
ar
X

iv
:1

81
2.

10
83

7v
1

 [
cs

.D
S]

 2
7

D
ec

 2
01

8

On the Approximability of Time Disjoint Walks

Alexandre Bayen∗ Jesse Goodman† Eugene Vinitsky∗

December 31, 2018

Abstract

We introduce the combinatorial optimization problem Time Disjoint Walks. This problem
takes as input a digraph G with positive integer arc lengths, and k pairs of vertices that each
represent a trip demand from a source to a destination. The goal is to find a path and delay
for each demand so that no two trips occupy the same vertex at the same time, and so that the
sum of trip times is minimized. We show that even for DAGs with max degree ∆ ≤ 3, Time
Disjoint Walks is APX-hard. We also present a natural approximation algorithm, and provide
a tight analysis. In particular, we prove that it achieves an approximation ratio of Θ(k/ log k)
on bounded-degree DAGs, and Θ(k) on DAGs and bounded-degree digraphs.

1 Introduction

1.1 Related work

Disjoint Paths is a classic problem in combinatorial optimization that asks: given an undirected
graph G, and k pairs of vertices, do there exist vertex-disjoint paths that connect each pair?
This problem captures the general notion of connection without interference, and has subsequently
received much attention due to its applicability in areas like VLSI design [Len12, SLK+90] and
communication networks [SM03, Tor92].

These applications have motivated many variants of this basic problem. For example, one may
choose the underlying graph to be undirected or directed, and the disjointness constraint to be over
vertices or edges. As an optimization problem, one may consider the maximum number of pairs
that can be connected with disjoint paths, the minimum number of rounds necessary to connect
all pairs (where all paths in a round must be disjoint) [Kle96], or the shortest set of disjoint paths
to connect all pairs (if all pairs can, in fact, be disjointly connected) [KS10].

A few flavors of Disjoint Paths are tractable: for example, if k is fixed or G has bounded
tree-width, then there exists a poly-time algorithm for finding vertex-disjoint paths on undirected
graphs [RS95, Sch94]. Many interesting variants of Disjoint Paths are, however, extremely difficult.
Indeed, finding vertex-disjoint paths on undirected graphs is one of Karp’s NP-complete prob-
lems [Kar75]. Furthermore, nearly-tight hardness results are known for finding the maximum set of
edge-disjoint paths in a directed graph with m edges: there exists an O(

√
m)-approximation algo-

rithm [Kle96], and it is NP-hard to approximate within a factor of m1/2−ǫ, for any ǫ > 0 [GKR+03].
For detailed surveys on the complexity landscape of Disjoint Paths variants, see [Kle96, KS10].

∗University of California, Berkeley. {bayen,evinitsky}@berkeley.edu.
†Cornell University. jpmgoodman@cs.cornell.edu.

1

http://arxiv.org/abs/1812.10837v1

1.2 Contributions

Despite the great variety of Disjoint Paths problems that have been considered in the literature, it
appears that little attention has been given to variants that relax the disjointness constraint, even
though many natural applications do not always require paths to be completely disjoint. Consider,
for example, the application of safely routing a collection of fully autonomous (and obedient)
vehicles through an otherwise empty road network. In such a situation, we can certainly prevent
collisions by routing all vehicles on disjoint paths. However, it is not difficult to see that if we have
full control over the vehicles, using disjoint paths is rarely necessary (and, in fact, can be highly
suboptimal).

Applications of this flavor motivate a new variant of Disjoint Paths, which roughly asks: given
a graph G and k pairs of vertices that each represent a trip demand, how should we assign a delay
and a path to each trip so that (1) trips are completed as quickly as possible, and (2) no two trips
collide (i.e., occupy the same location at the same time). While there are problems in the literature
(that do not wield the name “Disjoint Paths”) that seemingly come close to capturing this goal,
they exhibit some key differences. In particular, multicommodity flows over time [Sku09, GS12] and
job shop scheduling [Gra66] seem, at first glance, very related to our problem. However, the former
does not enforce unsplittable flows (as we require), and the latter does not capture the flexibility
of scheduling job operations over any appropriate walk in a network.

As such, we are motivated to formalize and study this new variant of Disjoint Paths that
relaxes the classical disjointness constraint to a “time disjointness” constraint. In particular, our
contributions are threefold:

• We introduce a natural variant of Disjoint Paths, which we call Time Disjoint Walks (TDW).
To the best of our knowledge, this is the first simple model that captures the notion of
collision-free routing of discrete objects (i.e., instead of flows) over a shared network.

• We prove that Time Disjoint Walks is APX-hard, by providing an L-reduction from a variant
of SAT. In fact, our reduction shows that this result holds even for directed acyclic graphs
(DAGs) of max degree three (∆ ≤ 3).

• We describe an intuitive approximation algorithm for our problem, and provide a tight analy-
sis: we show that it achieves an approximation ratio of Θ(k/ log k) on bounded-degree DAGs,
and Θ(k) on DAGs and bounded-degree digraphs.

We formally introduce Time Disjoint Walks in Section 2. In Section 3 we provide some useful
definitions regarding approximation. In Section 4 we prove our APX-hardness result. In Section 5
we describe our approximation algorithm, and provide bounds on its performance for the input
classes mentioned above. In Section 6 we state our conclusions and present some open problems.

2 Time Disjoint Walks

We must first mention a few preliminaries: given a, b ∈ Z, define [a, b] := {x ∈ Z | a ≤ x ≤ b}, and
for b ∈ Z, we write [b] := [1, b]. Note that for b < 1, [b] = ∅. Given a directed graph (digraph)
G := (V,E), and u, v ∈ V , we define a walk W from u to v in G as a tuple (w1, w2, . . . , wl) of
vertices such that w1 = u,wl = v, and (wi, wi+1) ∈ E for each i ∈ [l − 1]. Note that a vertex can
be repeated.

2

s1 t1

s2

t2

s3

t3

s4

t4

s5

t5

s6

t6

s7

t7

2 3 5 5 6 7

11

(i)

s1

s2

t2

t1

2

(ii)

Figure 1: (Unlabeled arcs have length 1): (i) A TDW instance with an optimal solution that
contains cycles and intersecting walks, even though disjoint paths exist. (ii) A TDW instance with
an obvious optimal solution, or a Shortest Disjoint Paths instance with no solution.

Given a digraph G with arc lengths λ : E → Z≥1, and a walk W = (w1, w2, . . . , wl) in G, we let
|W | := l denote the cardinality of the walk, and we define for every j ∈ [l] the length of the walk
up to its jth vertex as

λ(W, j) :=
∑

i∈[j−1]

λ(wi, wi+1).

For convenience, we let λ(W) := λ(W, l) denote the total length of the walk. Finally, given delays
d1, d2 ∈ Z≥0 and walks W1,W2 in G, we say that (d1,W1) and (d2,W2) are time disjoint if,
intuitively, a small object traversing W1 at constant speed after waiting d1 units of time does
not collide/interfere with a small object traversing W2 at the same speed after waiting d2 units
of time. We consider walks that have not departed, and walks that have already ended, to no
longer exist on the network (and thereby not occupy any vertices). Formally, we have: for every
j1 ∈ [|W1|], j2 ∈ [|W2|] such that the jth1 vertex of W1 is equal to the jth2 vertex of W2,

d1 + λ(W1, j1) 6= d2 + λ(W2, j2).

We are now ready to formally define the problem examined in this paper:

Definition 2.1 (Time Disjoint Walks). Let G := (V,E) be a digraph, let λ : E → Z≥1 define arc
lengths, and let T := {(s1, t1), (s2, t2), . . . , (sk, tk)} ⊆ V 2 define a set of demands across unique
vertices. For each i ∈ [k], find a delay di ∈ Z≥0 and walk Wi from si to ti such that the tuples in
{(di,Wi) | i ∈ [k]} are pairwise time disjoint, and

∑

i∈[k](di + λ(Wi)) is minimized.

We note that one can construct analogous problems by considering undirected graphs as input,
edge lengths and delays that are real-valued, or a definition of time disjoint that requires large
gaps between arrival times at common vertices (whereas the definition above simply requires a
nonzero gap). Additionally, one may wish to consider a min-max objective instead of our min-sum
objective.

We leave these variants to future work, noting that our primary goal in this paper is to study
a basic flavor of this new combinatorial problem. Furthermore, our selection of this variant is

3

well-motivated by our original application of routing a collection of identical autonomous vehicles
over an empty road network (which, for the sake of this futuristic application, we may assume was
built specifically for these vehicles). In particular, we may (1) model the road network as a directed
graph, (2) assume that all routed vehicles traverse their walk at the same constant velocity, (3)
measure road lengths as the time necessary to traverse it at that velocity, and (4) assume that road
lengths are integer multiples of the time length of each vehicle. Additionally, we may motivate our
min-sum objective by the desire to find a socially optimal solution.

Finally, we emphasize the novelty of our time disjoint constraint by comparing it to the standard
disjoint constraint used in classical variants of Disjoint Paths. In particular, observe that if we
modify the definition of Time Disjoint Walks to use the latter constraint instead of the former,
we arrive at the (Min-Sum) Shortest Disjoint Paths problem [KS10]. However, this constraint
makes all the difference: given an instance of Time Disjoint Walks, it is often the case that a
solution under the standard disjoint constraint is suboptimal if examined under the time disjoint
constraint. Indeed, the optimal solution under the latter constraint may even include paths that
repeat vertices - hence the name Time Disjoint Walks; see Fig. 1, part (i). On the other hand, it
is easy to construct an instance of Shortest Disjoint Paths that admits an obvious optimal solution
under the time disjoint constraint, but does not yield any solution at all under the classical disjoint
constraint; see Fig. 1, part (ii).

These observations strongly suggest that there is no simple reduction, in either direction, be-
tween Time Disjoint Walks and Disjoint Paths. Furthermore, using time-expanded networks [Sku09]
to reduce Time Disjoint Walks into Disjoint Paths appears to offer little hope: such reductions will
approximately square the size of the original graph, and many variants of Disjoint Paths are hard
to approximate within m1/2−ǫ, for any ǫ > 0 [GKR+03]. Thus, an approximation algorithm for
Disjoint Paths, applied to a transformed Time Disjoint Walks instance, would likely fail to per-
form better than a trivial approximation algorithm for Time Disjoint Walks. These observations
highlight the novelty of our problem and (in)approximability results.

3 Approximation preliminaries

Given an optimization problem P, we let IP denote the instances of P, SOLP map each x ∈ IP
to a set of feasible solutions, and let cP assign a real cost to each pair (x, y) where x ∈ IP and
y ∈ SOLP(x). For x ∈ IP , we let OPTP(x) := miny∗∈SOLP (x) cP(x, y

∗) if P is a minimization
problem, and OPTP(x) := maxy∗∈SOLP (x) cP(x, y

∗) otherwise.
If A is a polynomial time algorithm with input x ∈ IP and output y ∈ SOLP(x), we say that A

is a ρ-approximation algorithm, or has approximation ratio ρ, if P is a minimization problem and
cP(x,A(x))/OPTP (x) ≤ ρ, or P is a maximization problem and OPTP(x)/cP (x,A(x)) ≤ ρ, for all
x ∈ IP . Note that ρ ≥ 1.

The class APX contains all optimization problems that admit a ρ-approximation algorithm, for
some constant ρ > 1. An optimization problem is said to be APX-hard if every problem in APX
can be reduced to it through an approximation-preserving reduction. One reduction of this type is
the L-reduction:

Definition 3.1 (L-reduction). An L-reduction from an optimization problem P to an optimization
problem Q, denoted P ≤L Q, is a tuple (f, g, α, β), where:

• For each x ∈ IP , f(x) ∈ IQ and can be computed in polynomial time.

4

• For each y ∈ SOLQ(f(x)), g(x, y) ∈ SOLP(x) and can be computed in polynomial time.

• α is a positive real constant such that for each x ∈ IP ,

OPTQ(f(x)) ≤ α · OPTP(x).

• β is a positive real constant such that for each x ∈ IP , y ∈ SOLQ(f(x)),

∣

∣OPTP (x)− cP (x, g(x, y))
∣

∣ ≤ β ·
∣

∣OPTQ(f(x))− cQ(f(x), y)
∣

∣.

If a problem is APX-hard, it is NP-hard to ρ-approximate for some constant ρ > 1; thus,
showing APX-hardness is strictly stronger than showing NP-hardness. To show APX-hardness,
one can simply L-reduce from a known APX-hard problem. We refer the reader to [ACG+12] for
a good reference on approximation.

4 Hardness of approximation

To show the hardness of our problem, we show an L-reduction from MAX-E2SAT(3), which is
known to be APX-hard [BK99]. We remind the reader of the definition, below, and then proceed
with our proof.

Definition 4.1 (MAX-E2SAT(3)). Let φ be a CNF formula in which (i) each clause contains
exactly two literals on distinct variables, and (ii) each variable appears in at most three clauses.
Find a truth assignment to the variables in φ that maximizes the number of satisfied clauses.

Theorem 4.2. Time Disjoint Walks is APX-hard, even for DAGs with ∆ ≤ 3.

Proof. We let P := MAX-E2SAT(3), Q := TDW with instances restricted to those containing
DAGs with ∆ ≤ 3, and show that P ≤L Q. Below, we describe our L-reduction (f, g, α, β).

Description of f : Given an instance φ ∈ IP with n variables and m clauses, we let X :=
{x1, . . . , xn} refer to its variables and C := {C1, . . . , Cm} refer to its clauses. We let L :=
{x1, . . . , xn, x1, . . . , xn} refer to its literals. For convenience, we define e : L→ X that extracts the
variable from a given literal; i.e., e(xi) = e(xi) = xi. We label the literals in clause Cj as l1j , l

2
j .

For each l ∈ L, we let Sl := {laj | a ∈ [2], j ∈ [m], laj = l} capture all occurrences of literal l in φ.
Finally, for each l ∈ L, we define an arbitrary bijection πl : Sl → [|Sl|] to induce an ordering on Sl.
We will let π−1

l denote its inverse: i.e., π−1
l (1) is the first element in Sl in the order induced by πl.

We may now describe f , which constructs an instance (G,λ,T) ∈ IQ from φ. We start with the
construction of G (see Fig. 2), which closely follows the standard proof of NP-hardness for Disjoint
Paths: for each clause Cj = (l1j ∨ l2j) in φ, we create a new clause gadget and add it to G. That is,
for each clause Cj, we add the following vertex and arc set to our construction:

VCj
:= {csj , l1j , l2j , l1

′

j , l
2′
j , c

t
j}

ECj
:= {(csj , l1j), (csj , l2j), (l1j , l1

′

j), (l
2
j , l

2′
j), (l

1′
j , c

t
j), (l

2′
j , c

t
j)}

Next, for each xi ∈ X, we add an interleaving variable gadget as follows: first, we add two
vertices xsi , x

t
i to V (G). Then, we wish to create exactly two directed paths (walks), W+

xi
,W−

xi
,

from xsi to xti: we want W+
xi

to travel through all vertices corresponding to positive literals of xi,

5

xsi

csj1

l1j1

l1
′

j1

l2j1

l2
′

j1

ctj1

csj2

l1j2

l1
′

j2

l2j2

l2
′

j2

ctj2

csj3

l1j3

l1
′

j3

l2j3

l2
′

j3

ctj3

xti

Figure 2: An interleaving variable gadget (and its affiliated clause gadgets) corresponding to a
variable with one negative occurrence (red path) and two positive occurrences (green path).

and W−
xi

to travel through all vertices corresponding to negative literals of xi. Formally, for each
l ∈ {xi, xi}, we create a path from xsi to xti as follows. First, if |Sl| = 0, we add arc (xsi , x

t
i) to E(G).

Otherwise, we add arcs (xsi , π
−1
l (1)) and ((π−1

l (|Sl|))′, xti) to E(G), and then for each j ∈ [|Sl| − 1],
we add arc ((π−1

l (j))′, π−1
l (j + 1)). Note that the prime symbols are merely labels, and are used

in our construction to ensure that the max degree of G remains at most three. This completes our
construction of G. We now define a set of n+m demands, where each corresponds to a variable or
a clause:

T := {(xsi , xti) | i ∈ [n]} ∪ {(csj , ctj) | j ∈ [m]}
Finally, we must define arc lengths λ : E → Z≥1. We will do this in a way that for each

j ∈ [m], a ∈ [2], we have λ(Wcsj
, laj) = λ(Wxs

i
, laj), where Wcsj

is the unique walk in G from csj to laj ,

and Wxs
i
is the unique walk in G from xsi = e(laj)

s to laj . Call this property (∗). To facilitate our
analysis, we will also want every demand-satisfying path in G to have the same length.

Since φ is an instance of MAX-E2SAT(3), we know that for each i ∈ [n], each of the two paths
between xsi and xti passes through at most 3 clause gadgets. Thus, by our construction, each such
path includes at most 7 arcs, and any path from a variable xsi to some literal laj with xi = e(laj) can
use at most 5 arcs. Thus, we can successfully force each demand-satisfying path in G to have length
7 while maintaining property (∗) by defining λ : E → Z≥1 as follows, completing our construction
of (G,λ,T) ∈ IQ:

λ(u, v) :=



















































1, if (u, v) = (laj , l
a′
j), j ∈ [m], a ∈ [2]; or

if (u, v) = (xsi , l
a
j), i ∈ [n], j ∈ [m], a ∈ [2]; or

if (u, v) = (la
′

h , lbj), h, j ∈ [m], a, b ∈ [2];

7, if (u, v) = (xsi , x
t
i), i ∈ [n]

7− 2|Sl|, if (u, v) = (la
′

j , xti), j ∈ [m], a ∈ [2], i ∈ [n], laj = l

2πl(l
a
j)− 1, if (u, v) = (csj , l

a
j), j ∈ [m], a ∈ [2], laj = l

7− 1− λ(csj , l
a
j), if (u, v) = (la

′

j , ctj), j ∈ [m], a ∈ [2]

Description of g: Given a solution y ∈ SOLQ(f(φ)), we construct a solution g(φ, y) ∈
SOLP(φ) through two consecutive transformations: z, followed by q. That is, we will define
transformations z and q such that g is the composition g(φ, y) := q(φ, z(y)).

6

We define z to transform solution y into another solution y′ ∈ SOLQ(f(φ)) such that cQ(f(φ), y
′) ≤

cQ(f(φ), y) and such that y′ assigns 0 delay to demands associated with interleaving variable gad-
gets. To accomplish this, recall that y = {(d1,W1), . . . , (dn+m,Wn+m)}, by definition of SOLQ.
Without loss of generality, we may assume tuples indexed with [n] correspond to demands on in-
terleaving variable gadgets, and tuples indexed with [n+m] \ [n] correspond to demands on clause
gadgets.

Now, while there exists some i ∈ [n] such that di > 0 (and thus di ≥ 1), we perform the
following modification on y: first, we reset Wi to be the path traveling through at most one clause
gadget - the positive or negative path must have this property, because each variable appears in φ
at most three times, by definition of MAX-E2SAT(3). Now, reset di to 0. If Wi shares a vertex
with another walk Wj, we know j ∈ [n+m] \ [n], by construction of G. In this case, reset dj to 1
if and only if dj is currently 0. By construction of λ, the walks remain time disjoint and the cost
of the solution does not increase.

In the second transformation, q, we transform modified solution y′ into an assignment (A : X →
{T, F}) ∈ SOLP(φ) as follows: for each i ∈ [n], set A(xi) = T if and only if Wxi

, the walk from xsi
to xti, takes the negative literal path.

Valid value for α: We will show that for α = 29, OPTQ(f(φ)) ≤ α · OPTP(φ). To see this,
we make two observations. First observation: if A : X → {T, F} is a truth assignment for φ, then
we can construct a solution to f(φ) as follows: for each i ∈ [n], connect demand (xsi , x

t
i) using the

negative literal path if A(xi) = T , and the positive literal path if A(xi) = F . Either way, assign a
delay of 0. Then, for each j ∈ [m] where clause Cj is satisfied by assignment A, connect demand
(csj , c

t
j) using a walk that goes through a literal that evaluates to true under A. Assign a delay of 0

to this demand. For each clause Cj that isn’t satisfied by A, select an arbitrary walk to complete
the corresponding demand (csj , c

t
j). Assign a delay of 1 to this demand. It is clear that this is a

valid solution to f(φ). Furthermore, the cost of our solution is 7(n+m) +U(A,φ), where U(A,φ)
is the number of clauses in φ unsatisfied by A. Second observation: by linearity of expectation, if
φ is an instance of MAX-E2SAT(3), then there must exist an assignment A : X(φ)→ {T, F} that
satisfies at least 3/4 of the clauses.

We may now prove the desired inequality for α = 29. From our first observation and the fact
that n ≤ 2m (since each of the m clauses has 2 literals),

OPTQ(f(φ)) ≤ 7(n +m) + (m−OPTP(φ)) ≤ 22m−OPTP(φ). (1)

Now, by our second observation, we know OPTP(φ) ≥ 3m/4. Thus, we have:

OPTQ(f(φ)) ≤ 22 · (4/3) ·OPTP(φ)−OPTP(φ) ≤ 29 · OPTP(φ).

Valid value for β: We will show that for β = 1 and any y ∈ SOLQ(f(φ)),
(

OPTP(φ) −
cP(φ, g(φ, y))

)

≤ β ·
(

cQ(f(φ), y) − OPTQ(f(φ))
)

, as required. As a first step, we recall that
transformations z, q define g, and let γ denote the number of clause gadget demands assigned a
delay of 0 by solution z(y) to f(φ). We make the following crucial claim:

cP(φ, g(φ, y)) := cP(φ, q(φ, z(y))) ≥ γ. (2)

To see this, note the following: by construction, z(y) is a valid solution to f(φ). Thus, if z(y)
assigns clause gadget demand (csj , c

t
j) a delay dj = 0 and walk Wj that passes through literal l, then

l is a positive literal if and only if the walk selected for the interleaving variable gadget demand

7

(xsi , x
t
i) (where xi = e(l)) does not travel through the positive literals of xi. By definition of q, this

occurs if and only if g(φ, y) assigns true to xi. Thus, a clause gadget demand given 0 delay by z(y)
corresponds to a clause in φ satisfied by g(φ, y), thus proving inequality (2).

Next, by definition of γ and z, we have:

7(n +m) + (m− γ) ≤ cQ(f(φ), z(y)) ≤ cQ(f(φ), y). (3)

Combining inequalities (2) and (3), we get:

cP(φ, g(φ, y)) ≥ γ ≥ 7n+ 8m− cQ(f(φ), y). (4)

Finally, inequalities (1) and (4) give us:

OPTP(φ)− cP (φ, g(φ, y)) ≤
(

7n+ 8m−OPTQ(f(φ))
)

−
(

7n+ 8m− cQ(f(φ), y)
)

= β ·
(

cQ(f(φ), y)−OPTQ(f(φ))
)

,

for β = 1, as desired. This completes the proof that (f, g, α, β) is a valid L-reduction, and subse-
quently that TDW on DAGs with ∆ ≤ 3 is APX-hard.

5 Approximation algorithm

5.1 Algorithm

We present Algorithm 1, which approximates TDW by finding shortest paths to satisfy each de-
mand, and then greedily assigning delays to each trip (with priority given to shorter trips). To
simplify notation, we assume that the inputted terminal pairs are ordered by nondecreasing shortest
path length (if not, we may simply sort the indices after finding the shortest demand-satisfying
paths). The algorithm clearly runs in poly(|V |, |E|, k) time, and the bad delay variables ensure its
correctness. Next, we briefly note the following easy bound:

Proposition 5.1. Algorithm 1 has an approximation ratio of O(k) on general digraphs.

Proof. Let x := (G,λ,T) ∈ ITDW , and let A(x) ∈ SOLTDW be the output of Algorithm 1 on x.
First, we show by induction that for each i ∈ [k],

di ≤ 2
∑

h∈[i−1]

λ(Wh).

For the base case i = 1, note that bad delaysi = ∅ and so di = 0. For i > 1, first observe that by
definition of bad delay, we have di ≤ 1 + maxh∈[i−1](dh + λ(Wh)). Thus,

di ≤ 1 + max
h∈[i−1]

(

2
∑

h′∈[h−1]

λ(Wh′) + λ(Wh)

)

(induction hypothesis)

≤ 1 + 2
∑

h′∈[i−2]

λ(Wh′) + λ(Wi−1) (pick h = i− 1)

≤ 2
∑

h′∈[i−1]

λ(Wh′), (trips have length ≥ 1)

8

Algorithm 1 Shortest paths & greedy delays, with priority to shorter paths.

Input: x := (G := (V,E), λ : E → Z≥1,T := {(s1, t1), . . . , (sk, tk)}) ∈ ITDW

Output: y ∈ SOLTDW (x)
1: y ← {}
2: ⊲ Get shortest paths and dummy delays:
3: for i ∈ [k] do
4: Wi ← Dijkstra(G,λ, si, ti)
5: di ← 0
6: y ← y ∪ (di,Wi)
7: end for
8: ⊲ Greedily assign delays, with priority given to shorter paths:
9: for i ∈ [k] do

10: bad delaysi ← {}
11: for h ∈ [i− 1] do
12: bad delaysi,h ← {}
13: for v ∈Wh ∩Wi do
14: bad delay← (dh + λ(Wh, v) − λ(Wi, v))
15: bad delaysi,h ← bad delaysi,h ∪ {bad delay}
16: end for
17: bad delaysi ← bad delaysi ∪ bad delaysi,h
18: end for
19: di ← min(Z≥0 \ bad delaysi)
20: end for
21: return y

completing the induction. Now, recallling that our algorithm uses the shortest paths to satisfy each
demand, and that it assigns delays to shorter paths first, we can bound the approximation ratio as
follows:

ρ ≤ cTDW (x,A(x))
OPTTDW (x)

≤
∑

i∈[k](di + λ(Wi))
∑

i∈[k] λ(Wi)
≤ 1 +

2
∑

i∈[k]

∑

h∈[i−1] λ(Wh)
∑

i∈[k] λ(Wi)

≤ 1 +
2k

∑

i∈[k] λ(Wi)
∑

i∈[k] λ(Wi)
= O(k).

5.2 Analysis on bounded-degree DAGs

We now show that our algorithm is able to achieve a better approximation ratio on bounded-degree
DAGs. In what follows, we call a directed graph a “(2, l)-in-tree” if it is a perfect binary tree of
depth l, in which every arc points toward the root. Analogously, a “(2, l)-out-tree” is a perfect
binary tree of depth l, in which every arc points away from the root.

Theorem 5.2. Algorithm 1 achieves an approximation ratio of Θ(k/ log k) on bounded-degree
DAGs.

9

Proof. Upper bound: Let x := (G,λ,T) ∈ ITDW such that G is a DAG. Let A(x) ∈ SOLTDW be
the output of Algorithm 1 on x. In what follows, we will justify the following string of inequalities
that proves the upper bound:

ρ ≤ cTDW (x,A(x))
OPTTDW (x)

≤(1)

∑

i∈[k]

(

di + λ(Wi)
)

∑

i∈[k] λ(Wi)

≤(2) 1 +
di∗

λ(Wi∗)
, i∗ := max

i∈[k]

(

di
λ(Wi)

)

≤(3) 1 +O(1) · di∗

log di∗

≤(4) 1 +O(1) · k

log k
= O(k/ log k).

Inequality (1) is clear, because our algorithm takes the shortest path to satisfy each demand.
Inequality (2) follows (by induction) from the following general observation: given d1, d2 ∈ Z≥0

and λ1, λ2 ∈ Z≥1, observe d1/λ1 ≤ d2/λ2 =⇒ (d1+d2)/(λ1+λ2) ≤ d2/λ2, and thus (d1+d2)/(λ1+
λ2) ≤ max(d1/λ1, d2/λ2).

To show inequality (3), we need two observations. We first observe that for each i ∈ [k]:

di ≤ |bad delaysi| ≤ |{h ∈ [i− 1] | Wh ∩Wi 6= ∅}| =: µi

To see this, suppose for contradiction that there exists some h ∈ [i − 1] with Wh ∩Wi 6= ∅ and
|bad delaysi,h| > 1. Then, by definition of bad delay, there exist vertices u, v ∈Wh ∩Wi and delays
δu 6= δv ∈ Z≥0 such that:

δu + λ(Wi, u) = dh + λ(Wh, u),

δv + λ(Wi, v) = dh + λ(Wh, v),

λ(Wh, u)− λ(Wh, v) = λ(Wi, u)− λ(Wi, v) + (δu − δv),

where the last equality follows from the first two. But because δu 6= δv, this implies that the
length of the path that Wh and Wi use to travel between u and v is not the same. Because G is
a DAG, Wh and Wi must visit u and v in the same order, implying that one of these walks is not
taking the shortest path from u to v, which contradicts the definition of the algorithm. Because
|bad delaysi,h| = 0 if Wh ∩Wi = ∅, we have di ≤ µi.

Next, we observe that:

µi ≤ min(∆4λ(Wi), k).

Showing µi ≤ k is trivial, by definition of µi and because i ∈ [k]. To show µi ≤ ∆4λ(Wi), first note
that in a digraph with max degree ∆, the number of paths that (i) have z arcs, (ii) start at distinct
vertices, and (iii) all end at a common vertex, is upper bounded by ∆z (this is easy to show by
induction on z). Thus, the number of paths with ≤ z arcs, in addition to properties (ii) and (iii),
is upper bounded by

∑z
l=0 ∆

l ≤ ∆z+1, for ∆ > 1. Call this lemma (∗).
Now, note that for each h ∈ [i − 1] we may consider each Wh to terminate once it first hits

a vertex in Wi (i.e., cut off all vertices that are hit afterwards) without changing the value of
µi. Now, recall the following facts about our problem and algorithm: (I) each inputted demand

10

has a unique source; (II) each edge in our digraph has length ≥ 1; (III) for all h ∈ [i − 1],
λ(Wh) ≤ λ(Wi). Thus, by (III) and lemma (∗), each vertex in Wi can be hit by at most ∆λ(Wi)+1

walks in {W1, . . . ,Wi−1}. Furthermore, (II) tells us that the number of vertices in Wi is no more
than λ(Wi) + 1. Thus, recalling that our problem statement ensures ∆ > 1, no demands have the
same source and destination, and (II), we see that

µi ≤ (λ(Wi) + 1)∆λ(Wi)+1 ≤ ∆2(λ(Wi)+1) ≤ ∆4λ(Wi),

as desired. We now note that we may assume di is greater than any constant (otherwise, inequality
(2) automatically proves a constant approximation ratio, completing the proof). Thus, from this
and the above observations, we have log(di) ≤ 4λ(Wi) log(∆). This proves inequality (3), because
our graph has bounded degree.

Inequality (4) is not difficult: as stated above, we will always have di ≤ k, and we may always
assume di ≥ 3. Basic calculus shows the function x/ log x increases over x ≥ 3.

Lower bound: We show ∀l ∈ N≥1, k := 2l, ∃(Gk, λk,Tk) ∈ ITDW such that Gk is a bounded-
degree DAG and Algorithm 1 achieves an approximation ratio of Ω(k/ log k). Construct Gk by
taking a (2, l)-in-tree AS and a (2, l)-out-tree AT . Draw an arc from the root of the former to the
root of the latter. Then, arbitrarily pair each leaf (source) in AS with a unique leaf (destination)
in AT . For each such pair, draw an arc from source to destination (called a “bypass arc”), and add
a demand to Tk. Finally, define λk to assign length 1+ 2l to each “bypass” arc, and length 1 to all
other arcs. We refer the reader to Fig. 3, part (i).

We may assume our algorithm does not satisfy demands using the bypass arcs (as all demand-
satisfying paths have length 2l + 1, and no tie-breaking scheme is specified). Thus, each demand-
satisfying path uses the root of AS , which incurs a total delay of 0 + 1 + . . . + (k − 1) = Ω(k2)
and total path length of k · (1 + 2l). Had the bypass arcs been used, no delay would have been
required, and the total path length would have still been k · (1 + 2l). Thus, our algorithm achieves
an approximation ratio of (Ω(k2) + k · (1 + 2l))/(k · (1 + 2l)) = Ω(k/ log k).

5.3 Analysis on DAGs

We show that if we no longer require the graph family in Theorem 5.2 to have bounded degree, our
algorithm loses its improved approximation ratio.

Theorem 5.3. Algorithm 1 has an approximation ratio of Θ(k) on DAGs.

Proof. By Proposition 5.1, it suffices to construct a family of TDW instances on DAGs, defined
over all k ∈ N≥1, for which our algorithm achieves an approximation ratio of Ω(k). Construct Gk

by fixing a “root” vertex and directly attaching 2k leaves. Orient half of these arcs towards the
root, and half of the arcs away from the root. Call each vertex with out-degree 1 a source, and each
vertex with in-degree 1 a destination. Then, arbitrarily pair each source with a unique destination.
For each pair, add an arc from the source to the destination (called a “bypass arc”), and add a
demand to Tk. Finally, let λk assign length 2 to each bypass arc, and length 1 to all other arcs. We
refer the reader to Fig. 3, part (ii).

We may assume our algorithm does not satisfy demands using the bypass arcs (as all demand-
satisfying paths have length 2, and no tie-breaking scheme is specified). Thus, each demand-
satisfying path uses the root vertex, which incurs a total delay of 0 + 1 + . . . + (k − 1) = Ω(k2)

11

.
.
.

. . .

. .
.

AS

.
.
.

. .
.

. . .

AT

(i)

.
.
.

.
.
.

(ii)

. . .

AS

. . .

.
.
. .

.
.

AT

. . .
.
.
. .

.
.

BT

. . .

.
.
..

.
.

BS

. . .

.
.
..

.
.

(iii)

Figure 3: (i): A bounded-degree DAG Gk upon which Algorithm 1 achieves an approximation ratio
of Ω(k/ log k); (ii): A DAG Gk upon which Algorithm 1 achieves an approximation ratio of Ω(k);
(iii): A bounded-degree digraph Gk upon which Algorithm 1 achieves an approximation ratio of
Ω(k).

and total path length of 2k. Had the bypass arcs been used, no delay would have been required,
and the total path length would have still been 2k. Thus, our algorithm achieves an approximation
ratio of (Ω(k2) + 2k)/(2k) = Ω(k).

5.4 Analysis on bounded-degree digraphs

In this section, we show that if we no longer require the graph family in Theorem 5.2 to be acyclic,
our algorithm loses its improved approximation ratio.

Theorem 5.4. Algorithm 1 has an approximation ratio of Θ(k) on bounded-degree digraphs.

Proof. By Proposition 5.1, it suffices to construct a family of TDW instances on bounded-degree
digraphs, defined over all l ∈ N≥2 with k̂ := 2l, k := 2k̂, for which our algorithm achieves an
approximation ratio of Ω(k). Construct Gk by taking two (2, l)-in-trees AS and BS , and two
(2, l)-out-trees AT and BT . Call their roots rAS

, rBS
, rAT

, and rBT
, respectively. Then, add a

“central path” C consisting of vertices {c1, c2, . . . , ck̂}, “forward” arcs {(ci, ci+1) | i ∈ [k̂ − 1]}, and
“backward” arcs {(cj , cj−3) | j ∈ [4, k̂], j mod 2 = 0}. Attach the directed trees to the central path

12

with arcs {(rAS
, c1), (rBS

, ck̂−1), (ck̂, rAT
), (c2, rBT

)}. Next, pair each leaf (source) in AS with an
arbitrary, but unique, leaf (destination) in AT . Do the same for BS and BT . For each such pair,
add an arc from the source to destination (called a “bypass arc”), and add a demand to Tk. Finally,
let λk assign length 2k̂ + 2l − 1 to each bypass arc, length k̂ − 1 to arcs (rBS

, ck̂−1) and (ck̂, rAT
),

and length 1 to all other arcs. We refer the reader to Fig. 3, part (iii).
Observe that for each demand, there exist two shortest demand-satisfying paths, each of length

2k̂ + 2l − 1. In particular, observe that a demand between leaves of AS and AT may be satisfied
by a bypass arc, or by a path that travels from the source in AS , towards the root of AS , onto the
central path vertex c1, along all forward arcs of C, onto the root of AT , and towards the destination
in AT . Similarly, a demand between leaves of BS and BT may be satisfied by a bypass arc, or by
a path that travels from the source in BS , towards the root of BS, onto the central vertex ck̂−1,
across C by alternating between forward and backward arcs (until arriving at c2), onto the root
of BT , and towards the destination in BT . We call the paths that do not use the bypass arcs the
“meandering paths.”

Because our algorithm specifies no tie-breaking scheme, we may assume that it satisfies demands
using the meandering paths, and that it alternates between assigning delays to demands from AS

and assigning delays to demands from BS every four iterations. In other words, out of the 2k̂
demands created above and fed as input to our algorithm, we may assume that those from AS to
AT are labeled with indices IA := {i ∈ [2k̂] | ⌊(i− 1)/4⌋ ≡ 0 (mod 2)}, while those from BS to BT

are labeled with IB := {i ∈ [2k̂] | ⌊(i − 1)/4⌋ ≡ 1 (mod 2)}.
To understand the suboptimality of this situation, we make several observations that help us

determine the values our algorithm assigns to each di. First, note that for each i ∈ [2k̂], z ∈ [k̂],
the length of walk Wi up to vertex cz on the central path is:

λk(Wi, cz) =

{

l + z, if i ∈ IA

l + 2k̂ − z − 2 · (z mod 2), if i ∈ IB

Using this, we see that the details of Algorithm 1 give us the following relation, which is defined
over i ∈ [k], h ∈ [i− 1]:

bad delaysi,h =























{dh}, if i, h ∈ IA or

if i, h ∈ IB

{dh − 2k̂ + 2z + 2 · (z mod 2) | z ∈ [k̂]}, if i ∈ IB , h ∈ IA

{dh + 2k̂ − 2z − 2 · (z mod 2) | z ∈ [k̂]}, if i ∈ IA, h ∈ IB

Because our algorithm defines bad delaysi :=
⋃

h∈[i−1] bad delaysi,h and di := min(Z≥0\bad delaysi),
observe that the above relation is in fact a recurrence relation. As such, after noting that d1 = 0,
it is straightforward to use the above relation to show by induction that for all i ∈ [2k̂],

di = i− 1 + ⌊ i− 1

8
⌋(2k̂ − 4).

Thus, our algorithm incurs a total delay of
∑

i∈[2k̂](i − 1 + ⌊(i − 1)/8⌋(2k̂ − 4)) = Ω(k̂3) = Ω(k3)

and total walk length of 2k̂ · (2k̂ + 2l − 1)) = Θ(k̂2) = Θ(k2). Had the algorithm opted to use the
bypass arcs, no delay would have been required, and the total walk length would have been the
same. Thus, our algorithm achieves an approximation ratio of Ω(k).

13

6 Conclusions

In this paper, we introduce Time Disjoint Walks, a new variant of (shortest) Disjoint Paths that
also seeks to connect k demands in a network, but relaxes the disjointness constraint by permitting
vertices to be shared across multiple walks, as long as no two walks arrive at the same vertex at
the same time. We show that Time Disjoint Walks is APX-hard, even for DAGs of max degree
three. On the other hand, we provide a natural Θ(k/ log k)-approximation algorithm for directed
acyclic graphs of bounded degree. Interestingly, we also show that for general digraphs with just
one of these two properties, the approximation ratio of our algorithm is bumped up to Θ(k).

An interesting future work is to tighten the gap between these inapproximability and approx-
imability results for TDW on bounded-degree DAGs. We conjecture that our approximation al-
gorithm is almost optimal, but that our hardness of approximation result can be strengthened to
nearly match our algorithm’s approximation ratio of Θ(k/ log k). This belief is based on the ob-
servation that TDW is a complex problem that involves both routing and scheduling, and many
problems of the latter variety (of size n) are NP-hard to approximate within a factor of n1−ǫ, for
any ǫ > 0 [Zuc06]. One may also wish to explore similar complexity questions for the many variants
of Time Disjoint Walks discussed in Section 2.

References

[ACG+12] Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann, Alberto Marchetti-
Spaccamela, and Marco Protasi. Complexity and approximation: Combinatorial opti-
mization problems and their approximability properties. Springer Science & Business
Media, 2012.

[BK99] Piotr Berman and Marek Karpinski. On some tighter inapproximability results. In
International Colloquium on Automata, Languages, and Programming, pages 200–209.
Springer, 1999.

[GKR+03] Venkatesan Guruswami, Sanjeev Khanna, Rajmohan Rajaraman, Bruce Shepherd, and
Mihalis Yannakakis. Near-optimal hardness results and approximation algorithms for
edge-disjoint paths and related problems. Journal of Computer and System Sciences,
67(3):473–496, 2003.

[Gra66] Ronald L Graham. Bounds for certain multiprocessing anomalies. Bell System Technical
Journal, 45(9):1563–1581, 1966.

[GS12] Martin Groß and Martin Skutella. Maximum multicommodity flows over time without
intermediate storage. In European Symposium on Algorithms, pages 539–550. Springer,
2012.

[Kar75] Richard M Karp. On the computational complexity of combinatorial problems. Net-
works, 5(1):45–68, 1975.

[Kle96] Jon M Kleinberg. Approximation algorithms for disjoint paths problems. PhD thesis,
Massachusetts Institute of Technology, 1996.

14

[KS10] Yusuke Kobayashi and Christian Sommer. On shortest disjoint paths in planar graphs.
Discrete Optimization, 7(4):234–245, 2010.

[Len12] Thomas Lengauer. Combinatorial algorithms for integrated circuit layout. Springer
Science & Business Media, 2012.

[RS95] Neil Robertson and Paul D Seymour. Graph minors. xiii. the disjoint paths problem.
Journal of combinatorial theory, Series B, 63(1):65–110, 1995.

[Sch94] Petra Scheffler. A practical linear time algorithm for disjoint paths in graphs with
bounded tree-width. TU, Fachbereich 3, 1994.

[Sku09] Martin Skutella. An introduction to network flows over time. In Research trends in
combinatorial optimization, pages 451–482. Springer, 2009.

[SLK+90] Alexander Schrijver, Laszlo Lovasz, Bernhard Korte, Hans Jurgen Promel, and RL Gra-
ham. Paths, flows, and VLSI-layout. Springer-Verlag New York, Inc., 1990.

[SM03] Anand Srinivas and Eytan Modiano. Minimum energy disjoint path routing in wireless
ad-hoc networks. In Proceedings of the 9th annual international conference on Mobile
computing and networking, pages 122–133. ACM, 2003.

[Tor92] Don Torrieri. Algorithms for finding an optimal set of short disjoint paths in a commu-
nication network. IEEE Transactions on Communications, 40(11):1698–1702, 1992.

[Zuc06] David Zuckerman. Linear degree extractors and the inapproximability of max clique
and chromatic number. In Proceedings of the thirty-eighth annual ACM symposium on
Theory of computing, pages 681–690. ACM, 2006.

15

	1 Introduction
	1.1 Related work
	1.2 Contributions

	2 Time Disjoint Walks
	3 Approximation preliminaries
	4 Hardness of approximation
	5 Approximation algorithm
	5.1 Algorithm
	5.2 Analysis on bounded-degree DAGs
	5.3 Analysis on DAGs
	5.4 Analysis on bounded-degree digraphs

	6 Conclusions

