Solution obtained with toolbox [37].

Using the results of [9], we can similarly prove that:

N
c
(j)
down

(x, t) =


bj + pjt+Kdown(pj)(xn − x) : Q′(Kdown(pj))(t− tj) ≤ x− xn ≤ Q′(Kdown(pj))(t− tj+1)
bj + pjtj + (t− tj)R(xn−x

tj−t ) : w(t− tj) ≤ x− xn ≤ Q′(Kdown(pj))(t− tj)
bj + pjtj+1 + (t− tj+1)R( xn−x

tj+1−t ) : Q′(Kdown(pj))(t− tj+1) ≤ x− xn ≤ 0
(25)

k
c
(i)
down

(x, t) = −
∂N

c
(i)
down

∂x
(x, t) =


Kdown(pj) : Q′(Kdown(pj))(t− tj) ≤ x− xn ≤ Q′(Kdown(pj))(t− tj+1)
−R′(x−xn

t−tj ) : w ≤ xn−x
tj−t ≤ Q

′(Kdown(pj))

−R′( x−xn

t−tj+1
) : Q′(Kdown(pj))(t− tj+1) ≤ x− xn ≤ 0

(26)

3.3. Componentwise computation of the Moskowitz/LWR function

It is shown in [3, 4] that one way to express the solution of the full problem (6), taking into account all
contributions of initial and boundary conditions can be obtained by a union property of capture basins, called

inf-morphism property. The inf-morphism property applied to the functions (c
(i)
ini)i, (c

(j)
up )j and (c

(j)
down)j , is

expressed by the following equality:

N(x, t) = min
i,j

{
N

c
(i)
ini

(x, t),N
c
(j)
up

(x, t),N
c
(j)
down

(x, t)
}

(27)

This last result is fundamental: it shows that in order to solve the HJ PDE, we only have to apply
the formulas above (19,22,25) for each affine piece of initial and boundary condition, which will give the
associated solution component, and then compute the minimum of all results.

3.4. Implementation

In the algorithm labeled Alg. 1, we summarize the proposed method for the computation of the Moskowitz

function. The algorithm supposes the knowledge of the value conditions k
(i)
ini , q

(j)
up ,q

(j)
down and their boundaries

xi, tj . Note that in order to preserve the exactness of the algorithm (i.e. the analytical expression of the
solution), the explicit derivative of the fundamental diagram is necessary, which is easy for most commonly
used fundamental diagrams.

We implemented this algorithm in Matlab code and used it to compute the solution of an arbitrary
problem, and posted a manual with examples, so that the code can be directly accessible to users. The
performance of the algorithm is illustrated for an arbitrary set of numerical values, summarized in the tables
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Figure 5: Exact solution to an arbitrary set of initial and value conditions, using a Greenshields fundamental diagram.Left:
three-dimensional representation of the count function. Right: two-dimensional plot of the density and associated trajectories.
Solution obtained with toolbox [37]

below. The NaN for the downstream boundary encodes the fact that no measurement was available at that
point, which is a signature feature of the algorithm: it computes the solution to the problem with the
prescribed data (and can circumvent missing data problems).

i ti−1 ti q
(i)
up q

(i)
down

1 0 10 0 NaN

2 10 20 .4 NaN

3 20 40 .1 NaN

4 40 50 0 NaN

i xi−1 xi k
(i)
ini

1 0 100 .08
2 100 200 0
3 200 450 .04
4 450 1000 .003

The solution of the Cauchy problem associated with these value conditions and a Greenshields funda-
mental diagram [20, 17]: Q(k) = kvf (1− k/κ), with vf = 30 m/s the free-flow speed and κ = .1 veh/m the
maximum capacity, is represented in Fig. 5.

As can be seen from the implementation of Alg 1 posted online [37], all what is required is to prescribe the
data at [x0, x1], . . . , [xn−1, xn] and [t0, t1], . . . , [tm−1, tm] and the point (x, t) where one wants the solution.

4. Properties of the solution

4.1. Interpretation and analysis of the solution

4.1.1. Structure

Each solution component Nc(i) induced by a value condition c(i) is defined in the convex domain:

Dom(Nc(i)) = [x0, xn]× [0, tm] ∩ {(x+ vδt, t+ δt)|δt ≥ 0, v ∈ [w, vf ], (x, t) ∈ Dom(c(i))} (28)

which is the union of all areas that are attainable by a characteristic starting from any point (x, t) of the
value condition domain, and at an information propagation speed v ∈ [w, vf ], sometimes also referred to as
the reachable set. In equation (28), c(i) can encode either an initial, upstream or downstream component.

A solution component induced by an affine value condition will generally consist of three different parts
outlined in the bullet list below:
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Algorithm 1 Pseudo-code implementation for the Lax-Hopf based computation of the Moskowitz function
and the associated density at a single point (x, t) prescribed by the user.

Input: x ∈ [x0, xn], t ∈ [0, tm], {input space domain, time domain}

iup ← min(i− 1) s.t. ti ≥ t− x−x0

vf
{number of components to compute from upstream data}

idown ← min(i− 1) s.t. ti ≥ t− xn−x
w {number of components to compute from downstream data}

jmin ← max(0,min(j − 1) s.t. xj ≥ x− vf t) {min space index for influencing initial condition}
jmax ← min(m,max(j + 1) s.t. xj ≤ x− wt) {max space index for influencing initial condition}
N← +∞ {initialization of the Moskowitz function to infinity}

{iteration on initial conditions}for j = jmin to jmax do

compute N
c
(j)
ini

(x, t) using (19) {component induced by the initial condition c
(j)
ini }

{if the current component contributes to the solution}if N
c
(j)
ini

(x, t) < N then

N← N
c
(j)
ini

(x, t) {update Moskowitz function}
k ← k

c
(j)
ini

(x, t), computed using (20) {compute density}
end if

end for
{iteration on upstream boundary conditions}for i = 0 to iup do

compute N
c
(i)
up

(x, t) using (22) {component induced by the upstream boundary condition c
(i)
up}

{if the current component contributes to the solution}if N
c
(i)
up

(x, t) < N then

N← N
c
(i)
up

(x, t) {update Moskowitz function}
k ← k

c
(i)
up

(x, t), computed using (23) {compute density}
end if

end for
{iteration on downstream boundary conditions}for i = 0 to idown do

compute N
c
(i)
down

(x, t) using (25) {component induced by the downstream boundary condition c
(i)
down}

{if the current component contributes to the solution}if N
c
(i)
down

(x, t) < N then

N← N
c
(i)
down

(x, t) {update Moskowitz function}
k ← k

c
(i)
down

(x, t), computed using (26) {compute density}
end if

end for
Output: N, k

• The forward fan: this characteristic fan starts at the most upstream point of the value condition.
Shaped as a cone, it propagates at speeds v ∈ [w,Q′(k)]. It is a transition area where, on any given
trajectory, the vehicle speed goes from zero to the vehicle speeds corresponding to the density imposed
by the value condition, while the density decreases.

• The characteristic domain: this domain propagates at a speed Q′(k), where k is either ki, Kup(qi) or
Kdown(qi). In this area, vehicle speed and density are constant and match those imposed by the value
condition.

• The backward fan: this wave starts at the most downstream point of the value condition. Shaped as
a cone, it propagates at speeds v ∈ [Q′(k), vf ]. It is a transition area where, on a given trajectory,
the vehicle speeds go from the value condition vehicle speeds to the free flow speed, while the density
decreases.

This structure of the solution component induced by an affine initial condition is represented in Figure 6.
The structure of the solution components induced by affine upstream (respectively downstream) affine
boundary conditions is similar, with the exception of a missing backward (respectively forward) fan domain.
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Figure 6: Density (gray levels) and vehicle trajectories (curves) from a solution component induced by a constant initial density
between xi = 300m and xi+1 = 400m. The boundaries between the different portions of the solution component are represented
by thick lines. Note that the characteristic domain exhibits a single density which is the density of the initial condition, and
smooth compression and expansion are taking place respectively in the forward and backward characteristic fans. The area
labeled as NaN is outside the domain of influence of the data between x = 300m and x = 400m, thus, the component is not
defined there. Solution computed using toolbox [37].

4.1.2. Flows and speeds associated with the solution components

Spatial derivatives are bounded, as shown by the analytical calculation of the densities in (20),(23),(26).
From these equations, one can also obtain the flow and speed by using the classical formulas: q(x, t) =
Q(k(x, t)) and

v(k) =

{
Q(k)
k if 0 < k ≤ κ

Q′(0) if k = 0

Note that the results of these inversions are only as good as the approximation used for the fundamental
diagram. In particular, the fundamental diagram sometime fails to capture the variability of traffic in
congestion [6, 35].

The convexity of the solution components has been proved in [9]. Each solution component is Lipschitz-
continuous as long as the initial and boundary conditions are such that the imposed densities are positive
and below the maximum density, and the imposed flows are positive and below the maximum flow. One can
also note that as long as these conditions are met, the solution only exhibits positive flows. These conditions
are equivalent to the well-posedness conditions introduced in [14].

4.2. Lipschitz-continuity of the solution

The Cauchy problem associated to the LWR PDE (6) is called a well-posed problem if the initial densities
and upstream and downstream flows lie within their physically-imposed limits:

0 ≤ k(i)ini ≤ κ (29)

0 ≤ q(j)up ≤ qmax (30)

0 ≤ q(j)down ≤ qmax (31)
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Figure 7: Computation times to compute the density field solution at time t = 50s to an arbitrary Cauchy problem using
two different methods: a Godunov scheme, and the proposed Lax-Hopf algorithm. The complexity of the numerical scheme
increases quadratically with the desired granularity due to the CFL condition, whereas the computational cost of the Lax-Hopf
algorithm sees a linear complexity, which appears constant at this scale.

The Lipschitz-continuity of the solution to such problems is proven in Appendix A. Interestingly, this
proof relies solely on the form of the solution and not on the LWR PDE (though obviously the solution
encodes the PDE in its structure). The interpretation is that despite the fact that the solution components
are irregularly shaped, they are never stricly below the neighboring components on the edges of their domain
of definition. This means that the solution has to be continuous, and the associated flow and density are
respectively in [0, qmax] and [0, κ].

As will be seen later, considering only well-posed problems allows for simplifications in the computation
of the solution by reducing the number of solution components to consider during the computation.

4.3. Benefits of a grid-free method

This new method comes with several benefits: as a grid-free method, it does not require any intermediate
computations (small steps) in order to give a forecast of the future traffic state. In general, for finite
differences methods such as the CTM or the Godunov scheme, the constraint on the time-space grid spacing
δt, δx is defined by the CFL condition: δx

δt ≥ supk |Q′(k)|.
For instance, most traffic estimation applications require high resolution output such as δx ≤ 200m,

see for example [22, 36, 23, 31]. Input data, such as electromagnetic loops or probe data comes with a
time granularity of δt ≥ 30s. Working with a grid with δt = 30s and δx = 200m would be most efficient
algorithmically, however the CFL constraint with supk |Q′(k)| = vf = 33m/s imposes δt ≤ 6s. Thus,
to obtain a solution at a 200m resolution, 6s time steps are required. For finite differences schemes, this
represents a five-fold increase in computational time. From an information point of view, this increase comes
only from the finite-differences methods and reflects a mathematical limit of the approximation, which lies
in the discretization method.

Our method, however, does not require a grid, and its complexity increases only linearly with the
number of value conditions, i.e. the granularity of the boundary condition data. On the other hand, a finite
differences method will see its complexity increase proportionally to the product of the maximum number
of initial conditions and the maximum number of upstream or downstream conditions, since the minimum
granularity of the value conditions is then the grid spacing.
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5. Faster algorithm for triangular fundamental diagrams

5.1. Modeling

The triangular fundamental diagram Q is defined by:

Q(k) =

{
vfk : x ∈ [0, kc]
w(k − κ) : x ∈ [kc, κ]

where

kc =
−wκ
vf − w

is the density corresponding to the maximum capacity. This fundamental diagram is graphically represented
in Fig. 1. The calculation of its convex transform R using (13) yields:

∀u ∈ [w, vf ], R(u) = kc(vf − u)

Owing to the simplicity of the triangular fundamental diagram and its convex transform, the solution
components associated with affine internal and boundary conditions can be calculated explicitly and lead to

an even simpler set of results: for an initial condition N
(i)
ini as defined in (18), plugging the explicit convex

transform into (19) yields two cases:
If 0 ≤ ki ≤ kc, the initial condition imposes a free-flow state.

N
c
(i)
ini

(x, t) =

{
(i) ki(tvf − x) + bi : xi + tvf ≤ x ≤ xi+1 + tvf
(ii) kc(tvf − x) + bi + xi(kc − ki) : xi + tw ≤ x ≤ xi + tvf

(32)

else, if kc < ki ≤ κ, the initial condition imposes a congested state:

N
c
(i)
ini

(x, t) =

{
(i) ki(tw − x)− κtw + bi : xi + tw ≤ x ≤ xi+1 + tw
(ii) kc(tw − x)− κtw + xi+1(kc − ki) + bi : xi+1 + tw ≤ x ≤ xi+1 + tvf

(33)

For an upstream boundary condition N
(j)
up as defined in (21), the solution component is expressed by:

N
c
(j)
up

(x, t) =

{
(i) dj + qj(t− x−x0

vf
) : x0 + vf (t− tj+1) ≤ x ≤ x0 + vf (t− tj)

(ii) dj + qjtj+1 + kc((t− tj+1)vf − (x− x0)) : x0 ≤ x ≤ x0 + vf (t− tj+1)
(34)

For a downstream boundary condition N
(j)
down as defined in (24), the solution component is expressed by:

N
c
(j)
down

(x, t) =

{
(i) bj + pjt− (

pj
w + κ)(xn − x) : xn + w(t− tj) ≤ x ≤ xn + w(t− tj+1)

(ii) bj + pjtj+1 + kc((t− tj+1)vf + xn − x)) : xn + w(t− tj+1) ≤ x ≤ xn
(35)

One can note that all solution components consist of two planar portions. The first one, numbered (i)
in the solution component equations, is the characteristic domain as defined in 4.1.1, and is shaped as a
trapezoid. The second one, noted (ii) in the same equations, is cone-shaped, and can represent either an
expansion or a rarefaction wave. The characteristic domain propagates directly the density information from
the value condition, at a characteristic speed vf in free flow or w in congestion. On the cones, the density
is the critical density and the flux is the maximum flux. An interesting point is that this does not depend
on whether the cone is part of an expansion or a rarefaction wave. From a mathematical perspective, this
comes from the linearity of R, and its constant derivative.

The algorithm we previously described would still be exact using these simplified formulas for the solution
components. Nevertheless, the piecewise-linear shape of the solution components allows us to do several
simplifications which yield noticeable improvements for the algorithmic complexity. Our approach to a fast
algorithm has some similarities to what has been developed for the variational theory of traffic flow [13]: in
particular, one can note that for a triangular fundamental diagram, the Lax-Hopf formula can be simplified
to become the minimum of two elements, each of them representing a different information propagation
speed. This remark yields considerable improvements for the computation of the Moskowitz function.
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Figure 8: Three-dimensional representations of the solution components induced by local affine value conditions. Top left:
solution component induced by a congested initial condition. Top right: solution component induced by a free-flow initial
condition. Bottom left: solution component induced by an upstream boundary condition. Bottom right: solution
component induced by a downstream boundary condition.
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Figure 9: Two-dimensional representations of the solution components induced by local affine value conditions. Black curves
represent isovalues of the Moskowitz function, and therefore vehicle trajectories. Top left: solution component induced by a
congested initial condition. Top right: solution component induced by a free-flow initial condition. Bottom left: solution
component induced by an upstream boundary condition. Bottom right: solution component induced by a downstream
boundary condition.
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5.2. Fast algorithm for well-posed problems

One can note two important properties of the solution components calculated previously

• The characteristic domains always propagate between speeds vf and w

• The maximum capacity cones are all parts of parallel plans, since their gradient is (vfkc,−kc), and
extend at any speed u ∈ [w, vf ]

These properties allow us to restrict the number of solution components we have to compute the
Moskowitz function in one point (x, t). Indeed, if the problem is well posed, the maximum capacity cones
bring limited information since they all are parallel. Thus, we only have to compute the characteristic
domains, which restricts the number of value conditions to inspect to two. This simplification yields Alg. 2.

Algorithm 2 Pseudo-code implementation for the Lax-Hopf based computation of the Moskowitz function
and the associated density at a single point (x, t) for a triangular fundamental diagram.

Input: t ∈ [0, tn], x ∈ [x0, xm]
N← +∞
iup ← max{i|ti ≤ T − X−x0

vf
} {time index for influencing upstream boundary condition}

idown ← max{i|ti ≥ T − xn−X
w } {time index for influencing downstream boundary condition}

jmin ← min{j − 1|xj ≥ X − vfT} {space index for influencing initial condition}
jmax ← max{j + 1|xj ≤ X − wT} {space index for influencing initial condition}

{if at least one upstream condition influences (x, t)}if iup 6= −∞ then

compute N
c
(iup)
up (x,t)

using (34) {component induced by the upstream condition c
(iup)
up }

{if the current component contributes to the solution}if N < N
c
(iup)
up

(x, t) then

N← N
c
(iup)
up

(x, t) {update Moskowitz function}
k ← k

c
(iup)
up

(x, t) , computed using (23) {compute density}
end if

end if
{if at least one downstream condition influences (x, t)}if idown 6= −∞ then

compute N
c
(idown)

down

(x, t) using (35) {component induced by the downstream condition c
(idown)
down }

{if the current component contributes to the solution}if N < N
c
(idown)

down

(x, t) then

N← N
c
(idown)

down

(x, t) {update Moskowitz function}
k ← k

c
(idown)

down

(x, t), computed using (26) {compute density}
end if

end if
{iteration over initial conditions}for jmin ≤ j ≤ jmax do

compute N
c
(j)
ini

(x, t) using (32) or (33) {component induced by the initial condition c
(j)
ini }

{if the current component contributes to the solution}if N < N
c
(j)
ini

(x, t) then

N← N
c
(j)
ini

(x, t) {update Moskowitz function}
k ← k

c
(j)
ini

(x, t), computed using (20) {compute density}
end if

end for
Output: N, k

6. Conclusion

This article develops an analytical expression of the entropy solution of the Lighthill-Whitham-Richards
partial differential equation with an arbitrary flow-density relationship, and with piecewise constant initial
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and boundary conditions. The analytical nature of the solution enables the construction of algorithms for
exact solutions of the partial differential equation (up to machine accuracy) without numerical discretization
error. The procedure is straightforward to implement, and has a low computational cost. It enables the
computation of the solution at user prescribed points without gridding the space-time domain. We show
that this method enable us to derive classical results for the density function and the cumulative number of
vehicles function (its integral form). For the specific case of triangular flow-density relationships, we show
that the proposed method can be reduced to a simpler and faster algorithm. Future work will deal with the
use of the method for traffic flow estimation and/or control, for which some preliminary results have already
been obtained [7] in the context of Lagrangian sensing.
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A. Appendix: Lipschitz-continuity of the solution

Lemma A.1. Let f, g : A 7→ B be two Lipschitz-continuous functions. Then h : x → min{f(x), g(x)} is
Lipschitz-continuous on A.

Proof — We remark that 2 · min(a, b) = a + b − |a − b|, therefore h is a linear combination of Lipschitz-
continuous functions. Hence, it is Lipschitz-continuous. �

For notational convenience in the Appendix, we use c(i) as a generic notation for c
(i)
ini, c

(j)
up , c

(j)
down through

this appendix.

Definition A.2. Let Nc(i) be a solution component. We define the upper-boundary extension N̂(i) of Nc(i)

the following way: If Nc(i) is a component induced by an initial boundary condition as defined in (10), i.e.

c(i) = c
(i)
ini, then

N̂c(i)(x, t) =

 Nc(i)(x, t) : if (x, t) ∈ Dom(N(i))
Nc(i)(xi+1 + tvf , t) : if x > xi+1 + tvf
Nc(i)(xi + tw, t) + (xi + tw − x)κ : if x < xi + tw

(36)

If Nc(i) is induced by an upstream boundary condition as defined in (11) i.e. c(i) = c
(i)
up, then

N̂c(i)(x, t) =

{
Nc(i)(x, t) : if (x, t) ∈ Dom(Nc(i))
Nc(i)(x, ti + x−x0

vf
) : if (x, t) /∈ Dom(Nc(i))

(37)
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If Nc(i) is induced by a downstream boundary condition as defined in (12) i.e. c(i) = c
(i)
down, then

N̂c(i)(x, t) =

{
Nc(i)(x, t) : if (x, t) ∈ Dom(Nc(i))
Nc(i)(x, ti + x−xn

w ) + (ti + x−xn

w − t)qmax : if (x, t) /∈ Dom(Nc(i))
(38)

The interpretation of the upper-boundary extensions is as follows. Downstream from the free flow
characteristic line, the solution component is extended with isolines parallel to the x axis, which corresponds
to no cars added downstream. Upstream from the characteristic line with slope w emanating from (xk, 0),

the solution component induced by an initial condition c
(k)
ini is extended so that the corresponding density

is the jam density κ at any time. Similarly, the solution component induced by a downstream condition is
extended so that the corresponding flow is the maximum flow qmax. Note that these two parts of the upper-
boundary extensions do not satisfy the Hamilton-Jacobi PDE. This mathematical argument does not pose
any problem since another component will fill the corresponding area, with a smaller value (the extension
on this side of the domain is only required for the mathematical proof of Lipschitz-continuity). Thus, by
the Lax-Hopf formula, the extensions do not change the nature of the solution. One can note that every

function N̂c(i) is designed to be defined and Lipschitz-continuous on the entire domain [x0, xn]× [0, tm], and
to coincide with Nc(i) when the latter is defined.

Lemma A.3.

∀x ∈ [x0, xn],∀t ∈ [0, tm], min
0≤i<n

N̂
c
(i)
ini

(x, t) = min
i s.t. 0≤i<n and (x,t)∈Dom(N

c
(i)
ini

)
N

c
(i)
ini

(x, t) (39)

Proof — Let x ∈ [x0, xn], t ∈ [0, tm] be fixed for the entire proof. We define rmin = max{k|xk ≤ x − vf t}
and rmax = max{k|xk ≤ x − wt}, then ∀r ∈ {rmin, · · · , rmax}, (x, t) ∈ Dom(N

c
(r)
ini

): thus every point (x, t)

lies in the domain of at least one solution component induced by an initial condition.
The Lax-Hopf formula (14) gives

N
c
(k)
ini

(xk + tw, t) ≥ N
c
(k−1)
ini

(xk + tw, t) (40)

as long as xk+ tw ∈ [x0, xn] and t ∈ [0, tm]. This is due to the fact that the point (xk+ tw, t) can be reached

by more than one characteristic induced by c
(k−1)
ini .

Let k > rmax, then we have x < xk + tw and (x, t) /∈ Dom(N
c
(k)
ini

). In respective order, the definition

of the upper-boundary extension, the property (40), the fact that N
c
(k−1)
ini

(xk + tw, t) = N̂
c
(k−1)
ini

(xk + tw, t),

and that N̂
c
(k−1)
ini

(·, t) is κ-Lipschitz, yield

N̂
c
(k)
ini

(x, t) = N
c
(k)
ini

(xk + tw, t) + (xk + tw − x)κ

≥ N
c
(k−1)
ini

(xk + tw, t) + (xk + tw − x)κ

≥ N̂
c
(k−1)
ini

(xk + tw, t) + (xk + tw − x)κ

≥ N̂
c
(k−1)
ini

(x, t)

Therefore ∀k > rmax, N̂c
(k)
ini

(x, t) ≥ N̂
c
(k−1)
ini

(x, t). By induction on k, and using the fact that N̂
c
(rmax)
ini

(x, t) =

N
c
(rmax)
ini

(x, t) because (x, t) ∈ Dom
(
N

c
(rmax)
ini

)
,

min
rmax≤i<n

N̂
c
(i)
ini

(x, t) = N
c
(rmax)
ini

(x, t) (41)
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The Lax-Hopf formula (14) also gives

N
c
(k−1)
ini

(xk + tvf , t) ≥ N
c
(k)
ini

(xk + tvf , t) (42)

Let k ≤ rmin such that (x, t) /∈ Dom(N
c
(k−1)
ini

), then x > xk + tvf . Similarly as for the first case, the defi-

nition of the upper-boundary extension, the property (42), the fact that N̂
c
(k)
ini

(·, t) is a decreasing function,

respectively give the following set of inequalities.

N̂
c
(k−1)
ini

(x, t) = N
c
(k−1)
ini

(xk + tvf , t)

≥ N
c
(k)
ini

(xk + tvf , t)

≥ N̂
c
(k)
ini

(xk + tvf , t)

≥ N̂
c
(k)
ini

(x, t)

Therefore ∀k ≤ rmin, N̂c
(k−1)
ini

(x, t) ≥ N̂
c
(k)
ini

(x, t). By induction on k, and using the fact that N̂
c
(rmin)

ini

(x, t) =

N
c
(rmin)

ini

(x, t) because (x, t) ∈ Dom
(
N

c
(rmin)

ini

)
,

min
0≤i≤rmin

N̂
c
(i)
ini

(x, t) = N
c
(rmin)

ini

(x, t) (43)

Since ∀k ∈ {rmin, · · · , rmax}, (x, t) ∈ Dom(N
c
(k)
ini

), equations (41) and (43) give:

∃r ∈ {rmin, · · · , rmax} : N
c
(r)
ini

(x, t) = min
0≤i≤n

N̂
c
(i)
ini

(x, t)

This last equality concludes the proof of equation (39) of the lemma. �

This proves that for initial conditions the upper boundary extension of the components does not modify
the final solution.

Proposition A.4.

∀x ∈ [x0, xn],∀t ∈ [0, tm], min
i

N̂c(i)(x, t) = min
i s.t. (x,t)∈DomN

c(i)

Nc(i)(x, t)

Proof — Lemma A.3 states that the above equality holds when one only considers initial boundary condi-
tions. We use the same method to prove the continuity of the entire solution. Let x ∈ [x0, xn],∀t ∈ [0, tm] be
fixed for the entire proof. Let j > 0 such that (x, t) /∈ DomN

c
(j)
up

. The same process as previously, knowing

that N̂
c
(j−1)
up

(x, ·) is qmax-Lipschitz, gives

N̂
c
(j)
up

(x, t) = N
c
(j)
up

(
x, tj +

x− x0
vf

)
+

(
tj +

x− x0
vf

− t
)
qmax

≥ N
c
(j−1)
up

(
x, tj +

x− x0
vf

)
+

(
tj +

x− x0
vf

− t
)
qmax

≥ N̂
c
(j−1)
up

(x, t)
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If (x, t) /∈ DomN
c
(0)
up

, one can prove similarly that:

N̂
c
(0)
up

(x, t) = N
c
(0)
up

(
x,
x− x0
vf

)
+

(
x− x0
vf

− t
)
qmax

≥ N
c
(0)
ini

(
x,
x− x0
vf

)
+

(
x− x0
vf

− t
)
qmax

≥ N̂
c
(0)
ini

(x, t)

Because any point (x, t) is on a characteristic curve emanating from (x, 0), there exists i such that
(x, t) ∈ Dom(Nc(i)). Furthermore, because of the two previous inequalities, we can extend this statement to

the following statement: there exists i such that (x, t) ∈ DomNc(i) and N̂
c
(j)
up

(x, t) ≥ N(i)(t, x). The same

induction as before gives

∃r : Nc(r)(x, t) = min
({

N̂
c
(i)
ini

(x, t)|0 ≤ i < n
}
∪
{

N̂
c
(j)
up

(x, t)|0 ≤ j < m
})

Symmetrically for downstream conditions, we can generate the same results: we know that if (x, t) /∈
DomN

c
(j)
down

, N̂
c
(j)
down

(x, t) ≥ N̂
c
(j−1)
down

(x, t) and if (x, t) /∈ DomN
c
(0)
down

, N̂
c
(0)
down

(x, t) ≥ N̂
c
(n−1)
ini

(x, t). Therefore,

∃i : (x, t) ∈ DomNc(i) and N̂
c
(j)
down

(x, t) ≥ Nc(i)(t, x). A quick induction then shows that

min
i s.t. (x,t)∈ DomN

c(i)

N̂c(i)(x, t) = min
i

Nc(i)(x, t)

�

Theorem A.5. Let us consider the Cauchy problem as stated in equation (6). If the imposed initial densities
are in [0, κ] and if the imposed upstream and downstream flows are in [0, qmax], then the solution to the
Cauchy problem is Lipschitz-continuous.

Proof — We apply lemma (A.1) to the result of proposition (A.4). �
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