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Abstract. We consider the problem of reconstructing vehicle trajectories
from sparse sequences of GPS points, for which the sampling interval ranges
between 10 seconds and 2 minutes. We introduce a new class of algorithms,
collectively called path inference filter (PIF), that maps streaming GPS data in
real-time, with a high throughput. We present an efficient Expectation Maximiza-
tion algorithm to train the filter on new data without ground truth observations.
The path inference filter is evaluated on a large San Francisco taxi dataset. It is
deployed at an industrial scale inside the Mobile Millennium traffic information sys-
tem, and is used to map fleets of vehicles in San Francisco, Sacramento, Stockholm
and Porto.

1 Introduction

The paradigm of connected vehicles, the progressive integration of smart-
phones and car infrastructure, the rise of Web 2.0, and the progressive emer-
gence of automation onboard vehicles have created a very fertile ground for
GPS data sources from probe vehicles to be collected at an unprecedented
scale. Yet, the lack of ubiquitous connectivity, the parsimonious use of band-
width and smartphone battery limits, and the lack of system reliability often
makes this data sparse. In particular, it is very common common today for
GPS traces to be sampled at very low frequencies (on the order of minutes),
leading to challenges in using this data. While some studies [13] predict an
80% penetration of the cellphone market by GPS enabled devices by 2015, it
is not clear that this figure will translate into ubiquitous GPS data for traf-
fic information systems. Furthermore, millions of fleet vehicles today produce
GPS traces sampled at low frequencies, see for example [4], and the paradigm
of connected (and automated) vehicles does not automatically translate into
high fidelity GPS traces.
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Two of the common problems which occur when dealing with these GPS
traces are the correct mapping of these observations to the road network, and
the reconstruction of the trajectories of the vehicles from these traces. This
problem is similar to numerous other problems also encountered in robotics,
for example tracking of people of interest (POI) by the military, in which
POIs disappear between sparse samples and analysts must reconstruct the
path followed.

We present a new class of algorithms, called the path inference filter, that
solve this problem in an efficient way. There are two difficulties associated
with this problem. First, there may be many possible projections of the noisy
position onto the map. Second, the number of possible paths between consec-
utive pairs of positions is potentially very high (given that in urban environ-
ments, a vehicle could typically travel several blocks between measurements).
Instead of handling both problems separately, as is commonly done in traffic
modeling studies (which leads to significant pitfalls), the method solves both
problems at once, which increases the efficiency of the algorithm and uses the
conjunction of both unknowns (projections and paths) in a unified manner
to resolve this inference problem.

Specific instantiations of this algorithm have been deployed as part of Mo-
bile Millennium, which is a traffic estimation and prediction system developed
at UC Berkeley [2]. Mobile Millennium infers real-time traffic conditions using
GPS measurements from drivers running cell phone applications, taxicabs,
and other mobile and static data sources. This system was initially deployed
in the San Francisco Bay area and later expanded to other locations. In ad-
dition to GPS information, the data points collected by Mobile Millennium
contain other attributes such as heading, speed, etc. We will show how this
additional information can be integrated in the rest of the framework pre-
sented into this article.

In the case of high temporal resolution (typically, a frequency greater than
an observation per second), some highly successful methods have been de-
veloped for continuous estimation [16]. In the case of low frequency sampled
data, simple deterministic algorithms to reconstruct trajectories fail due to
misprojection or shortcuts (Figure 1). Such shortcomings have motivated our
search for a principled approach that jointly considers the mapping of obser-
vations to the network and the reconstruction of the trajectory.

Related Work. Researchers started systematic studies after the introduc-
tion of the GPS system to civilian applications in the 1990s [12]. Early geom-
etry projection approaches were later refined to use more information such
as heading and road curvature. This greedy matching, however, leads to poor
trajectory reconstruction since it does not consider the path leading up to a
point. New deterministic algorithms emerged to directly match partial tra-
jectories to the road by using the topology of the network [6], and were soon
expanded into probabilistic frameworks. A number of implementations were
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Fig. 1 Examples of failures when using intuitive algorithms to project each GPS
measurement to the closest link. The raw GPS measurements are the triangles, the
true trajectory is the dashed line, and the reconstructed trajectory is the continuous
line. The hashed circles are the states chosen by this reconstruction algorithm. (a)
The trajectory is reconstructed using a closest-point, shortest path algorithm. Due
to GPS noise, the point at t = 2 is closer to the orthogonal road and forces the
algorithm to add a wring left turn. (b) Example of error when considering the
shortest paths with multiple potential projections.

explored, among other particle filters [7], Kalman filters [11], and Hidden
Markov Models [3].

Two types of information are missing in a sequence of GPS readings: the
exact location of the vehicle on the road network when the observation was
emitted, and the path followed from the previous location to the new loca-
tion. These problems are correlated. The aforementioned approaches focus
on high-frequency sampling observations, for which the path followed is ex-
tremely short (less than a few hundred meters, with very few intersections).
In this context, there is usually a dominant path that starts from a well-
defined point, and Bayesian filters accurately reconstruct paths from the ob-
servations [11, 16]. When sampling rates are lower and observed points are
further apart, however, a large number of paths are possible between two
points. Researchers have recently focused on efficiently identifying these cor-
rect paths and have separated the joint problem of finding the paths and
finding the projections into two distinct problems. The first problem is path
identification and the second step is projection matching [3, 15]. Some in-
teresting approaches mixing points and paths that use a voting scheme have
also recently been proposed [19].
Contributions of the Article. The path inference filter is a probabilistic
framework that aims at recovering trajectories and road positions from low-
frequency probe data in real time. The performance of the filter degrades
gracefully as the sampling frequency decreases, and it can be tuned to differ-
ent scenarios (such as real time estimation with limited computing power or
offline, high accuracy estimation).

The filter falls into the general class of Conditional Random Fields [9].
Our framework can be decomposed into the following steps:

• Map matching: each GPS measurement from the input is projected onto
a set of possible candidate states on the road network.
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• Path discovery: admissible paths are computed between pairs of candidate
points on the road network.

• Filtering: probabilities are assigned to the paths and the points using
both a stochastic model for the vehicle dynamics and probabilistic driver
preferences learned from data.

The path inference filter presents a number of compelling advantages over
the work found in the current literature:

1. The approach presents a general framework grounded in established sta-
tistical theory that encompasses numerous approaches presented in the
literature. In particular, it combines information about paths, points and
network topology in a single unified notion of trajectory.

2. Nearly all work on Map Matching is segmented into (and presents results
for) either high-frequency or low-frequency sampling. After training, the
path inference filter performs competitively across all frequencies.

3. As will be seen in Section 3, most existing approaches (which are based
on Hidden Markov Models) do not work well at lower frequencies due to
the selection bias problem. Our work directly addresses this problem by
performing inference on a Random Field.

4. The path inference filter can be used with complex path models such
as the ones used in [3]. In the present article, we restrict ourselves to a
class of models (the exponential family distributions) that is rich enough
to provide insight in the driving patterns of the vehicles. Furthermore,
when using this class of models, the learning of new parameters leads to a
convex problem formulation that is fast to solve. In addition, this algorithm
efficiently learns parameters in an unsupervised setting.

5. With careful engineering, it is possible to achieve high mapping through-
put on large-scale networks. The implementation in Mobile Millennium
achieves an average throughput of hundreds of GPS observations per sec-
ond on a single core in real time. Furthermore, the algorithm scales well on
multiple cores and has achieved average throughput of several thousands
of points per second on a multicore architecture.

6. The path inference filter is designed to work across the full spectrum of ac-
curacy versus latency. As will be shown, approximate 2-lagged smoothing
is nearly as precise as full smoothing: we can still achieve good mapping
accuracy while delaying computations by only one or two time steps.

2 Path Discovery

The road network is described as a directed graph N = (V , E) in which the
nodes are the street intersections and the edges are the streets, referred to in
the text as the links of the road network. Every location on the road network
is completely specified by a given link l and a non-negative offset o on this
link. At any time, the state x of a vehicle consists of its location on the
road network and some other optional information such as speed, or heading.
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For our example, we consider that the state is simply the location on one of
the road links (which are directed): x = (l, o).

From GPS Points to Discrete Vehicle States. The points are mapped
to the road following a Bayesian formulation. This process is represented by
a probability distribution ω (g|x) that, given a state x, returns a probability
distribution over all possible GPS observations g. Such distributions ω will be
described in Section 3. Additionally, we may have some prior knowledge over
the state of the vehicle, coming for example from previous GPS observations.
This knowledge can be encoded in a prior distribution Ω (x). Under this gen-
eral setting, the state of a vehicle, given a GPS observation, can be computed
using Bayes’ rule: π (x|g) ∝ ω (g|x)Ω (x). The letter π will define general
probabilities, and their dependency on variables will always be included. This
posterior distribution is usually complicated, owing to the mixed nature of the
state (links and offsets). Instead of working with the posterior density directly,
we represent it by a discrete distribution over a few well-chosen representa-
tive locations: for each link li, one or more states from this link are elected
to represent the posterior distribution of the states on this link π (o|g, l = li).

Fig. 2 Example of a measurement
g on a link. The GPS measurement
is the triangle denoted g.

In our model, the distribution over the
offsets is unimodal and can be approx-
imated with a single sample taken at
the most likely offset: ∀li, o∗iposterior

=

argmaxo π (o|g, l = li), which implicitly
depends on the prior distribution Ω. In
practice, the prior is slowly varying com-
paratively to the length of the link, and
can be considered constant as a first ap-
proximation on each link. This is why
we can approximate o∗iposterior

by the most
likely offset with respect to the observation distribution: o∗iposterior

≈ o∗obs =

argmaxo ω (x = (o, li) |g). This approximation is illustrated in Figure 2.
In practice, the probability distribution π (x|g) decays rapidly, and can be

considered overwhelmingly small beyond a certain distance from the obser-
vation g. Links located beyond a certain radius need not be considered valid
projection links, and may be discarded.

In the rest of the article, the boldface symbol x will denote a (finite)
collection of states associated with a GPS observation g that we will use to
represent the posterior distribution π (x|g), and the integer I will denote its
cardinality: x = (xi)1:I . These points are called candidate state projections for
the GPS measurement g. These discrete points will then be linked together
through trajectory information that takes into account the trajectory and
the dynamics of the vehicle.

From Discrete Vehicle States to Trajectories. At each time step t, a
GPS point gt is observed. This GPS point is then mapped onto It different
candidate states denoted xt = xt

1 · · ·xt
It . Because this set of projections is
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finite, there is only a finite number J t of paths that a vehicle can have taken
while moving from some state xt

i ∈ xt to some state xt+1
i′ ∈ xt+1. We denote

the set of candidate paths between the observation gt and the next observation
gt+1 by pt =

(
ptj
)
j=1:Jt . Each path ptj goes from one of the projection states

xt
i of gt to a projection state xt+1

i′ of gt+1. There may be multiple pairs of
states to consider, and between each pair of states, there are typically several
paths available (see Figure 3). Lastly, a trajectory is defined by the succession
of states and paths, starting and ending with a state: τ = x1p1x2 · · · pt−1xt

where x1 is one element of x1, p1 of p1, and so on.

Fig. 3 Example of path exploration between two observations. On the upper left
corner, the true trajectory and two associated GPS observations. On the lower left
corner, the set of candidate projections associated with each observation. On the
right, a few examples of computed paths.

Due to speed limits leading to upper bounds on achievable travel times
on the network, there is only a finite number of paths a vehicle can take
during a time interval Δt. Such paths can be computed using standard graph
search algorithms. An algorithm that performs well in practice is the A*
algorithm [8]. The cost metric we use here is the expected travel time on
each link, and the heuristic is the shortest geographical distance, properly
scaled so that it is an admissible heuristic. Due to the noise in the GPS
observations, some failure cases need some special care. The supplementary
materials available online (see the first page of the article) provide additional
technical information about some ways to deal with these failure cases.

3 Discrete Filtering Using a Conditional Random Field

We have reduced the trajectory reconstruction problem to a discrete selec-
tion problem between candidate projection points interleaved with candidate
paths. We now apply a probabilistic framework to infer the most likely tra-
jectory τ∗ or the marginal conditionals π

(
xt|g1:T ) and π

(
pt|g1:T ).
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Fig. 4 Illustration of the graphical models used in the path inference filter (CRF,
left), and commonly found in the literature (HMM, right), defined over a trajectory
τ = x1p1x2p2x3 and a sequence of observations g1:3

We endow the set of all possible paths on the road network with a probabil-
ity distribution. The transition model η describes a distribution η (p) defined
over all possible paths p across the road network. This distribution is not a
distribution over actually observed paths as much as a model of the prefer-
ences of the driver when given the choice between several options. In order
to make the problem tractable, we introduce some conditional independences
between states and paths: a path pt is independent of all other paths and
states given xt and xt+1, and a state xt is completely known when either the
preceding path pt−1 or the subsequent path pt are known.

Each path must start at the start state and must end at the end state. We
formally express the compatibility between a state x and the start and end
states of a path p with the compatibility functions δ and δ̄:

δ (x, p) =

{
1 if p starts at x

0 otherwise
δ̄ (p, x) =

{
1 if p ends at x

0 otherwise

Given a sequence of observations g1:T = g1 · · · gT and an associated trajec-
tory τ = x1p1 · · ·xT , we define the unnormalized score, or potential, of the
trajectory as:

φ
(
τ |g1:T ) =

[
T−1∏

t=1

ω
(
gt|xt

)
δ
(
xt, pt

)
η
(
pt
)
δ̄
(
pt, xt+1

)
]

× ω
(
gT |xT

)

The non-negative function φ is called the potential function. When properly
scaled, the potential φ defines a probability distribution over all possible
trajectories, given a sequence of observations: π

(
τ |g1:T ) = Z−1φ

(
τ |g1:T ).

The variable Z =
∑

τ φ
(
τ |g1:T ), called the partition function, is the sum of

the potentials over all the compatible trajectories.
The potential function φ defines an unnormalized distribution over all

trajectories. Such a probabilistic framework is a Conditional Random Field
(CRF) [9], for which efficient inference algorithms exist.

The Case against the Hidden Markov Model Approach. The clas-
sical approach to filtering in the context of trajectories is based on Hidden
Markov Models (HMMs), or their generalization, Dynamic Bayesian Net-
works (DBNs) [10]: a sequence of states and trajectories form a trajectory,
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and the coupling of trajectories and states is done using transition models
π̂ (x|p) and π̂ (p|x). See Figure 4 for a representation.

Fig. 5 Example of a failure case
when using a Hidden Markov
Model: the solid black path will be
favored over all the other paths

This results in a chain-structured di-
rected probabilistic graphical model in
which the path variables pt are unob-
served. Depending on the specifics of the
transition models, π̂ (x|p) and π̂ (p|x),
probabilistic inference has been done with
Kalman filters [11], the forward algorithm
or the Viterbi algorithm [3], or particle fil-
ters [7].

Hidden Markov Model representations,
however, suffer from the selection bias
problem, first noted in the labeling of
words sequences [9], which makes them
not the best fit for solving path inference
problems. Consider the example trajec-
tory τ = x1p1x2 observed in our data,
represented in Figure 5. For clarity, we consider only two states x1

1 and x1
2 as-

sociated with the GPS reading g1 and a single state x2
1 associated with g2. The

paths
(
p1j
)
j

between x1 and x2 may either be the lone path p11 from x1
1 to x2

1

that allows a vehicle to cross the Golden Gate Park, or one of the many paths
between Cabrillo Street and Fulton Street that go from x1

2 to x1, including p13
and p12. In the HMM representation, the transition probabilities must sum to
1 when conditioned on a starting point. Since there is a single path from x1

2 to
x2, the probability of taking this path from the state x1

1 will be π̂
(
p11|x1

1

)
= 1

so the overall probability of this path is π̂
(
p11|g1

)
= π̂

(
x1
1|g1

)
. Consider now

the paths from x1
2 to x2

1: a lot of these paths will have a similar weight, since
they correspond to different turns and across the lattice of streets. For each
path p amongst these N paths of similar weight, Bayes’ assumption implies
π̂
(
p|x1

2

) ≈ 1
N so the overall probability of this path is π̂

(
p|g1) ≈ 1

N π̂
(
x1
2|g1

)
.

In this case, N can be large enough that π̂
(
p11|g1

) ≥ π̂
(
p|g1), and the remote

path will be selected as the most likely path.
Due to their structures, all HMM models will be biased towards states that

have the least expansions. In the case of a road network, this can be patholog-
ical; this phenomenon is observed around highways for example. Our model,
which is based on CRFs, does not have this problem since the renormaliza-
tion happens just once and is over all paths from start to end, rather than
renormalizing for every single state transition independently.

Trajectory Filtering and Smoothing. Computing the most likely tra-
jectory τ∗ = argmaxτ π

(
τ |g1:T ) is a particular instantiation of a standard

dynamic programing algorithm called the Viterbi algorithm [5]. The posterior
probability q̄ti of the vehicle being at the state xt

i ∈ xt at time t, given all the
observations g1:T of the trajectory, is defined up to some scaling factor as:
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qti ∝ π
(
xt
i|g1:T

)
=

1

Z

∑

τ=x1···pt−1xt
ip

t···xT

φ
(
τ |g1:T )

A natural choice is to scale the distribution q̄ti so that the probabilistic weight
of all possibilities is equal to 1:

∑
1≤i≤It q̄ti = 1. The quantity q̄ti has a clear

meaning: it is the probability that the vehicle is in state xt
i, when choosing

amongst the set (xt
i′ )1≤i≤It , given all the observations g1:T . For each time t

and each path index j ∈ [1 · · ·J t], we also introduce the discrete distribution
over the paths at time t given the observations g1:T : rtj ∝ π

(
ptj|g1:T

)
which

are scaled so that
∑

1≤j≤Jt rtj = 1.
Finding the most likely trajectory is one of two classical inference problems

[10]. The other one is to find for each time what the probability distribution
over states is. When doing so conditioned on all past and future observations
(in our application the GPS measurements g1:T ), it is called smoothing, when
doing so conditioned on all past measurements only it is called filtering.
Filtering can be achieved by a forward pass, and smoothing can be achieved
by both the same forward pass as done for filtering and a backward pass and
then combining their results [14].

The forward-backward algorithm as applied to our CRF is presented in
Algorithm 1. The path inference algorithm has time complexity O (TUV )
with U the maximum number of paths at one time step, and V the maximum
number of paths originating from a single point (which is usually small). We
refer the reader to the supplementary material for a more complete overview
of the algorithm. Furthermore, the path inference algorithm can be adapted
to pure filtering or lagged-smoothing scenarios to get timely estimates as new
data comes in. We also provide a reference implementation of all variations [1].

Observation Model. We now describe the observation model ω. The ob-
servation probability is assumed to only depend on the distance between the
point and the GPS coordinates. We take an isoradial Gaussian noise model
ω (g|x) = 1√

2πσ

(
− 1

2σ2 d (g, x)2
)

in which the function d is the distance func-
tion between geocoordinates. In a first approximation, the standard deviation
σ is assumed to be constant over all the network. This model works surpris-
ingly well despite some known limitations such as urban canyoning. A more
robust model, such as the exponential distribution, can also be used. It would
be interesting to see how the choice of a more robust model affects the quality
of the output.

Driver Model. The driver model assigns a weight to any path on the road
network. We consider a model in the exponential family, in which the weight
distribution over any path p only depends on a selected number of features
ϕ (p) ∈ R

K of the path: η (p) ∝ exp
(
μTϕ (p)

)
. Feature functions considered

in the present article include the length of the path, the mean speed and
travel time, the number of stop signs and signals, and the number of turns to
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Algorithm 1. Description of the forward-backward recursion algorithm
Given a sequence of observations g1:T , a sequence of sets of candidate projections
x1:T and a sequence of sets of candidate paths p1:T−1:
Initialize the forward state distribution:
∀i = 1 · · · I1: −→q 1

i ← ω
(
x1
i |g1

)

For every time step t from 1 to T − 1:
Compute the forward probability over the paths:
∀j = 1 · · · Jt : −→r t

j ← η
(
ptj
) (∑

j:δ(xt
i,p

t
j)=1

−→q t
i

)

Compute the forward probability over the states:
∀i = 1 · · · It+1 : −→q t+1

i ← ω
(
xt+1
i |gt+1

) (∑
j:δ̄(ptj ,x

t+1
i )=1

−→r t
j

)

Initialize the backward state distribution
∀i = 1 · · · IT : ←−q T

i ← 1
For every time step t from T − 1 to 1:

Compute the forward probability over the paths:
∀j = 1 · · · Jt :←−r t

j ← η
(
ptj
) (∑

j:δ̄(ptj ,x
t+1
i )=1

←−q t+1
i

)

Compute the forward probability over the states:
∀i = 1 · · · It: ←−q t

i ← ω
(
xt+1
i |gt+1

) (∑
j:δ(xt

i,p
t
j)=1

←−r t
j

)

For every time step t:
∀j = 1 · · · Jt : rtj ← −→r t

j · ←−r t
j

Normalize rt

∀i = 1 · · · It: qti ← −→q t
i · ←−q t

i

Normalize qt

Return the set of vectors
(
qt
)
t

and
(
rt
)
t

the right or to the left. The distribution is parametrized by a vector μ ∈ R
K ,

called the behavioral parameter vector.

Training. The procedure detailed so far requires the calibration of the ob-
servation model and the path selection model by setting some values for the
weight vector μ and the standard deviation σ. There is a striking similar-
ity between the state variables x1:T and the path variables p1:T especially
between the forward and backward equations introduced in Algorithm 1. Con-
sider ε = σ−2 and θ the stacked vector of the desired parameters θ =

(
ε μT

)T .
One then realizes that the potential φ defines an exponential family distri-
bution over the variables x1:T ,p1:T−1, and that the vector θ is the natural
parameter of the distribution. It ensues that maximizing the likelihood of
observations with respect to θ is a convex problem [17]. Furthermore, the
elements of the objective function (gradient, Hessian) can be efficiently com-
puted using dynamic programming. The complete derivations can be found in
the supplementary materials, and our reference implementation [1] provides
an implementation of the likelihood maximization procedure.

Usually, only the GPS observations g1:T are available; the choices of xt
i and

ptj are hidden. In this case, we estimate a good value of θ using the Expectation
Maximization (EM) algorithm, in which we take the expectation over the each
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possible choice xt
i and ptj . This is done by computing the marginal conditional

probabilities q̄ti = π
(
xt
i|g1:T ; θ

)
and r̄ti = π

(
ptj |g1:T ; θ

)
, using the forward-

backward algorithm (Algorithm 1).

4 Results from Field Operational Test

We evaluate the path inference filter with two datasets collected from the
same source (taxi cabs): a smaller set at high frequency, called “Dataset 1”,
and a larger dataset sampled at 1 minute for which we do not know ground
truth, called “Dataset 2”. For the collection of Dataset 1, ten San Francisco
taxicabs were fit with high frequency GPS (1 second sampling rate) during
a two-day experiment. Together, they collected about 200,000 measurement
points.

Fig. 6 Example of points collected
in “Dataset 1”, in the Russian Hill
neighborhood in San Francisco. The
(red) dots are the GPS observations
(collected every second), and the
green lines are road links that con-
tain a state projection. The black
lines show the most likely projec-
tion of the GPS points on the road
network.

The second dataset consists of one day
of one-minute samples of 600 taxis from
the same fleet, which represents 600,000
GPS points, collected the same month.

Experiment Design. The path infer-
ence filter was first run using hand-
tuned parameters on all the samples to
build a set of ground truth trajectories.
The trajectories were then downsampled
to different temporal resolutions (2 sec-
onds to two minutes) to test the filter
in different configurations. We performed
cross-validation to test the impact of
the sampling rate, the computing strat-
egy (“online” or pure filtering, “1-lag”
and “2-lag” for fixed-lagged smoothing,
Viterbi and “offline” or smoothing). We
also tested different models: some deter-
ministic models (“Hard closest point” [6],
“Closest point”, and “Shortest path” [18]) were selected as baselines. In addi-
tion, we ran two models from from the exponential family:

• “Simple”: A simple model that considers two features that could probably
have been tuned by hand with some effort (but were learned in our exper-
iments): the length of the path and the distance of a point projection to
its GPS coordinate.

• “Complex”: A more complex model with a more diverse set of ten features,
which makes manual tuning impractical. In addition to the two features of
the simple model, this model in particular includes the number of signals,
turns and stop signs on the path, the class of the road and some average
speed information.
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Fig. 7 Proportion of point misses (left) and path misses (right) using trajectory
reconstruction (Viterbi algorithm) for different sampling rates, as a percentage of
incorrect point reconstructions for each trajectory (positive, smaller is better). The
solid line denotes the median, the squares denote the mean and the dashed lines
denote the 95% confidence interval. The black curve is the performance of a greedy
reconstruction algorithm, and the colored plots are the performances of probabilistic
algorithms for different features and weights learned by different methods.

These two models were also trained in a supervised setting, leading to the
“MaxLL-Simple” and “MaxLL-Complex” models, respectively. The simple
model was trained using Expectation Maximization on “Dataset 1” and lead
to “EM-Simple”. Due to convergence issues, the EM algorithm was used on
the complex model using “Dataset 2”. This set of parameters is presented
under the label “EM-Complex”. From a practical perspective, all the deter-
ministic models can be well approximated using the Simple model by setting
some large or small values to its parameters.

These models were evaluated under a number of metrics:

• The proportion of path and point misses: for each trajectory, it is the
number of times the most likely path or the most likely state was not the
true one, divided by the number of time steps in the trajectory.

• The log-likelihood of the true point projection and of the true path pro-
jection. This is indicative of how often the true point or the true path is
identified by the model.

• The entropy of the path distribution and of the point distribution. This
statistical measure indicates the confidence assigned by the filter to its
result. A small entropy (close to 0) indicates that one path is strongly
favored by the filter against all the other ones, whereas a large entropy
indicates that all paths or points are considered equal.

Results. Given the number of parameters to adjust, we only present the
most salient results here.

The raw accuracy of the filter, in terms of point misses and path misses, is
presented in Figure 7. As expected, the error rate is 0 for high frequencies (low
sampling period): all the points are correctly identified by all the algorithms.
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In the low frequencies (high sampling periods), the error is still low (around
10%) for the trained models, and also for the greedy model (“Hard closest
point”). For sampling rates between 10 seconds and 90 seconds, trained mod-
els (“Simple” and “Complex”) show a much higher performance compared to
untrained models (“Hard closest point”, “Closest point” and “Shortest path”).
In higher sampling regions, there are significantly more paths to consider and
the error increases substantially. Nevertheless, the probabilistic models still
perform very well: even at 2 minute intervals, they are able to recover about
75% of the true paths.
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Fig. 8 On the left, negative of the log likelihood of true paths for different strategies
and different sampling rates (positive, lower is better). On the center, entropy of
point distributions and on the right, entropy of path distributions. The solid line
denotes the median, the squares denote the mean and the dashed lines denote the
90% confidence interval.

We now turn our attention to the resilience of the models, i.e. how they
perform when they make mistakes. We use two statistical measures: the (log)
likelihood of the true paths, and the entropy of the distribution of points or
paths (Figure 8). Note that in a perfect reconstruction with no ambiguity,
the log likelihood would be zero. Interestingly, the log likelihoods appear very
stable as the sampling interval grows: our algorithm will continue to assign
high probabilities to the true projections even when many more paths can
be used to travel from one point to the other. The performance of the simple
and the complex models improves greatly when some backward filtering steps
are used, and stays relatively even across different time intervals.

The paths inferred by the filter are also never dramatically different: at
two minute time intervals (for which the paths are 1.7km on average), the
returned path spans more than 80% of the true path on average. Using the
complex model decreases this relative error by more than 15% . We refer
the reader to the supplementary materials for a longer discussion on the
performance of the filter.

In the case of the complex model, the weights can provide some insight
into the features involved in the decision-making process of the driver. In
particular, for extended sampling rates (t=120s), some interesting patterns
appear. For example, drivers show a clear preference to turn on the right as
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Fig. 9 Examples of learned feature weights: le..ght turn preferences (a), standard
deviation (b), and characteristic length (c). The error bars indicate the complete
span of values computed for each time.

opposed to the left, as seen in Figure 9. This may be attributed in part to
the difficulty in crossing an intersection in the United States.

Unsupervised Learning Results. The filter was also trained for the sim-
ple and complex models using Dataset 2. This dataset does not include true
observations but is two orders of magnitude larger than Dataset 1 for the
matching sampling period (1 minute). The unsupervised training finds some
weight values similar to those found with supervised learning. The magnitude
of these weights is larger than in the supervised settings, however. Indeed,
during the E step, the algorithm is free to assign any sensible value to the
choice of the path. This may lead to a self-reinforcing behavior and the ex-
ploration of a bad local minimum.

As Figure 10 shows, however, a large training dataset puts unsupervised
methods on par with supervised methods as far as performance metrics are
concerned.

False points False paths
EM-Complex (large) 5.8±0.4% 16.0±1.0%
EM-Simple (large) 6.3±0.4% 17.1±0.9%

EM-Simple 6.2±0.6% 17.3±1.3%
MaxLL-Complex 6.2±0.3% 15.8±0.7
MaxLL-Simple 6.1±0.3% 16.5±0.7

Fig. 10 Proportion of true points and true paths incorrectly identified, for different
models evaluated with 1-minute sampling (lower is better)

Key Findings. Our algorithm can reconstruct a sensible approximation of
the trajectory followed by the vehicles analyzed, even in complex urban en-
vironments. In particular:

• An intuitive deterministic heuristic (“Hard closest point”) dramatically
fails for paths at low frequencies, less so for points. It should not be con-
sidered for sampling intervals larger than 30 seconds.

• A simple probabilistic heuristics (“closest point”) gives good results for
either very low frequencies (2 minutes) or very high frequencies (a few sec-
onds) with more 75% of paths and 94% points correctly identified. How-
ever, the incorrect values are not as close to the true trajectory as they
are with more accurate models (“Simple” and “Complex”).
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• For the medium range (10 seconds to 90 seconds), trained models (either
supervised or unsupervised) have a greatly improved accuracy compared
to untrained models, with 80% to 95% of the paths correctly identified by
the former.

• For the paths that are incorrectly identified, trained models (“Simple” or
“Complex”) provide better results compared to untrained models (the out-
put paths are closer to the true paths, and the uncertainty about which
paths may have been taken is much reduced). Furthermore, using a com-
plex model (“Complex”) improves these results even more by a factor of
13-20% on all metrics.

• For filtering strategies: online filtering gives the worst results and its per-
formance is very similar to 1-lagged smoothing. The slower strategies
(2-lagged smoothing and offline) outperform the other two by far. Two-
lagged smoothing is nearly as good as offline smoothing, except in very high
frequencies (less than 2 second sampling) for which smoothing clearly pro-
vides better results. We thus recommend two-lagged smoothing for most
applications.

• Using a trained algorithm in a purely unsupervised fashion provides an
accuracy as good as when training in a supervised setting - assuming
enough data is available. The models produced by EM are equally good
in terms of raw performance (path and point misses), but they may be
overconfident.

5 Conclusions

We have presented a novel class of algorithms to track moving vehicles on
a road network: the path inference filter. This algorithm first projects the
raw points onto candidate projections on the road network and then builds
candidate trajectories to link these candidate points. An observation model
and a driver model are then combined in a Conditional Random Field to infer
the most probable trajectories.

The algorithm exhibits robustness to noise as well as to the specificities
of driving in urban road networks. It is competitive over a wide range of
sampling rates (1 second to 2 minutes) and greatly outperforms intuitive
deterministic algorithms. Furthermore, given a set of ground truth data, the
filter can be automatically tuned using a fast supervised learning procedure.
Alternatively, using enough GPS data with no ground truth, it can be trained
using unsupervised learning. Experimental results show that the unsupervised
learning procedure compares favorably against learning from ground truth
data.

This algorithm supports a range of trade-offs between accuracy, timeliness
and computing needs. It extends the current state of the art [20, 19] in its most
accurate setting. The results are supported by the theoretical foundations
of Conditional Random Fields. Because no standardized benchmark exists,
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the authors have released an open-source implementation of the filter to foster
comparison with other methodologies using other datasets [1].

The authors have written an industrial-strength version in the Scala pro-
gramming language, deployed in the Mobile Millennium system. This multi-
core version maps GPS points at a rate of several thousands of GPS points
per second for the San Francisco Bay area and other large urban areas.
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