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Abstract1

In this article, we consider the problem of estimating traffic flow on a multi-lane road using a set of2
point speeds, either crowd-sourced or collected from the fixed infrastructure. We specifically investigate3
the relation between higher-order speed moments and the expected value of traffic flow. The algorithm4
proposed is based on the selection of optimal covariates constructed as speed moments, for a class of5
conditional mean predictors. The second contribution of this article consists in the analysis of specific6
components of the speed moments with significant correlation with flow values. In particular, we show7
that for more than 75% of the fixed sensing devices considered, the correlation coefficient between the8
inter-lanes speed variance and the aggregate flow is more than 0.75. Additionally, for more than 70% of9
these fixed sensing devices the lane speed variance increases with flow. The third contribution of this10
article consists of identifying the explanatory features for the high correlation between speed moments11
and flow values. The algorithms presented in this article are trained and tested on a large dataset from12
the Mobile Millennium system, collected in the Bay Area from August 2009 to October 2009.13
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1 Introduction1

1.1 Motivation2

Macroscopic traffic flow modeling is at the core of real-time traffic monitoring. The main assumption of3
macroscopic traffic modeling is that vehicles traveling on a road behave similarly to a fluid in a pipe, hence4
the state of traffic can be completely captured by three macroscopic variables: the density ρ of vehicles, the5
flow q of traffic and the space-mean speed v of vehicles (Cassidy and Coifman (1), Knoop et al. (2)).6

The Lighthill-Whitham-Richards (LWR) equation, expressing the conservation of mass, is classically used7
to model traffic flow. By definition, ρ, q and v also satisfy the relation q = ρv. However, a third relation8
between these three quantities is needed in order to have a well-defined system.9

The so-called fundamental diagram (Newell (3), Daganzo (4)) of traffic flow expresses an empirical relation10
between density, flow and speed defined for any two couples of these three quantities. Lighthill and Whitham11
(5) describe in their classical work the fundamental diagram as the fact that "at any point of the road the12
flow (vehicles per hour) is a function of the concentration (vehicles per mile)". Historically, research work13
has been focused on modeling the relation for the couple density-flow.14

The recent explosion of mobile devices (Mobile Millennium (6)) measuring speeds requires innovative15
approaches allowing the estimation of traffic flow from reported speeds only. This problem is a major open16
problem in traffic flow modeling. For the triangular model, it it not possible to infer flow from speed as flow17
is a multi-valued function of speed, in particular for high speeds.18

Recent work from Blandin et al. (7) has shown a promising venue for estimating traffic flow from speed via19
the computation of individual speed variances. The goal of this work is to investigate innovative approaches20
to further push the research frontier in this topic. Using speed and flow measurements recorded by 116 fixed21
radar sensors in the Bay Area, in this article we investigate the design of a speed-flow mapping based on22
statistical analysis.23

1.2 General background24

Research on fundamental relations between macroscopic traffic quantities date back to the work of Green-25
shields (8), who proposed a parabolic flow-density relation corresponding to a linear speed-density relation.26
Over the past decades, traffic scientists developed a wide range of mathematical models for uninterrupted27
traffic flow. In particular, the triangular fundamental diagram (Daganzo (4)) models the relation between28
traffic flow and density by a triangular relation.29

In the triangular fundamental diagram, the uncongested phase is characterized by an increasing linear30
relation between flow and density. The congested phase is characterized by a decreasing affine relationship31
between flow and density. In the uncongested phase, for this model, the speed is constant equal to the32
free-flow speed, whereas in the congested phase, the speed is decreasing as the density increases.33

In the uncongested phase, the flow is a multi-valued function of speed. This models the fact that up34
to a certain density, the spacing between vehicles traveling on a roadway segment is sufficiently large for35
drivers not to be affected by other vehicles. Thus, while the speed-to-flow conversion is straightforward in36
the congested phase, this very conversion is impossible in the uncongested phase as speed is theoretically37
constant at the free-flow speed for the whole phase.38

1.3 Related work39

While a lot of efforts focus on estimating vehicle density (Alvarez-Icaza et al. (9), Atrimy (10), Coifman40
(11), Gazis and Knapp (12), Gazis and Szeto (13), Jerbi et al. (14), Panichpapiboon and Pattara-atikom41
(15)), analyzing the relation between traffic flow and individual traffic speed is much less documented. The42
analysis of the relation between traffic flow and individual traffic speeds and the ability to estimate flow43
using using a set of point speeds, either crowd-sourced or collected from the fixed infrastructure, currently44
constitutes a major research question for traffic modeling theory.45
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Jørgensen (16) analyzes a large amount of combined speed and flow observations collected for the Ring1
3 Motorway of the greater Copenhagen area over a 2 month period. The measurements are analyzed with2
the aim of extracting information which can be used to realistically and reasonably model speed and flow3
in a road traffic assignment model. It is observed that the US Bureau of Public Road (BPR) speed-flow4
curve bpr (17) is an adequate average description of the non queuing conditions in static assignment models.5

Blandin et al. (7) show that the conventional speed-flow mapping produces significantly more accurate6
results than a speed variance-flow approach in the case of an increasing uncongested branch in (q, v) co-7
ordinates. However, a classical assumption of the free-flow phase is a flat uncongested branch in (q, v)8
coordinates. In that case, (7) show that the speed variance regression is more accurate than the classical9
approach.10

Wang et al. (18) focus essentially on the speed variance as a function of the density. They show that11
the empirical variance takes a parabolic shape which first increases to a local maximum and then decreases12
as traffic density increases. Although some flow estimation schemes are proposed, most of them are not13
designed to be used in the uncongested phase.14

The remainder of this article is organized as follows. Section 2 describes the dataset used in the subsequent15
analysis. Section 3 presents the mathematical formulation of the estimation problem and introduces the16
covariates considered. Numerical and experimental results for the flow estimation algorithm are provided in17
Section 4. The features of the covariate that gives the best mapping with the flow are detailed in Section 5.18
Finally, Section 6 concludes the paper.19

2 Large scale Bay Area dataset20

2.1 Sensing devices21

The dataset used for the analysis presented in this paper consists of speeds and flows of vehicles traveling22
on highway and freeway segments, as recorded by 116 fixed sensing devices rk (k = {1, .., 116}) in the Bay23
Area, California between August and October 2009.24

2.2 Measurements25

The sensing devices output speed (miles per hours) and flow (vehicles per minute) measurements per lane of26
roadway at a sampling period ∆t = 1 min. These measurements are made available in the Mobile Millennium27
system hosted at the Center of California for Innovative Transportation. For every sampling time m∆t (with28
m ∈ N the time index), we have a direct access to vi(m∆t) the average speed on lane i during the time29
interval [(m − 1)∆t,m∆t], with ni(m∆t) = qi(m∆t)∆t the number of cars measured on lane i during the30
previous period ∆t. Additional static information at the location of the sensing device is also available, for31
instance the number of lanes L and their characteristics (HOV or not), the direction the sensing device faces32
(N, NE, E, SE, S, SW, W or NW) and the speed limit.33

3 Mathematical formulation34

3.1 Problem Statement35

In this section we formulate the problem of finding a mapping between flow values and traffic variables
available in an infrastructure-free environment. For a given dataset D of joint speed flow measurements,
we build a set X(D) of traffic quantities derived from point speeds. The estimation problem, posed as an
optimization problem, reads as:

xopt = argmin
x∈X(D)

‖q̂(x)− q‖ (1)

where:36

3
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• q denotes the measured flow,1

• q̂(·) denotes a flow estimator,2

• ‖.‖ denotes a norm chosen to measure the error.3

3.2 Covariates considered4

Finding a mapping between the flow and speed data for the uncongested state requires to make sure that5
the considered covariates are built using speed data from the uncongested state. The critical speed vc is6
defined as the speed at which the congested and uncongested branches of the speed/flow diagram intersect7
and partitions the set of speed data V into two subsets C = [0, vc[ and U = [vc,+∞[ is the set of speed8
data in the free-flow state. The critical velocity vc is computed from observed data for each sensing device9
and the covariates considered in the remainder of this article are built at each time of interest for which the10
average speed belongs to U .11

In this section we present the most relevant covariate of each category, whose performance in terms of12
flow estimation are compared in Section 4.2. The two covariates we present are the flow-weighted speed vq13
and the speed variance over time of the individual speeds V arisT .14

The flow-weighted speed at time index m reads:15

vq(m∆t) =

L∑
i=1

nivi(m∆t)

L∑
i=1

ni(m∆t)

(2)

where:16

• L is the number of lanes of the roadway segment at the sensing location,17

• vi(m∆t) is the average speed on lane at time index m,18

• ni(m∆t) is the number of cars on lane i at time index m.19

The second covariate considered, suggested by Blandin et al. (7) is the variance over time of the aggregate20
speeds. It is the variance of the speeds measured on time interval. In this work, the size T of the time intervals21
is taken to be 11 min to be consistent with Blandin et al. (7). This choice is a trade-off between a short22
interval size required for consistency of the assumption of stationary traffic state, and a large number of23
speed observations required for accurate variance computation. In this article we focus our work on finding24
a mapping between the flow and variables built from individual speeds.25

The variance over time of the individual speeds at time index m over a period T reads:26

V arisT (m∆t) =
1

N − 1

L∑
i=1

m+k∑
j=m−k

nij(vij − v(m∆t))2 (3)

where:27

• [(m− k)∆t, (m+ k)∆t] is the time interval of interest around the time indexm. Note that (2k+1)∆t =28
T and for our analysis we take k = 5 to have T = 11 min.29

• L is the number of lanes of the roadway segment at the sensing location,30

• vij is the average speed of cars on lane i at time index j,31

• nij is the number of cars with speed vij ,32

• N =

L∑
i=1

m+k∑
j=m−k

nij is the total number of cars observed in the time interval of interest,33

4
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• v(m∆t) is the flow weighted speed in the time interval of interest:
1

N

L∑
i=1

m+k∑
j=m−k

nijvij1

The superscript is and subscript T are used to remind the reader that this variance aims to evaluate the
variance over the period T of the individual speed (is). Note that this expression of the variance assumes
that all the cars on lane i at time index j drive at the same speed vij , the average speed over this set of car.
This assumption is discussed in 5.2.

This variance can be decomposed into components involving explicitly the variance over time of the
individual speeds on each unique lane. Indeed for each lane i, we can introduce vi(m∆t) the average speed
on lane i during the time interval of interest and ni the number of cars passing on lane i during the same
interval:

vi(m∆t) =
1

ni

m+k∑
j=m−k

nijvij

ni =

m+k∑
j=m−k

nij

Using (3) we can write V arisT (m∆t) as:2

V arisT (m∆t) =
1

N − 1

L∑
i=1

m+k∑
j=m−k

nij [(vij − vi(m∆t)) + (vi(m∆t) + v(m∆t))]2

=
1

N − 1

L∑
i=1

[

m+k∑
j=m−k

nij(vij − vi(m∆t))2 +

m+k∑
j=m−k

nij(vi(m∆t)− v(m∆t))2]

+
2

N − 1

L∑
i=1

[(vi(m∆t) + v(m∆t))

m+k∑
j=m−k

nij(vij − vi(m∆t))] (4)

We can introduce the individual speed variances over time for a single lane i:

V arisT,i(m∆t) =
1

ni − 1

m+k∑
j=m−k

nij(vij − vi(m∆t))2

In (4) the first term can be expressed with the lane variances, and the last term can be simplified. The total
variance can thus be written as:

V arisT (m∆t) =
1

N − 1

L∑
i=1

(ni − 1)V arisT,i(m∆t) +
1

N − 1

L∑
i=1

ni(vi(m∆t)− v(m∆t))2 (5)

Equation (5) shows that the total individual speed variance over time is composed of the weighted sum of the3
variances on each lane, and of the weighted sum of the lanes average speed deviation from the overall speed4
average. This last component can be seen as a variance of the average speed over the lanes. The respective5
weights of each of these two components in the total individual speed variance is investigated in 5.2.6

3.3 Flow estimation method7

Our aim is to find a mapping between the variables described above and the flow, to then be able to produce
flow estimations from raw speed data. The accuracy of the method used is determined using the root mean
square error. For a given predictor variable x (in our case either flow-weighted speed or speed variance), we
construct the flow predictor as:

q̂(xi) = E(q|bxc = xi) (6)

5
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where bxc is the floor of the variable x. The conditional mean estimator is justified by Sherman (19) in the1
following lemma:2

Lemma 1 If the probability density function associated with a variable q is symmetric around the mean and3
unimodal then E(q) is the optimal estimator of q in the sense of the quadratic error.4

In our case for each category xi we assume that the probability density of q verifies these properties, hence
the conditional mean E(q|x = xi) is the optimal estimator of q when x = xi. Using equation (6), equation (1)
becomes:

xopt = argmin
x∈X(D)

‖E(q|bXc = x)− q‖ (7)

where:5

• q denotes the measured flow,6

• q̂(·) denotes the estimator described in equation (6),7

• ‖.‖ denotes a norm chosen to measure the error.8

3.4 Algorithm9

For each of the two covariates proposed we use the method illustrated in Figure 1 for assessing the estimator10
performance for flow estimation. We use a cross-validation technique, where the cross-validation subsets11
consist of the months of August 2009 and September 2009 - October 2009.12

Compute the two
covariates defined
in - Section 3.2

Compute the asso-
ciated estimators

with the first month
of data as described

in - Section 3.3

Predict the flow
and compute the
errors for the two
remaining months -
Results in Section 4.2

FIGURE 1 Methodology for best mapping selection

4 Flow estimation results13

4.1 Properties of conditional flow distributions14

In this section, we empirically validate the assumption made in the previous section on the symmetry around15
the mean, and unimodality, of the conditional probability of the flow. Figure 2 represents the quartiles and16
the mean of the conditional flow distribution as a function of the speed variance (Figure 2a) and as a17
function of the flow-weighted speed (Figure 2b) for different sensing devices. For the two covariates the18
symmetry of the quartiles around the median (which stays close to the mean) partially validates the use of19
Lemma 1. In order to assess the unimodality of the conditional distributions, we propose to represent in20
Figure 3 the conditional flow distributions and their mean for different values of speed variance (Figure 3a)21
and flow-weighted speed (Figure 3b).22

The majority of the 116 sensing devices exhibit unimodal conditional distributions with a good symmetry23
around the mean in the case of the speed variance. The conditional distributions for the flow-weighted speed24
are much less well-behaved (Figure 3b).25

26

6
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FIGURE 2 Quartiles and mean of the flow distribution conditioned by: a. The speed vari-
ance b. The flow-weighted speed. Results are given for three sensing devices (identifiers are
displayed at the top of each graph)

7
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FIGURE 3 Flow distribution for given: a. Speed variances b. Flow-weighted speeds

These results show that:1

• the first and third quartiles of the conditional flow distribution are closer to the mean and median in2
the case of the speed variance,3

• the distribution of the flow conditioned by the speed variance satisfy the assumption of unimodality and4
symmetry around the mean which does not seem to be always the case for the distribution conditioned5
by the flow-weighted speed.6

In the following section we present the performance results for these two estimators.7

4.2 Flow estimation errors8

For each sensing device r the root mean squared error (20) of the estimator q̂(·) is given by:

εr =

√√√√√√
N∑
i=1

(q̂(xi)− qi)2

N − 1

where:9

• q̂(xi) is the estimator of the flow at time of measurement i10

• qi is the measured flow at time i11

• N is the total number of flow measurements in uncongested state12

8
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We represent in Figure 4 the cumulative distribution of the error over all sensing devices for the two methods.1
The blue plain line corresponds to the speed variance method, whereas the red dashed line corresponds to2
the flow weighted speed method. We notice that the plain line is always above the dashed line. It indicates3
that for a given error ε the proportion of sensing devices which have an error inferior to ε is always higher4
for the speed variance method than for the flow weighted speed method.5

FIGURE 4 Cumulative distribution of the error

In the rest of the article, we investigate more thoroughly the relation between flow and speed variance.6

5 Features of the speed variance over time7

5.1 Correlation with the flow8

In this section we analyze the relation between flow and speed variance by computing the distribution of the9
correlations between these two quantities for each sensing device. Figure 5 represents the flow estimator as10
a function of the speed variance. For all the presented sensing devices, a clear positive relation between the11
two variables is displayed.12

9
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FIGURE 5 Estimator of the flow vs. speed variance over time

In order to get a better insight into the relation between speed variance and flow, we compute the Pearson’s1
correlation coefficients between the speed variance and the mean flow conditioned by the speed variance. We2
represent the distribution of these coefficients over the 116 sensing devices in Figure 6.3

10
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FIGURE 6 Distribution of the correlation coefficients

Figure 6 illustrates that for more than 75% of the sensing devices, the absolute correlation coefficient between1
the two described variables is more than 0.75. The histogram in Figure 6 illustrates both the strong relation2
between speed variance and the mean of the conditional distribution of the flow and the relevance of the3
mapping introduced in equation (1).4

It is also important to notice that for most of these sensing devices (70%) individual speed variance5
increases with the flow. To understand this phenomenon and what could be the physical reasons of this6
relation, it is necessary to consider specific components of the speed variance.7

5.2 Physical interpretation8

We showed in (5) that the total variance results from the addition of two components: the first one is a9
weighted sum of the variances over time of the speed on each lane (we call it component 1) and the second10
one is a weighted variance over the lane of the lane average speed (called component 2). The first component11
quantifies the variability of the cars speed on the lanes over a given time interval. The second component12
represents how different lanes differ in terms of the average lane speed of the cars.13

In order to explore the impact of each of these components in the total variance, we compute separately14
each of them and look at the ratios r1 = component1/totalvariance and r2 = component2/totalvariance.15
We compute for each sensing device the mean of these ratios for all the uncongested states and analyze the16
distribution of these means over all sensing devices. We find that the median of the ratio r2 is 60%. It shows17
that the second component explains slightly more of the total variance than the first component.18

A more significant result describes the dependence of r2 on the value of the total variance. Indeed Figure 719
represents the mean of r2 conditioned by the value of the total variance. We find that for all the sensing20
device, an increase of the total variance is associated with an increase of r2. This result seems to indicate21
that the increase of the total variance is mainly driven by an increase of the speed variance between the22
lanes. Thus the physical process which leads to an increase of the variance is less due to the increase of the23
speed variance within one same lane than to the difference of average speeds between the lanes.24

11
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The fact that the speed variance over time is not the main driver of the total variance justifies the1
assumption made in the definition of the total variance in equation (3) that along each time period ∆t all2
the cars on a same lane have identical speed equal to their average speed.3

FIGURE 7 Weight of the inter-lane variance component in the total variance depending on
the total variance

These results can be used to physically explain the phenomenon observed in the previous part (5.1)4
displaying for the majority of the sensing devices an increase of the total speed variance associated with an5
increase of the flow. Indeed an increase of the flow (note that we are still in free flow situation) could lead6
to a strong lane heterogeneity of the cars and thus to an increase of the speed variance due to an increase7
of the speed difference between the lanes. On the contrary, at low flow values, the distribution is fairly8
homogeneous between lanes because the drivers do not feel the need to stay into a specific lane and the9
overall variance is low.10

Nevertheless it is important to note that for 30% of the sensing devices the relation between flow and11
speed variance is negative. In the following part we study how specific parameters impact the sign of the12
relation between flow and speed variance.13

5.3 Analysis of factors influencing the correlation14

Our goal is to determine if some features of the sensing device and its location could explain why some15
sensing devices show an increasing relation between flow and speed variance whereas other sensing devices16
exhibit a decreasing relation. Our analysis is based on two techniques: the Chi-test for independence is17
used to consider categorical parameters and a logistic regression model is employed to consider more type of18
parameters.19

12
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5.3.1 Chi-test of independence and Cramer’s V1

Cramer’s V, denoted φc, represents the intercorrelation of two discrete variables (Cramér (21)). It varies2
from 0 to 1 and can reach 1 only when the two variables are equal. Our objective is to understand the3
relation between the fact that a sensing device displays a strong positive correlation (i.e. r ≥ 0.75) between4
the speed variance and the flow, and some other characteristics of the sensing device and its location -such5
as direction, speed limit, number of lanes or type of sensing device (two different types of devices, based on6
two different measurement process, are used). The formula for the φc coefficient is:7

φc =

√
χ2

N(k − 1)
(8)

where:8

• χ2 is derived from Pearson’s chi-squared test,9

• N is the total number of observations,10

• k is the number of rows or columns, whichever is less.11

Below are the results of the Cramer’s coefficients and Chi-squared test of independence between the listed12
possible explanatory variables and the property of the sensing device of exhibiting an increasing or decreasing13
relation between flow and speed variance:14

Explanatory variable χ2 φc p-value
Direction 3.013 0.188 0.390 (*)
Speed limit 1.672 0.140 0.643 (*)
Sensing device type 48.749 0.757 <0.001
Number of lanes 5.496 0.254 0.358 (*)

TABLE 1 Cramer’s coefficients

Standards for interpreting Cramer’s V were proposed in (22):15

0.10 ≤ φc ≤ 0.30 Small effect
0.30 ≤ φc ≤ 0.50 Medium effect

φc ≥ 0.50 Strong effect

TABLE 2 Standards for interpreting Cramer’s V as proposed by (22)

Using the above standard and the p-values of the chi-squared test for independence we notice that in our16
case only one variable seems to have an important impact on the sign of the relation between speed variance17
and flow. This variable is the sensing device type (p−value ≤ 10−4 and φc = 0.757). The fact that a sensing18
device is of type 1 is a strong predictor of a negative relation between individual speed variance and flow.19

5.3.2 Logistic regression model20

The statistical analysis performed in 5.3.1 enables us to test independence between categorical variables.21
To complete our analysis and to take into account continuous and ordinal predictors, we perform a binary22
logistic regression (Hosmer and Lemeshow (23)). The output of this model is for a sensing device the sign23
of the relation between speed variance and flow, and the explanatory variables are the speed limit, the24
type of sensing device, the number of lanes and the distance from the closest on-ramp/off-ramp. Based25
on the maximum likelihood procedure, this model returns for one category of the output (‘positive relation26

13
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between speed variance and flow’) an intercept and regression coefficients for each predictor. For the second1
output category (‘negative relation between flow and speed variance’) the coefficients are taken to be zero.2
These coefficients can then be used to determine for a given set of explanatory variables observations, the3
probabilities of being in a positive or negative case. We present in Table 3 the results of this analysis4
conducted using all the sensing devices.5

Variable Coefficient t-value p-value
Intercept 4.702 0.533 0.594
Speed limit 0.020 0.142 0.887
Type -1.163 -3.623 <0.001
Number of lanes 1.530 2.037 0.042
Distance from an exit -0.833 -0.969 0.333

TABLE 3 Coefficients of the logistic regression model

These results confirm the significant impact of the sensing device type on the sign of the correlation between6
speed variance and flow. It also reveals the impact of the number of lanes on this outcome. Indeed the7
coefficient associated with the number of lanes has a low p-value (p−value ≤ 0.042). Because this coefficient8
is positive, it implies that the higher the number of lanes is, the higher the probability for the sensing device9
of displaying a positive relation, is.10

This result supports the interpretation proposed in 5.1: a higher number of lanes could lead to the11
categorization of the lanes into heterogeneous flow regimes. If we are in the case of a low number of lanes, a12
driver has to follow the flow and has limited freedom in the choice of his lane and of his speed: this increase13
of the flow leads to a decrease of the speed variance. Conversely, with a high number of lanes, a driver is able14
to choose a lane to keep a given speed. The difference between the lanes is more likely to increase compared15
to the case where we have a low number of lanes: an increase of the flow should lead to an increase of the16
average speed between the lane and thus drives the increase of the total speed variance.17

6 Conclusion18

In this article, we designed a novel algorithm for traffic flow estimation from fixed radars speed measure-19
ments. We showed that a fundamental relation exists between traffic flow and speed variance, which provides20
significant flow estimation improvements compared to standard regression techniques based on mean speed.21

We showed that for most of the 116 sensing devices considered, the main contribution to the positive22
correlation between speed variance and flow is due to a difference of speed between lanes.23

The analysis presented in this article illustrates that speed measurements from fixed radars data provide24
fundamentally new insights into the field of macroscopic traffic monitoring, in particular regarding novel25
properties of the relation between flow and speed on multi-lane highways.26

Extensions to this work include systematic calibration of the parameters used for data processing in this27
work (such as the time interval used to compute the speed variance over time), and a more thorough analysis28
of the stationarity property of this higher-order fundamental diagram. Also more work should be done to29
assess the relevance of the described method when using probe data from mobile devices. In particular the30
impact of speed population variance on the flow estimation algorithm could be explored.31

14
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