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Abstract: This paper develops boundary observer for estimation of congested freeway traffic
states based on Aw-Rascle-Zhang(ARZ) partial differential equations (PDE) model. Traffic
state estimation refers to acquisition of traffic state information from partially observed traffic
data. This problem is relevant for freeway due to its limited accessibility to real-time traffic
information. We propose a boundary observer design so that estimates of aggregated traffic states
in a freeway segment are obtained simply from boundary measurement of flow and velocity.
The macroscopic traffic dynamics is represented by the ARZ model, consisting of 2× 2 coupled
nonlinear hyperbolic PDEs for traffic density and velocity. Analysis of the linearized ARZ model
leads to the study of a hetero-directional hyperbolic PDE model for congested traffic regime.
Using spatial transformation and PDE backstepping method, we construct a boundary observer
with a copy of the nonlinear plant and output injection of boundary measurement errors. The
output injection gains are designed for the error system of the linearized ARZ model so that
the exponential stability of error system in the L2 norm and finite-time convergence to zero are
guaranteed. Simulations are conducted to validate the boundary observer design for nonlinear
ARZ model without knowledge of initial conditions.

Keywords: Aw-Rascle-Zhang model, boundary observer, traffic estimation, PDE backstepping
method.

1. INTRODUCTION

Traffic state estimation refers to foresee of traffic state
information with a model by accessing partially observed
traffic data and some prior knowledge of the traffic. Traffic
state estimation plays an important role in traffic man-
agement. In order to mitigate freeway traffic congestion,
various control algorithms are developed for ramp meter-
ing or variable speed limit. The effective implementation
of control algorithms on traffic infrastructure relies on ac-
curate information of traffic state. Due to the financial and
technical limitations, traffic state on freeways is difficult to
measure everywhere. This topic has been widely studied
and gained increasing attention in recent decades.

Freeway traffic dynamics in spatial and temporal domain
are usually described with macroscopic models of the
aggregated values of traffic states, including traffic den-
sity, velocity and flux. The Lighthill-Whitham-Richards
(LWR) model proposed by Lighthill & Whitham (1955)
and Richards (1956), a first-order scalar hyperbolic PDE of
density, is the most widely applied traffic models. Several
studies have used LWR model for traffic states estima-
tion in Claudel & Bayen (2008) Coifman (2002) Coifman
(2003) Kesting & Treiber (2009) due to its simplicity.

This model fails to account for stop-and-go traffic, which
does not obey the density-velocity relation in equilibrium.

Second-order models consisting of nonlinear hyperbolic
PDEs of traffic density and velocity, have been proposed
to overcome the limitation of LWR model. The devia-
tions from the equilibrium traffic relation are allowed in
the second-order model. To estimate the non-equilibrium
traffic states for congested traffic, the second-order models
therefore need to be considered.

The second-order Payne-Whitham (PW) model by Payne
(1971) Whitham (1974) is used to develop an extended
Kalman filter for state estimation in Wang & Papageor-
giou (2005). Compared with PW model, Aw-Rascle Zhang
model by AW & Rascle (2000) and Zhang (2002) im-
proved the second-order model by successfully addressing
anisotropic behavior of traffic and correcting the model’s
prediction of traffic waves. For this reason, ARZ model has
been studied intensively for stop-and-go traffic by Flynn,
et al. (2009) Seibold, et al. (2012) Fan, et al. (2013) Bel-
letti, et al. (2015) Kerner, et al. (1998). A comprehensive
review of different models and approaches in traffic estima-
tion problem can be found in Seo, et al. (2017). Boundary
observer for state estimation has never been addressed
with ARZ PDE model.

Boundary control of the ARZ model has been studied
through many recent efforts including Belletti, et al.
(2015) Zhang & Prieur (2017) Karafyllis, et al. (2017) Yu
& Krstic (2018a) Yu & Krstic (2018b). Boundary control
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and observer design using PDE backstepping method have
been developed for 2×2 coupled hyperbolic systems Coron,
et al. (2013)Yu & Krstic (2017) and the theoretical result
for more general hetero-directional hyperbolic systems de-
veloped in Long, et al. (2016) Florent, et al. (2013) Auriol
& Di Meglio. (2016). The previous work by Yu & Krstic
(2018a) Yu & Krstic (2018b) adopted the methodology
for ARZ model. Boundary observers are designed in an
effort to develop an output feedback for the linearized ARZ
model. To the author’s best knowledge, state estimation
problem of nonlinear ARZ model has never been studied
before.

This is the first result on boundary observer of nonlinear
ARZ PDE model. Our main contribution in this work
is that we generalize the previous results of linearized
ARZ model and address the freeway traffic estimation
problem from a more practical perspective. The boundary
conditions are obtained from measurement of the field
data. The current result can be easily represented and
validated by real traffic data and thus paves the way for
implementing this observer design in practice.

The outline of this paper is as follows: we firstly intro-
duce the nonlinear ARZ model, and analyze the linearized
ARZ model for free and congested traffic. The boundary
observer for linearized ARZ model is designed using the
backstepping method and nonlinear boundary observer
are developed using the output injections obtained from
the linearized model. To validate our result, simulations of
nonlinear ARZ PDE model and state estimation by non-
linear boundary observer are conducted. The estimation
errors are analyzed.

2. PROBLEM STATEMENT

We consider the traffic estimation problem for a stretch
of freeway with length to be L. The macroscopic traffic
dynamics is modeled by the ARZ model. We study the
linearized ARZ model and discuss the characteristic speeds
under free and congested traffic regime.

2.1 Aw-Rascle-Zhang Model

The ARZ model for (x, t) ∈ [0, L]× [0,+∞) is

∂tρ+ ∂x(ρv) =0, (1)

∂tv + (v − ρp′(ρ))∂xv =
V (ρ)− v

τ
. (2)

The state variable ρ(x, t) is the traffic density and v(x, t)
is the traffic speed. The equilibrium velocity-density re-
lationship V (ρ) is a decreasing function of density. The
equilibrium flux function Q(ρ) is

Q(ρ) = ρV (ρ). (3)

For ARZ model, the choice of V (ρ) needs to satisfy that
the flux function Q(ρ) is strictly concave Q(ρ)′′ < 0 for
model validity and prediction of traffic waves. We choose
the following model in the form of Greenshield’s model,

V (ρ) = vf

(
1−

(
ρ

ρm

)γ)
. (4)

Note that the choice of V (ρ) here is due to its simplicity of
expression and smoothness. The observer design proposed
in this paper is not limited by this choice.

The inhomogeneous ARZ including a relaxation term on
the right hand side of the velocity PDE is considered.
The constant parameter τ is the relaxation time which
describes drivers’ driving behavior adapting to equilibrium
density-velocity relation over time. Note that the ARZ
model without the relaxation term cannot address this
phenomenon and poses an easier estimation problem.

The increasing function of density p(ρ) is defined as the
traffic pressure

p(ρ) = C0ρ
γ , (5)

where C0, γ ∈ R+. The pressure function p(ρ) is chosen so
that it is related to equilibrium velocity-density function
V (ρ) as

p(ρ) = V (0)− V (ρ). (6)

Given V (ρ) in (4), we have density pressure as

p(ρ) = vf

(
ρ

ργm

)γ
. (7)

Note that this choice of model parameter shows a marginal
stability and a very slow damping effect of stop-and-go
traffic. The following boundary observer design can be
applied to the model when the above relation does not
hold.

2.2 Linearized ARZ model in traffic flux and velocity

The traffic density is defined as the number of vehicles per
unit length while the traffic flux represents the number of
vehicles per unit time which cross a given point on the
road. The traffic flow flux q is

q = ρv. (8)

Traffic flux q and velocity v are most accessible physical
variables to measure in freeway traffic. q is commonly
measured by loop detectors and v is obtained by GPS.
Therefore, we rewrite the ARZ model in traffic flux q and
traffic velocity v as follows,

qt + vqx =
q(γp− v)

v
vx +

q(vf − p− v)

τv
, (9)

vt − (γp− v)vx =
vf − p− v

τ
, (10)

p(ρ) and q are related by

p =
vf
ργm

( q
v

)γ
. (11)

There is no explicit solution to the above nonlinear coupled
hyperbolic system. To further understand the dynamics
of ARZ traffic model in (q, v)-system, we linearize the
model around steady states (q?, v?) which are chosen as
spatial and temporal nominal values of state variables.
Small deviations from the nominal profile are defined as

q̃(x, t) =q(x, t)− q?, (12)

ṽ(x, t) =v(x, t)− v?. (13)

The steady density is given as ρ? = q?/v? and setpoint
density-velocity relation satisfy the equilibrium relation
V (ρ),

v? = V (ρ?). (14)

The linearized ARZ model in (q̃, ṽ) around reference sys-
tem (q?, v?) with boundary conditions is given by



q̃t + v?q̃x +
q?

v?

(
v? +

q?

v?
V ′
(
q?

v?

))
ṽx = − q?

(v?)2 + q?V ′
(
q?

v?

)
τ(v?)3

ṽ

+
q?V ′

(
q?

v?

)
τ(v?)2

q̃, (15)

ṽt +

(
v? +

q?

v?
V ′
(
q?

v?

))
ṽx = −

(v?)2 + q?V ′
(
q?

v?

)
τ(v?)2

ṽ

+
V ′
(
q?

v?

)
τv?

q̃, (16)

where the two characteristic speeds of the above linearized
PDE model are

λ1 =v?, (17)

λ2 =v? + ρ?V ′(ρ?). (18)

• Free-flow regime : λ1 > 0, λ2 > 0
In the free-flow regime, both the disturbances of traf-
fic flux and velocity travel downstream, at respective
characteristic speeds λ1 and λ2. The linearized ARZ
model in free-regime is a homo-directional hyperbolic
system.

• Congested regime : λ1 > 0, λ2 < 0
In the congested regime, the traffic density is greater
than a critical value and second characteristic speed
becomes negative value. Therefore, disturbances of
the traffic speed travel upstream with λ2 while the
disturbances of the traffic flow flux are carried down-
stream with the characteristic speed λ1. The hetero-
directional propagations of disturbances force vehicles
into stop-and-go traffic.

Since in the free-flow regime, the linearized homo-directional
hyperbolic PDEs can be solved explicitly by the inlet
boundary values and therefore state estimates can be ob-
tained by solving the hyperbolic PDEs. In this work, we
focus on the congested regime with two hetero-directional
hyperbolic PDEs. It is a more relevant and challenging
problem for traffic states estimation.

3. BOUNDARY OBSERVER DESIGN

In this section, boundary sensing is employed for observer
design. The state estimation of nonlinear ARZ model is
achieved using backstepping method. The output injection
gains are designed for the linearized ARZ model and then
adding to the copy of nonlinear plant.

Boundary values of state variations from steady states are
defined as

Yq,in(t) =q̃(0, t), (19)

Yq,out(t) =q̃(L, t), (20)

Yv(t) =ṽ(L, t). (21)

where the values of q̃(0, t), q̃(L, t) and ṽ(L, t) are obtained
by subtracting setpoint values from the sensing of incom-
ing traffic flux q(0, t), outgoing flux q(L, t) and outgoing
velocity v(L, t),

yq(t) =q(0, t), (22)

yout(t) =q(L, t), (23)

yv(t) =v(L, t). (24)

Real-time sensing of traffic flux and velocity can be ob-
tained by high-speed camera or induction loops. The in-
duction loops are coils of wire embedded in the surface

of the road to detect changes of inductance when vehicles
pass.

3.1 Output injection for linearized ARZ model

We diagonalize the linearized equations and therefore
write (q̃, ṽ)-system in the Riemann coordinates. The Rie-
mann variables are defined as

ξ1 =
ρ?λ2
λ1 − λ2

ṽ + q̃, (25)

ξ2 =
q?

λ1 − λ2
ṽ (26)

The inverse transformation is given by

ṽ =
λ1 − λ2
q?

ξ2, (27)

q̃ =ξ1 −
λ2
λ1
ξ2. (28)

The measurements are taken at boundaries result in the
following boundary conditions

ξ1(0, t) =
λ2
λ1
ξ2(0, t) + Yq(t), (29)

ξ2(L, t) =
q?

λ1 − λ2
Yv(t). (30)

Therefore the linearized ARZ model in Riemann coordi-
nates is obtained

∂tξ1 + λ1∂xξ1 =− 1

τ
ξ1, (31)

∂tξ2 + λ2∂xξ2 =− 1

τ
ξ1, (32)

ξ1(0, t) =
λ2
λ1
ξ2(0, t), (33)

ξ2(L, t) =ξ1(L, t). (34)

In order to diagonalize the right hand side to implement
backstepping method, we introduce a scaled state as
follows:

w̄(x, t) = exp

(
x

τλ1

)
ξ1(x, t), (35)

v̄(x, t) =ξ2(x, t). (36)

The (ξ1, ξ2)-system is then transformed to a first-order
2× 2 hyperbolic system

w̄t(x, t) + λ1w̄x(x, t) =0, (37)

v̄t(x, t) + λ2v̄x(x, t) =c(x)w̄(x, t), (38)

w̄(0, t) =
λ2
λ1
v̄(0, t) + Yq,in(t), (39)

v̄(L, t) =
q?

λ1 − λ2
Yv(t), (40)

where the spatially varying parameter c(x) is defined as

c(x) = −1

τ
exp

(
− x

τλ1

)
, (41)

Parameter c(x) is a strictly increasing function and
bounded by

−1

τ
≤ c(x) ≤ −1

τ
exp

(
− L

τλ1

)
. (42)

Then we design a boundary observer for the linearized
ARZ model to estimate w̄(x, t) and v̄(x, t) by constructing
the following system



ŵt(x, t) + λ1ŵx(x, t) =r(x)(w̄(L, t)− ŵ(L, t)), (43)

v̂t(x, t) + λ2v̂x(x, t) =c(x)ŵ(x, t)

+ s(x)(w̄(L, t)− ŵ(L, t)), (44)

ŵ(0, t) =
λ2
λ1
v̂(0, t) + Yq,in(t), (45)

v̂(L, t) =
q?

λ1 − λ2
Yv(t), (46)

where ŵ(x, t) and v̂(x, t) are the estimates of the state
variables w̄(x, t) and v̄(x, t). The value w̄(L, t) is obtained
by plugging in the measured outgoing flow flux Yq,out(t)
and velocity Yv(t) into (35),

w̄(L, t) = exp

(
L

τλ1

)(
ρ?λ2
λ1 − λ2

Yv(t) + Yq,out(t)

)
. (47)

The term r(x) and s(x) are output injection gains to be
designed. We denote estimation errors as

w̌(x, t) =w̄(x, t)− ŵ(x, t), (48)

v̌(x, t) =v̄(x, t)− v̂(x, t). (49)

The error system is obtained by subtracting the estimates
(43)-(46) from (37)-(40),

w̌t(x, t) =− v?w̌x(x, t)− r(x)w̌(L, t), (50)

v̌t(x, t) =(γp? − v?)v̌x(x, t) + c(x)w̌(x, t)

− s(x)w̌(L, t), (51)

w̌(0, t) =
λ2
λ1
v̌(0, t), (52)

v̌(L, t) =0. (53)

The output injection gains r(x) and s(x) need to guarantee
the error system (w̌, v̌) decays to zero. Using backstepping
transformation, we transform the error system (50)-(53)
into the following target system

αt(x, t) + λ1αx(x, t) =0, (54)

βt(x, t) + λ2βx(x, t) =0, (55)

α(0, t) =
λ2
λ1
β(0, t), (56)

β(L, t) =0. (57)

The explicit solution to the target system (54)-(57) can be
easily found. Thus we have

α(x, t) ≡ β(x, t) ≡ 0, (58)

after a finite time t = tf where

tf =
L

|λ1|
+

L

|λ2|
. (59)

It is straightforward to prove that the α, β system is L2

exponentially stable.

The backstepping transformation is

α(x, t) =w̌(x, t)−
∫ L

x

K(L+ x− ξ)w̌(ξ, t)dξ, (60)

β(x, t) =v̌(x, t)−
∫ L

x

M(λ1x− λ2ξ)w̌(ξ, t)dξ, (61)

where the kernel variables K(x) and M(x) map the error
system into the target system. The kernel M(x) is defined
as

M(x) = − 1

λ1 − λ2
c

(
x

λ1 − λ2

)
. (62)

For boundary condition (56) to hold, the kernels K(x) and
M̌(x) satisfy the relation

K(L− ξ) =M((λ2 − λ1)ξ). (63)

the kernel K is then obtained

K(x) = − 1

λ1 − λ2
c

(
−λ2

λ1 − λ2
(L− x)

)
. (64)

According to the boundedness of c(x) in (42), the kernels
are bounded

|K(x)| ≤ 1

(λ1 − λ2)τ
, (65)

and therefore M(x) is bounded. The output injection gain
r(x) and s(x) are given by

r(x) =λ1K(x) = − λ1
λ1 − λ2

c

(
λ2

λ1 − λ2
(L− x)

)
, (66)

s(x) =− λ1M(λ1x− λ2L)

=
λ1

λ1 − λ2
c

(
x− λ2

λ1 − λ2
(L− x)

)
. (67)

The backstepping transformation is invertible. Therefore,
we study the stability of the error system through the
target system (54)-(57). It is straightforward to prove the
exponential stability of error system in the L2 sense and
finite-time convergence in tf given by (59). We arrive at
the following theorem.

Theorem 1. Consider system (50)-(53) with inital condi-
tions w̌0, v̌0 ∈ L2[0, L]. The equilibrium w̌ ≡ v̌ ≡ 0 is
exponentially stable in the L2 sense. It holds that

||w̄(·, t)− ŵ(·, t)|| → 0 (68)

||v̄(·, t)− v̂(·, t)|| → 0 (69)

and the convergence to equilibrium is reached in finite time
t = tf given in (59).

3.2 Boundary observer design for Nonlinear ARZ model

For nonlinear boundary observer, we construct the system
by keeping the output injection that is designed for the
linearized ARZ model, then add them to the copy of
original nonlinear ARZ model.

We summarize the transformation from linearized ARZ
model in (q̃, ṽ)-system to (w̄, v̄)-system,

w̄(x, t) = exp

(
x

τλ1

)(
ρ?λ2
λ1 − λ2

ṽ + q̃

)
, (70)

v̄(x, t) =
q?

λ1 − λ2
ṽ(ξ, t). (71)

And the inverse transformation is given by

q̃(x, t) = exp

(
− x

τλ1

)
w̄(x, t)− λ2

λ1
v̄(x, t), (72)

ṽ(x, t) =
λ1 − λ2
q?

v̄(ξ, t). (73)

Due to equivalence of (w̌, v̌) and (q̃, ṽ)-system, we arrive
at the following theorem for the linearized ARZ model.

Theorem 2. Consider system (15)-(16) with inital condi-
tions q̃0, ṽ0 ∈ L2[0, L]. The equilibrium q̃ ≡ ṽ ≡ 0 is
exponentially stable in the L2 sense. It holds that

||q(·, t)− q?|| → 0 (74)

||v(·, t)− v?|| → 0 (75)

and the convergence to set points is reached in finite time
t = tf .



Table 1. Parameter Table

Parameter Name Value

Maximum traffic density ρm 160 vehicles/km
Traffic pressure and coefficient γ 1
Maximum traffic velocity vf 40 m/s
Relaxation time τ 60 s
Reference density ρ? 120 vehicles/km
Reference velocity v? 10 m/s
Freeway segment length L 500 m

We denote the error injections designed for the linearized
ARZ model (43)-(46) as

Ew(t) =− r(x)(w̄(L, t)− ŵ(L, t)), (76)

Ev(t) =− s(x)(w̄(L, t)− ŵ(L, t)). (77)

The output injection gains r(x), s(x) are designed in (66)
and (67). According to (47), w̄(L, t) is obtained from real-
time measurement of the traffic boundary data in (19)-
(21). Therefore, the values of output injections Ew(t) and
Ev(t) are known.

The nonlinear observer (ρ̂(x, t), v̂(x, t)) for state estima-
tion is obtained by combining the copy of the nonlinear
ARZ model (ρ, v) given by (1)(2) and the above linear
injection errors in original state variables density and
velocity,

∂tρ̂+ ∂x(ρ̂v̂) =
1

v?

(
exp

(
− L

τλ1

)
Ew − Ev

)
,

(78)

∂tv̂ + (v̂ + ρ̂V ′(ρ̂))∂xv̂ =
V (ρ̂)− v̂

τ
+
λ1 − λ2
q?

Ev, (79)

where the linear injection on the right hand side are
obtained by transforming (ŵ, v̂) to (ρ, v) given in (72),(73).
The boundary conditions are

ρ̂(0, t) =
yq(t)

v̂(0, t)
, (80)

v̂(L, t) = yv(t). (81)

When the initial states of the system is close to the set
points, the linearized part dominates the nonlinear esti-
mation error system and therefore we can prove that the
local H2 exponential stability holds for estimation error
system of the nonlinear ARZ model,following approach in
Coron, et al. (2013). This observer result is validated in
the following numerical simulation.

4. SIMULATION

For simulation of nonlinear ARZ PDE model, we as-
sume that the initial conditions are sinusoidal oscillations
around the steady states. Model parameters are chosen as
shown in the table 1. We consider a constant incoming flow
and constant outgoing density for boundary conditions,

q̃(0, t) =0, (82)

ṽ(L, t) =
1

ρ?
q̃(L, t). (83)

When dealing with the real traffic data, we do not pre-
scribe any boundary conditions beforehand but import the
boundary data directly.

We use finite volume method and write the ARZ model
in the conservative variables, then apply two-stage Lax-
Wendroff scheme to discretize ARZ model in spatio-
temporal domain. The scheme is second-order accurate in

Fig. 1. Density ρ(x, t) and velocity v(x, t) of nonlinear ARZ
model.

Fig. 2. States estimates ρ̂(x, t) and v̂(x, t) of nonlinear
boundary observer.

Fig. 3. Estimation errors ρ̌(x, t) and v̌(x, t).

space. The spatial grid resolution is chosen to be smaller
than the average vehicle size so that the numerical errors
are smaller than the model errors. Therefore the simulation
is valid for this continuum model.

For the numerical stability of Lax - Wendroff scheme, the
spatial grid size ∆x and time step ∆t is chosen so that
CFL condition is satisfied:

max |λ1,2| ≤
∆x

∆t
, (84)

Note that we need to specify state values at both x = 0
and x = L boundaries. ARZ model will pick up some
combination of ρ and v at each of the two boundaries, de-
pending on the direction of characteristics. We implement
the boundary conditions in (82) and (83).

In Fig 1-3, blue lines represent initial conditions while the
red lines represent the evolution of outlet state value in
temporal domain. The simulation is performed for a 500 m
length of freeway segment and evolution of traffic states
density and velocity are plotted for 4 min.

In Fig 1, traffic density and velocity are slightly damped
and keeps oscillating. It takes the initial disturbance-
generated vehicles to leave the domain in 50 s but the
oscillations sustain for more than 4 min. Since the traffic
states are chosen to be in the congested regime, the stop
and go traffic appears in the simulation.



State estimation of traffic density and velocity by nonlin-
ear observer is shown in Fig.2. The measurement is taken
for outgoing velocity and outgoing flow. The incoming flow
is assumed to be at setpoint traffic flux. We do not assume
any prior knowledge of initial condition and thus set the
initial conditions to be at setpoint density and velocity.
We can see that state estimates converges to true values
of plant after 75 s.

In Fig 3, the evolution of estimation errors are shown.
After 75 s, the estimation errors for density and velocity
converge to value less than 2% of the setpoint value.
There are still relatively very small estimation errors
remain in the domain for two reasons. Our result only
guarantees convergence of estimates in the spatial L2

norm. In addition, there could be nonlinearities remain in
the linear injection of nonlinear boundary observer design.

5. CONCLUSION

In conclusion, we develop a nonlinear boundary observer
to estimate traffic states for the ARZ PDE model. Analysis
of the linearized model leads our main focus to the con-
gested regime where stop-and-go happens. Using spatial
transformation and PDE backstepping method, we con-
struct a boundary observer with a copy of the nonlinear
plant and output injection of measurement errors so that
local exponential stability of estimation errors in the L2

norm and finite-time convergence to zeros are guaranteed.
The observer design for nonlinear ARZ model has been
validated by simulation for a stretch of freeway. For future
work, validation of the nonlinear observer with traffic field
data is of our interest.
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