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Abstract

On-demand traffic fleet optimization requires operating Mobility as a Service (MaaS) companies such as Uber, Lyft to
locally match the offer of available vehicles with their expected number of requests referred to as demand (as well as to
take into account other constraints such as driver’s schedules and preferences). In the present article, we show that this
problem can be encoded into a Constrained Integer Quadratic Program (CIQP) with block independent constraints that
can then be relaxed in the form of a convex optimization program.We leverage this particular structure to yield a scalable
distributed optimization algorithm corresponding to computing a gradient ascent in a dual space. This new framework
does not require the drivers to share their availabilities with the operating company (as opposed to standard practice in
today’s mobility as a service companies). The resulting parallel algorithm can run on a distributed smartphone based
platform.
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Open-sourcing Mobility as a Service. A key component in Mobility as a Service (MaaS) companies
such as Uber and Lyft is market making and market matching. The famous price multiplier of the former
incentivizes drivers to go to regions where many rides are requested whereas the latter takes into account the
personal schedule of the drivers. To remain competitive, MaaS companies keep their optimization strategies a
secret. In the present article, we present a convex optimization formulation and provide an open source algo-
rithm that match drivers with demand in an optimal manner while taking into account the drivers’ availability
as a set of constraints. In addition, we show that using a dual splitting technique, the convex program can
be parallelized with respect to the agents. This has two important consequences. It alleviates the need for a
single machine with a large amount of memory. Indeed we leverage the fact that the schedules of the drivers
can be considered as independent constraint sets. It also does not require drivers to share their schedules
which naturally protects this privacy sensitive piece of information.

Background on fleet management. A sizable body of research focuses on optimizing fleet management,
vehicle dispatching and multimodal transportation optimization. In order to assess the best optimization poli-
cies for taxi fleets, numerous simulators have been developed. For instance, in Cheng and Nguyen (2011), an
agent-based simulation program was used in conjunction with a large dataset of GPS trajectories to learn and
mimic the behavior of taxi drivers. In Maciejewski and Nagel (2013) researchers have modified gen-eral
purpose agent-based traffic simulators such as MATSim Horni et al. (2016) and incorporated taxi ride
simulation. Both these approaches aimed at providing taxi companies with tools and methods dedicated to
better informing fleet management decisions with a focus on better answering demand modeled as queues
and minimizing idling driver time. GPS tracking has been instrumental in calibrating taxi fleet simulators as
well as real-time information services for large taxi fleets Balan et al. (2011); Liao (2001, 2003) which aimed
at better informing optimization decisions in real time. More recently, the advent of massive electric vehicle
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fleets has given rise to a new class of problems. These analyze the structure of demand of rides and dispatch
vehicles while taking into account the constraints inherent to the use of electric vehicles whose batteries pro-
vide a shorter range Gacias and Meunier (2015). Such problems have also been considered for the design of
optimal charging station networks for such fleets Cai et al. (2014).

Integrating operational constraints in privacy preserving environments. The framework in which we
develop the novel approaches presented in this work takes into account constraints that correspond to each
agent in the system such as driving preferences, electromobility-induced constraints, etc. These constraints
can encode a variety of factors, the most interesting one for the study being driver availability (which we want
to protect for privacy reasons). In such a setting, the demand for rides can be studied in a statistical manner
leveraging the important amount of data being collected by MaaS systems. Note also, as will appear later,
that the present article does not require the assumption that the demand for rides is elastic as in Wong et al.
(2001). Our focus is that of making MaaS open; this specifically takes the form of a peer-to-peer distributed
algorithm that can run on smartphones and achieves an aim similar to that of Jayakrishnan (2015). As in
Ma et al. (2013), a major concern is that the algorithm scales which typically becomes problematic when the
number of constraints increases linearly with the number of drivers, a problem that we adress as well. For
completeness, a large number of approaches for ride-sharing optimization can be found in Agatz et al. (2012).

Contributions of the article. Based on this study of the state of the art in optimization for MaaS services,
our approach is novel in three key aspects which we delineate below.

e Modeling and data analytics. We show how openly accessible data can, using a coarse yet robust
statistical estimation, yield reliable estimates of the locations and times corresponding to demand for
mobility. We operate under the assumption that the only shared location by the rider is that of the
departure of the trip. This corresponds to the reality of popular applications for MaaS today in which
the destination of the rider can be modified until the start of the trip. We show how, once the demand
for rides has been characterized using this method, the availability constraints of the drivers can be
matched as a mobility offer in the form of an integer program. Assuming vehicles would directly be
controlled by the managing company, this leads to a Contrained Quadratic Integer Program (CQIP).
As the market making solution being offered by MaaS does not directly control the drivers, we focus
on controlling a probability of presence of the drivers which corresponds to a convex relaxation of the
integer program we formulate.

e Privacy preservation by dual splitting. A salient issue with the convex optimization program that
needs to be solved is that its number of constraints scales linearly with the number of drivers. This
makes the complexity of computations cubic in time and memory with respect to the number of vehi-
cles for standard convex optimization solvers that use interior point methods or any solution based on
inverting the matrix of linear constraints that characterizes the problem. We develop a dual splitting
technique which splits the problem into as many subproblems as there are drivers involved in the ser-
vice. We show how this results in a gradient descent based convergence method which requires each
driver to solve a subproblem at each descent step for the gradient to be collectively computed. We
prove that the convergence of the scheme is linear and the computational burden for each device is
only proportional to the number of constraints of the driver it corresponds to as opposed to that of the
whole fleet of vehicles. A key element is that the only information that needs sharing is a Lagrangian
price multiplier which preserves the privacy of the drivers and mostly gives them an incentive to go
where most rides are needed. Their personal availability constraints need not be shared in our system.
We further show how their recommended trajectory can be obfuscated thereby further protecting their
privacy. The algorithmic contribution relies on techniques different from the famous Alternating Di-
rection Method of Multipliers (ADMM) of Boyd et al. (2011), distributed primal methods Nedic and
Ozdaglar (2009); Goldfarb and Ma (2012) or primal-dual methods Chang et al. (2014). Indeed it is
tailored to the block independent structure of the constraints and the partitioning of the data across
smartphones. This section introduces a method that is privacy preserving and tractable computation-
ally.

e Theoretical convergence analysis and numerical experiments. A thorough analysis of the conver-
gence rates of the algorithm we present to solve the convex program is conducted. This analysis is
general and takes place for a larger class of problems than the program we designed thereby making it
useful for practitioners with different objective functions (i.e. not limited to the operational scenarios
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outlined in the earlier parts of the article). We show that the scheme is robust to noise being injected
in communications. After delineating two privacy preserving scalable algorithms, we prove that as
the number of drivers increases, privacy can further be improved. We highlight a crowd obfuscation
effect thanks to which an individual attacker cannot learn as fast as the group. We confirm the results
obtained in this holistic theoretical analysis of the properties of the algorithm with numerical experi-
ments conducted with actual openly accessible data in both the noiseless and noisy settings. The open
source code will be made available through a hypertext link in the final public version of the present
article. Section 3 proves that the algorithm we present is robust enough to allow for the obfuscation of
the optimal program it converges to.

Organization of the article We first anchor a theoretical optimization program into the reality of mobility
as a service applications, highlight how a convex relaxation corresponds to a realistic assumption which later
on leads to a novel dual splitting technique and finally analyze the theoretical and numerical properties of the
resulting distributed algorithm. The present article is therefore organized as follows. In Section 1, we first
briefly describe the method used to characterize the spatial and temporal structure of demand for mobility as
a service rides in New York. While this is not the core focus of the present article, it is briefly presented in
Section 1 since the rest of the article leverages this spatio-temporal structure once it has been characterized.
We then formulate a convex optimization problem in Section 2 that matches the probability of presence of
drivers with the demand for rides. Finally, in Section 3, a theoretical analysis of the convergence properties of
the distributed algorithm is conducted that proves its privacy preserving properties. Numerical experiments
confirming these results are shown in Section 4.

1. General modeling of the fleet management problem

In this section, we show how to model the problem of matching demand for rides with the schedule of
MaasS drivers and how this can be formulated as an optimization program. We first focus on the identification
of the structure of the demand prior to formulating the resulting matching problem.

1.1. Characterization of demand as a seasonal time series

Setting. Demand for rides can be characterized as a multivariate time series (D,) € R9 where d is the
number of cells considered in the spatial discretization grid (see Figure 1 for the case of NYC). These are
sometimes referred to as "heatmaps" in MaaS companies. For each element of the grid i and each timestep
t (typically 5 minutes), D! is the sum of all ride requests for the service that have been observed in region
i. Let (U,) € RY the sum of vehicles available in a grid cell at time z. A way to encode optimal matching
is to penalize the sum of squared distances between the vectors U, and D; at each timestamp to which we
add a regularizing function over (U,). This latter component of the objective represents the aversion of
drivers to long distances and going to highly congested zones. This will enforce a vehicle allocation schedule
matching the spatial density of ride requests with that of available mobility platforms. At the same time, it
will penalize the fleet dispatch plan in order to discourage traveling long distances or go through regions with
a high number of vehicles, therefore taking into the route preferences of the drivers Bogers et al. (2015).

Spatio-temporal structure of demand for MaaS. As an instantiation of the method exposed to identify
the structure of demand for rides, further exploring the statistical facts exposed in Qian et al. (2013) for on-
demand mobility in New York city, we show that the demand for rides (D;) has strong spatial and temporal
periodicity (which is illustrated in Figure 2 and Figure 3). A consequence of this fact is that we can use
seasonality analysis Brillinger (1981); Brockwell and Davis (2013) as the basis for an optimization scheme
taking into account the drivers’ availability and schedules. The exact definition of privacy preservation will be
given later in the article. The stochastic input demand profile Ak and Erera (2007) can of course be updated as
new data is collected with a receding horizon approach Miao et al. (2015) and the demand forecast obtained
by multivariate time series analysis Sun et al. (2003); Durango-Cohen (2007); Liitkepohl (2005) changes.
Similar updates for traffic conditions can be taken into account in real time Ben-Akiva et al. (2001); May
et al. (2003).
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Normalized density of ride requests
over the discretization grid
for the entire data collection period
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Fig. 1. Spatial quantization of demand for Uber rides in New York. Each element of the grid corresponds to aggregate ride requests in
a tessellation region during each time interval (depicted at a given time in this figure). Empty cells correspond to regions with low or
zero ride requests. This data is studied as a multivariate time series and its seasonal component studied. The mobility on-demand fleet
distribution is then optimized based on this data with the novel algorithm we present.
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Fig. 2. Left: Demand series for specific locations of NYC on a particular day. Intra-day seasonality appears as a salient feature of
the demand of MaaS. For each element of the discretization grid, ride requests are aggregated over 5 minute observation windows and
represented with lines whose opacity is proportional to the total number of ride requests observed at the corresponding element of the
grid for the entire day. Right: Average and empirical percentiles computed across all the discretization cells used to represent the state
of demand for rides across the city.

1.2. Formulation of demand matching with boolean representation of vehicles

The time series (U;) € R? corresponds to the aggregation of drivers’ locations over spatial regions whereas
(D)) € R? is a demand time series summing up collocated requests occurring in the same time interval.
The optimization scheme we focus on in this article leverages aggregated demand profiles and enables the
optimization of vehicle dispatch at the driver level, taking personal constraints and driver utility functions
into account.

The discretized spatial grid can easily be modeled as a network graph Wu et al. (2004) representing the
mobility space (see Figure 1). Each edge represents a spatial tesselation region. Neighboring regions are
linked one to another by an edge. The position of driver ¢ at time ¢ is modeled by a integer vector over the
vertices of G: (bf) = (bf i)ie{l o € N¢ whose value is 1 for node n if and only if the driver’s location is node
n at time t. The value of the integer b{ may also be used to encode the number of seats available in a given
vehicle at a given time and space.
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Time/space profile for Uber Rides in New York
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Fig. 3. Spatio-temporal seasonality in Uber demand profile in NYC for April 2014. The strong spatio-temporal seasonality paves the
way towards accurate predictions and planning of requests for rides. Forecast can then be dynamically updated by standard linear model
iterative fitting to dynamically adapt to randomness in the demand time series.

1.2.1. Formulation of demand matching as a discrete optimization program

Up to a scaling factor for the number of shared vehicles located at a given node, alleviating the spread
between demand and offer of ride requests can be written as the following objective where C is the total
number of drivers taken into account and T the total number of time steps the schedule is planned for.

Fleet management problem:

2 2 2
. T d C c C T-1 vd 2 c c C T d 2 C
e{onllllleICXT D=1 2m=1 (dt,n D t,n) + Dioey 2tml Zomel Petn (bt+1,n - bz,n) + Dt D=l Dan=1 Tin (bt,n)
ue{0, :

Yee{l...C},Vne{l...D},Vte(l...T},b;, > 0if and only if vehicle ¢ in cell n
Yeel{l...C},b eC

6]

where

o Yce{l...C},b € C°isequivalenttoVYn € {1... D}, ¥Vt € {1...T},b;, = 0if vehicle c is not available at time ¢.
e d,, is the demand in cell # at time ¢. This constraint set will be augmented with mobility constraints as

we will show later on.
. (pil?n) is a set of travel distance penalization parameters.

. (azn) is a set of penalization parameters over congested cells.
In the equations above and the following, ¢ will be a temporal index, n a spatial index, and ¢ will identify

vehicles. The specific terms in the program above are explained below:
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e Demand matching term: Z,T=1 23:1 (d,,n - ZCC:I b;"n) is a square loss penalizing the mismatching be-

tween the number of vehicles expected in each cell and the number of rides requested (demand). Note

that last section of this article proves that any strongly convex loss can be used here instead of this
quadratic.

e Travel time and distance penalty: ZCC: I Zth’ll ZZ:1 pi,’n (bfﬂﬂ - b;i)2 is a quadratic penalty term which
accounts for the cost in time and energy for the drivers corresponding to moving across the discretized
tesselation grid. In other words, penalizing fleet re-balancing is desirable (and encoded in this func-
tion). Again, any arbitrary strongly convex loss can be used here, as proved later in the article. This
means in particular that instead of a distance an expected travel time can be added, for instance, a

quadratic loss on the number of traffic lights present in a cell of the discretized grid.

e Regularization: ¥, >7 3¢, o2, (b{,,)z is a quadratic term that discourages drivers from gathering
in large groups in the same cells. Once more, any strongly convex loss can replace the quadratic
term we chose. Strong convexity implies that there is an increasing marginal cost to concentrating the
distribution of a driver and therefore encourages spreading vehicles across the discretization grid. This
term may also represent the aversion of drivers to driving in zones that feature problematic driving
conditions such as uncertainty about the level of congestion or the absence of stopping locations.

1.2.2. Constraint sets

In this paragraph, we show how the constraints on the possible movements of the agents can be extended
and be more detailed. Any fleet management algorithm has to take the drivers’ constraints into account as
well as their mobility constraints. Letting avai (c, t) be the Boolean variable that represents the availability of
driver ¢ at time f, we have Vr € {1...T}, Yc e {1...C}, Zle b;, = avai(c,1). Let init (c) the entry point of
driver c at time #J (where s stands for “start time”, the entry point represents the location at which the agent
has parked before starting the MaaS part of their day) when vehicle ¢ start its trip, we add the constraint
bi_ o= init (c), where init (c) is the dirac vector concentrated on the start position of vehicle c. Let end (c) the
exit point of driver ¢ at time £ when vehicle ¢ ends its trip, b;_. = end (c) the dirac vector concentrated on
the stop position of vehicle c. If we do not assume that the graph is fully connected for any time stamp ¢, we
can add the constraints V¢ € {1...T — 1}, bf = M;b}_| where M, is the connectivity matrix of the network. In
particular M, is filled with 0, M, ,,, ,, = 1 if anf only if n; and n, are connected through the network at time .
The final constraint set we obtain, once mobility constraints have been taken into account, can be described
as follows for a given agent with index c:

o Availability of agent for MaaS: Vc € {1...C},b° € C“isequivalenttoVn € {1...D},Vt € {1...T}, b},
0 if vehicle c is not available at time ¢.
e Mobility constraints: Yt € {1...T — 1}, by = M,b{_,

1.2.3. Hyperparameter tuning

The problem formulation above features several sets of hyperparameters (p, o) which can be calibrated
by a cross-validation procedure in order to produce the best outcome for this optimization scheme. This can
be done by operating an actual fleet or more realistically in practice using a vehicle fleet simulator such as
Cheng and Nguyen (2011); Maciejewski and Nagel (2013). In our numerical experiments, we have used
nominal parameters that did not result from the use of such simulators different numerical values do not
affect the performance of our algorithms significantly. However, the results we present show that the set of
hyperparameters we selected successfully enabled the tracking of the demand with the vehicle probability of
presence distribution.

We consider a convex relaxation of the Constrained Integer Quadratic Programming (CIQP) problem
which differentiates our approach from Mahmassani et al. (2000); Lee et al. (2012); Robust et al. (1990);
Seow et al. (2010) for vehicles. Our choice of an approximate relaxation convex program as in Miao et al. is
motivated by the practical fact that we build a system that encourages drivers to move towards regions with
a high number of potential customers. Drivers are indeed free of their re-routing decisions in on-demand
mobility, which leads to behavioral changes as compared to what has been previously observed for vehicles
Yang et al. (2010). As actors on a two sided market, they are also free to refuse to pickup a costumer and
therefore the vehicle occupancy is not taken into account in the optimization objective. We derive a dual
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reformulation which yields a distributed gradient ascent algorithm converging to the optimal solution of a
strongly convex problem.

Our method is therefore tailored to shaping incentives drivers to answer demand in an optimal way while
taking their personal constraints into account as they join a massive fleet of vehicles. We leverage this
unique aspect of MaaS in order to design a distributed algorithm which is tailored for speed of adaptation
to changing conditions and privacy preservation rather than precisely controlling each vehicle individually.
Our numerical experiments show indeed that the parallel implementation of our algorithm can run on the
equivalent of a group of two thousand smartphones with a limited communication bandwidth and yet find an
optimal price multiplier for the drivers in a matter of minutes. These results are moreover rather pessimistic
as we did not use a warm-start or a specialized convex optimizer to speed it up. A limitation however is that
our algorithm is not adapted to the exact and precise control of a fleet of vehicles.

2. Formulation and architecture for distributed privacy preserving motion planning

The computational complexity of the problem prevents efficient solutions to the exact (integer) problem.
In addition, solving the problem exactly is not necessary with fleets of drivers that are not directly controlled.
This enables us to achieve three main goals which will be at the center of the next two sections.

Specification Brute force approach | Dual splitting | Crowd obfuscation
Tractable and scalable computations Not achieved Achieved Achieved
Preservation of private constraints Not achieved Achieved Achieved
Preservation of private optimal actions Not achieved Not achieved Achieved

Table 1. Specifications we aim to meet for the fleet management problem.

2.1. Convex relaxation

As a starter to address the issue of tractability in Table 1 above, we employ relaxation. In the previ-
ous problem, ¥r € {1...T}, Yc € {1...C}, b;, € {0,1}. We now write a relaxed approximation of the
problem with uf, € [0,1]. ¥Yc € {1...C} let C° the set of constraints of vehicle c, the constraints are:
Yeef{l...T}, Vne{l...N}, uj, 2 0¥t e {l...T}, VYn e {1...N}, u;, = 0if vehicle c is not available at
time #; uj_, = init (c) (initial location of vehicle c, e.g. parking location at the driver’s home); u;_, = end (c)
(final location of vehicle c, e.g. parking location at the driver’s home), V¢ € {1...T — 1}, u; = Mu;_ | (move-
ment constraints between traffic regions) if the traffic network is not fully connected at all times. Otherwise
one considers the mass conservation constraint Zf:’;l u;, = 1. We can see that this problem is equivalent to
that of considering the position of a given vehicle at any time 7 as a probability distribution over the network.
Note also that the practice of aggregation of supply often used by MaaS companies such as Uber or Lyft is
somewhat aligned with the physical interpretation of relaxation in the present case.

2.1.1. Relaxed problem formulation

As explained earlier, the position of driver ¢ at time ¢ is modeled by a presence vector over the vertices of
G: () = (u{n) | € RY whose value is one for node n if and only if the driver’s location is node n at
time t.

ne{l..N

The relaxed problem we consider is now convex:
Convex relaxation:

T N C
. c
NI 3 ) [ 3
UERIXCXT : Yee(1...C}, uceCe i

t n c=1

The solution to this problem will be denoted u* = concat ((u}).1..c) where u} is the optimal behavior
assigned to the agent number c.
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One major difference appears with the initial boolean problem. New constraints need to be taken into
account, for each vehicle. Namely, u7, > 0 and Zflvzl u;, = 1. This does not change the separability of

constraints among vehicles which is the key assumption needed to parallelize solving the convex optimization
problem we obtain after relaxation.

2.1.2. Answering demand for rides with a probability distribution of vehicles

We are mainly interested in fleet management for MaaS companies such as Lyft or Uber. In that particular
setting it makes sense to consider a probability distribution of presence for the driver and guiding this proba-
bility distribution. Not only is this framework useful for large numbers of drivers as observed in urban areas,
but it also corresponds to a modeling approach desired by MaaS companies. Also, the present optimization
scheme only considers demand is characterized by the location and number of ride requests. The location
of the destinations are not taken into account. This models the fact that Uber or Lyft drivers only get to
know the destination of the costumer after the pick up and the rider is therefore free to change the destination
before pickup time. Considering destination locations is not problematic. The corresponding increase in
computational complexity can potentially be addressed with the optimization algorithm presented later based
on a dual splitting method is tailored for solving the main problem by distributing it over many machines.
As illustrated in Figure 4, considering the convex relaxation of the problem is key to having a model that
although approximate is appropriate for Mobility as Service (MaaS) applications and can be solved in a scal-
able manner. A thorough analysis has been conducted in Pilanci et al. (2015) and Pilanci et al. (2012) for
the recovery of sparse probability measures by convex programming. In these articles, bounds have been
proven that could be applied to our setting. We do not need such a thorough analysis in our study as the
convex relaxation over the location of the agent characterizes the flexibility offered to the driver by MaaS.
Uber drivers are free to go where they want and can only receive an incentive to drive to zones with a higher
price multiplier.

Probabilistic
representation of vehicle
presence

Boolean representation
of vehicle presence

[e]
@ [exe|

BN
1

Fig. 4. Core idea behind the convex relaxation. As there is no direct control of the drivers by MaaS companies, we consider we control
a distribution of probability of presence as is done by MaaS companies through the internal use of heatmaps. This corresponds to the
intuition that the objective to achieve is finding an optimal incentivization scheme for the drivers. It is key to turn the exact problem into
an approximation that can scale with respect to the number of drivers.

2.2. Dual splitting method
This section presents a dual perspective of the problem that explicitly separates the constraint sets of the

drivers. It leads to the formulation of a Lagrangian quantity encoding both the structure of the demand and
the availability constraints of the drivers.

Proposition 1. The primal problem is equivalent to the Dual problem:

uceC*

T N c T-1 ©N : )2 T N )2
mjlx_ 2t=1 Zn:l /lla"dfs" + ZC:l nmin ( =1 anl Pren (M;Jrl’n - Lt;n) + Zz:] Zn:l Ttn (u;n) ) (3)
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Proof 1. Letz,, =d;,,— ZL | Ur., be a set of consensus variables Boyd and Vandenberghe (2004). The inifial
problem can be rewritten as

T N C N C T N
min Zzztzn+2 Zplcn t+1n_uln +ZZZU—M 4)

u:VCG{l.. ,u eC’ =1 n= c=1 t=1 n=1 c=1 t=1 n=1
_ C
Vt,n Ztn = dt,n - Zc:l ut,n

T-1

We create the set (/lt,n)ze{l...T], ne(1..n) Of Lagrangian variables corresponding to the constraints Vi € {1...T},n €

{1 .. N} Ztn = dr,n - ZE:] utc,n'

C T-1 e e 2 2
= =1 Zn 1 Pren\U t+1.n ut,n +Z Zt 12:1 1 Otn (U tn

min max =1 :
. 3 NXT
u: VYce {IC}, u‘ ECL/IER ) +Zt:1 Zz1:1zf,n+/lf,n(zt,n dtn +Z lutn)
ZERNXT

&)

This problem can be rewritten as

ZC ZT71 ZN uc —uc + Z Z Z o u 2
c=1 Lit=1 n=1Pren t+1,n tn c=1 Lit=1 Lap=1 Y tn \"*t,n

max min T N . 2
- _ , + 3 ., min Z;, + A, (z —diy+ D Ul )
ARMT - e e {l...C}, u¢ € C* Ziet L zn€R in (3 = o+ 2 o

where each individual minimization problem with respect to z;, can be solved analytically with respect to
Z.n (minimization of a second order polynomial). The swapping of the max and min operations is a direct
consequence of the strong duality of the problem Bertsekas (1999) (strict convexity of the problem, strictly
feasible general convex constraints and affine constraints) As,

- pl
. 2 . tn
argminz;, + A, (zl,n —d, + Z “;,n] ===
tn eR c=1

the proof is concluded by substituting each z,, by this solution.

Once converged, u* is equivalent to the primal solution, the solution 4* to (3) is an optimal price multi-
plier. We will show that at the optimal point (u*, 4*) drivers’ constraints are respected and yet need not be
communicated, privacy is preserved. Indeed, the optimal solution u* for the entire fleet is the concatenation
of the individual optima (u}.).=1..c. The calculation of u. for a particular value of ¢ only depends on messages
obtained from the rest of the fleet through A* as it is the solution to

Proposition 2. Agent level problem: Once the optimal value of A in (3) has been found (which will be
explained in Algorithm 2), it is sufficient for each agent to solve the sub-problem

T N N
min o ) = 3 | Ayt + i (1) |+ 2 D e (= ) (6)

to find its optimal schedule.

Proof 2. This proposition is a consequence of (3) and strong convexity Boyd and Vandenberghe (2004) which
implies that once the optimal Lagrangian value A* has been found for A, it is sufficient to find the optimal
value of u which solves the problem

T

N C )
*
L’,?L’g ZZ/lmdm+Z( =1 n—lpf”l( Ui _utc,n) +Zt 1 Z lo—ln(utn) )

c=1 t=1 n=1 c=1

This sum is separable across the different agents whose constraints are independent which means that to
minimize the sum it is sufficient to minimize each of its element independently. This concludes the proof.
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Algorithm 1: Dual splitting algorithm

Data: Constraints (C°) (¢}, target d € RTV

Result: Optimal action u; for driver ¢
1 Compute optimal Lagrangian multiplier A* by solving (3).
2 Compute optimal action

. T N
up = argminf, (A", u) = 3, 2,
uceC*

2

2
* .C c T-1 "N c c
Af Uiy + T (”r,n) ] + 2mt Zn=1 Pren (Ml+l,n - ”t,n)

Dual splitting algorithm The considerations above lead to a straightforward separation of the problem
through the dual.

Section 3 describes a gradient ascent based algorithm that achieves the step 1 in Algorithm 1. This
distributed privacy preserving optimization scheme is provably able to track a demand distribution. In Figures
7 and 8, we show how the optimal distribution of vehicles is able to track the distribution of demand as it
evolves in time. These plots are generated with 10* and 10* vehicles whose availabilities are generated at
random with a uniform law for the beginning and the end of the vehicle shift. In order to check how the
scheme performs we compare the demand distribution and the offer distribution with a Sum-Of-Squares
metric (Kullback—Leibler divergence cannot be used here as the supports may be disjoints). This result is
expected and confirms that the privacy-preserving distributed optimization method we presented is efficient
to match demand and offer when constraints on the offer form a cartesian product of independent sets.

2.3. Optimal Lagrangian value as a coordination price enabling privacy

Lagrangian ) Distribute price Optimal decision given °
price )\(l) information price and constraints
3
uz( ) — w; ()\(’))
t : S t
Optimal decision given [ )
prrce and constraints
optimal
decisions
Swarm’s gradient
i 28— g i t
FFrica Ue " = U ()‘(l)) Qptimal decision given
update rice and constraints [ ]

A = 76 _ sy f ()\(i))

wr® = uz (M) ‘

.

Fig. 5. Architecture for the distributed convex optimization algorithm enforcing privacy for a swarm of smartphones. At each step of
the dual gradient ascent, a consensus variable is updated without the need for communicating the availability constraints of drivers on the
communication medium. The individual contribution to the group’s gradient update can also be perturbed so as to obfuscate them. This
privacy-preserving algorithm can be modified and track smooth changes dynamically as it is intrinsically iteratively converging to the
optimum. In this architecture, each phone locally computes the solution of a small size Linearly Constrained Quadratic Program which
provides each driver with an optimal decision while maintaining his personal availability constraints and preferences confidential.

One of the most interesting outputs of the optimization scheme we propose more A* than u*. Indeed, while
u* gives access to the fleet management, A* is a coordination signal in that it is sufficient to broadcast it to all
the vehicles involved in the fleet for them to individually change their planning and update the next price with
respect to which the fleet is going to coordinate. This result enables two important extensions to the scheme
we propose. Splitting by the dual leads to the formulation of a Lagrangian vector A*. For each time step,
(47 ,)n=1..n Projects a heatmap onto the discretization cells which optimally synthesizes the value that should
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be attributed to the different regions of the map so that drivers are optimally encouraged to meet the demand.
This price takes implicitely into account the availability of the agents through time and the points at which
they start and end their service. The optimal value in the dual A* is an optimal coordination Lagrangian price
that makes taking agents’ constraints implicit therefore eliminating the need for communicating them and
centralizing them in a single agency.

Theorem 1. Once A* has been found, no communication of constraints is necessary between the agents.
Proof 3. In proposition 6, it is sufficient for each agent c to find u: solution to the individual problem

T N N
2 2
L{!lel(’;%fC(/l ZZ[/ltnutn-i_o-fﬂ Mtn ]+ Zpt(ﬂ t+l,n_uf,n) . (7)

t=1 n=1 t=1 n=1

T-1

This sub-problem can be solved independently across agents and only depends on 1* and C€ for a given agent
c. An agent c therefore does not need any knowledge of other agent constraints, C¢ for ¢’ € C \ {c} which
thereby enforces the privacy of constraints.

Section 3 proves, using an analysis of the convergence of the algorithm we propose, that A* can be found
without any communication of the agents’ constraints.

Dynamic tracking. First, if the optimal solution changes slightly because of an unexpected variation of
the demand or the addition or deletion of agents from the system, a new optimal price will be devised once
the system has once more converged in the dual space that corresponds to the optimum in the primal space.
Using a dual splitting reformulation of a convex relaxation approximation enables a re-computation in real
time for the swarm of taxis. This allows adaptation to random variations and changes in vehicle availability.

Electric vehicles. Second, another interesting aspect is that constraints that are independent across ve-
hicles can arbitrarily be added to the system without a modification of the scheme. The corresponding
individual constraint set C¢ is updated if there is a modification of the properties of the vehicle indexed by
c. This naturally enables the optimization program to take into account constraints that entail the charging
of electric vehicle batteries. Electric vehicles having a more restricted action radius (sometimes referred to
as "range of anxiety"), the operators may want to take the corresponding additional availability constraints
into account. These constraints are naturally decoupled across vehicles as they only relate to periods during
which a given vehicle is not available for mobility as a service because it needs to be charged. Therefore the
procedure we present is naturally able to handle fleets of mobility as a service with electric vehicles.

Enabling coordination while preserving privacy. We therefore showed how separating block indepen-
dent constraints coupled in the objective by the dual is a technique that entails a natural privacy preservation
mechanism. The most significant outcome of the dual splitting method is the formulation of an optimal
Lagrangian multiplier A* which enables agents to coordinate their response to the demand while respecting
their own availability constraints. The following section proves that convergence towards A* is robust and
can occur without the need for the agents to communicate their constraints at any iteration of the privacy
preserving convergence algorithm we devise.

3. Analysis of convergence and algorithm

One of the main objectives of this article is to build a clear analysis of the convergence properties of the
method to provide runtime guarantees useful for practical implementations. This analysis can be conducted
in a generic manner for any problem that can be interpreted as an optimal dispatch and therefore we will use
generic notations in order to emphasize this aspect.

We prove the convergence of this algorithm based on the properties of gradient ascent methods described
in Rockafellar (1997); Bertsekas and Tsitsiklis (1989) which needs no broadcasting of the constraints of the
agents as explained in Figure 6.

3.1. Primal formulation as a consensus problem

We first reformulate the convex program above that resulted from applying a convex relaxation to the
initial optimal dispatch problem.
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We flatten the demand matrix (d; ), 7,y in Which 7 is the temporal indexing of the demand intensity
and n its spatial index. The demand intensity is from hereon renumbered as (di);— _7xn. The primal opti-
mization program obtained after convex relaxation can now be rewritten as follows:

Generic main primal problem:

TxN 1 C 1 C
muin [Z Uk (dk ~c Z uk,c) + Ie Z Ie (uc)}

st Vce(l...CY, u.eC¢ k=1

Penalizations corresponding to failing to match the demand are represented by the family of strongly con-
vex functions (£x(-))ge(1..7xn) from R onto R. By construction, all the elements of the family of regularizing
functions (r:(*)) (1. yy from R? onto R are strongly convex.

Practical computational issues for naive approaches. Such a problem, with strongly convex objectives
and strictly feasible convex constraints can be solved in a generic but non-scalable manner by standard opti-
mization solvers. A key point in the present article is to develop specific algorithms which efficiently leverage
the structure of problem (8). For general ¢ (-) and r. () satisfying the equations above, standard solver will
require too much memory for a single computer to handle as soon as C > 10° and T x N > 10. Therefore we
want to find a strategy that distributes this problem across several machines. Note that numerous cities in the
US have exceeded this number by a lot given the size of their fleet.

Privacy related issues. We also consider that the constraints u. € C° of each agent ¢ should not be broad-
cast as they are privacy sensitive. This does not have implications on the formulation (8) of the problem
but will be essential in the algorithms to solve it. Let u* be the solution of the minimization problem (8).
The optimal program u’ € R? of each agent also contains sensitive information and has to be difficult for an
adversary to estimate (the meaning of this statement will be explicitly defined later in the article).

The dual splitting reformulation we propose offers the double advantage of offering a scalable method to
solve the problem which as a byproduct does not requires the sharing over a network of individual agents’
constraints.

3.2. Distributed optimization

This section introduces additional variables before using a dual reformulation that manages to split the
problem with respect to the number of agents. As the number of vehicles, C, is the largest scale factor in
the problem, it is the most suitable axis for parallelization. We leverage independence between blocks of
constraints to render a low-memory and privacy preserving algorithm.

3.2.1. Introduction of additional variables
For each k € {1...d}, let z; € R?. The optimization problem now reads

TXN 1 C
min ; O (i) + o ; re (ue)

stYce{l...C}, u. € C,.
1 C
Vke{l...TxN},zkzdk—EZuk,,,

c=1

We form the Lagrangian with T X N real dual variables (Ax)ie(1..7xn; corresponding to constraints Yk €
{1...T XN}, z =di— % chzl uy.. Slater’s conditions hold with the assumptions above (see Boyd and Van-
denberghe (2004) for details). Minimization and maximization can therefore be swapped in the Lagrangian.
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This proves that problem (8) is equivalent to
TXN TXN

c c
max m1n [Z O (z) + zye + ; Ak (—dk c Z ) é Z] Ie (uc):|

stde RPN e RPN yee(l...C}, u. € C°

3.2.2. Block constraints and distribution of min operators

This formulation solves our need for parallelization across agents as the operator min with respect to each
Zx and each u.. Indeed, z and u are decoupled and the constraints u,. € C¢ are independent by assumption. The
independence of constraints among the agents is consistent with the fact that these are considered private.
Now, considering the Fenchel-Legendre transform

O (Ap) = sup I (zi) + A2k

zZ%€ER

of ¢, (+), one has
TN TN

2}1@ kZ_:‘ C (zp) + kg = — kz_; (=)

Also, denoting TS C* the cartesian product of the constraint sets,

c c
. 1 T 1 : T
min c El/l uc+rc(uc)—6 élumelél/l ue +1(uc) .
c= c=

uellC ¢

This proves that problem (8) is equivalent to

TN 1 C
5 T _ : T
mjlx [— kZ:‘ G (=) —Ad+ C ] Ifnelél A u. +r, (uc)} .
= ps

We can now appreciate how the constraints can be taken into account independently one from another.
In particular, this will split the memory requirement for a gradient method based numerical resolution in the
algorithm presented below (Algorithm 2).

3.2.3. Extended value regularization functions

For each ¢ € {1...C}, let 7, () the extended value function that equals r. (#.) whenever u. € C. and
+0o0 otherwise. With the assumptions above, r.(-) is proper, closed and lower semi continuous. It is not
differentiable in general but is strongly convex by assumption. Let o its strong convexity constant. Generic
convex analysis (see Rockafellar (1997) for details) allows us to show that the Fenchel-Legendre trans-
form of rL( ), denoted rL( ) is differentiable and has a Lipschitz gradient with constant 1 . It is also triv-
ially convex. For any ¢ € {1...C}, the strong convexity assumption on r. also guarantees uniqueness of
u (1) = argmin, o )T u. + r, (u.) where 2* is the unique solution of problem (8) (see Boyd and Vanden-
berghe (2004) for details).

3.2.4. Formulating an optimal price
The problem (8) is now equivalent to the unconstrained minimization below.

Dual split reformulation:

TN C
1
. * T %
min f (1) = min LZ] G+ A+ §_l (- A)} ®)
For each k € {1...T x N} we denote L; the Lipschitz constant of the gradient of £;(-) and m; the strong

concavity constant of the function. As in Rockafellar (1997), £; (-) has a Lipschitz gradient with constant i

and is strongly convex with constant le Therefore, f is strongly convex with constant m = ,Z:XIN LLk and
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has a Lipschitz continuous gradient with constant L = ZZ:X]N t + % ZLC:] UL The strong convexity property

shows in particular that there is a unique price vector A* that synthesizes the information contained in the
common objective and the constraints. Indeed, if agent c is given A* it is sufficient for it to individually solve
miny ec, 9T ue + 1o (u,) in order to retrieve the optimal action « that contributes to the overall objective
best. In particular, this shows privacy sensitive constraints do not have to be shared with other participants
in the system. Also, this problem is much less memory consuming to solve as only one constraint set corre-
sponding to a single agent needs to be considered. Moreover, for a given value of A, the sub-problems can be
solved independently in parallel. This shows that this reformulation is privacy preserving, is computationally
tractable and scales with respect to the number of agents being dispatched.

3.2.5. Holistic deterministic gradient descent

Gradient descent and momentum methods are both straightforward ways to minimize f in practice. We
have Vf (D) = = X0 V& (—0) +d - £ $&, Vi (-D).

Usual theorems for differentiating maxima of functions (see Bertsekas (1999) for details) give, V¢ €
{1...C}, V&." (A) = u (- 2), therefore

TN 1 C
VI ==Y VG +d =5 ) ul (D) ©)
k=1 c=1

From Rockafellar (1997), we know O (log (ﬁ l)) iterations are sufficient for the distributed gradient based

&

algorithm below (Algorithm 2) to achieve an € precision in the value of the function we are trying to minimize.

Algorithm 2: Holistic distributed gradient descent

Data: Constraints (Cc)ee(1..c)» target d € RV
Result: Optimal dual price (argmin g f (1))
decide on initial value 1@ € RT*V,

for i — 1 to maximum number of steps do
broadcast 1)

compute optimal response u;. (A(i))

5 | broadcast u} (/l(i))

AW N -

6 | gather and compute concatenated u* (/l(i))
7 compute 20D = 10 — Oy f (/l(i))
8 end

Theorem 2. Algorithm 2 solves the dual split problem without requiring the drivers to communicate their
constraint sets. At any step i, the only communication needed from agent c is u* (/l(i)), which does not involve
the constraint set C.. Only the local computation of that optimal response by the agent required knowledge
of the agent’s constraints.

Proof 4. With regularity and strong convexity assumptions above, gradient descent in algorithm 2 converges
at an linear rate towards 1* and therefore Theorem 1 completes the proof.

3.2.6. Parallelism with respect to the agents

Let us precisely describe here how computation of the gradients are based on independent calculations
by the agents. Indeed, calculating Vi,  (-1) = u;. (1) is the only point where agents’ constraints are to be
taken into account and they are completely decoupled here. In particular, if each agent computes this step
locally, it does not have to give any information about its individual constraints to others. This means that
the reformulation above yields an intrinsically privacy preserving gradient method which does not require
individual constraint to be communicated or centralized at any point.
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3.3. Privacy preservation through obfuscation: approach and architecture

In the procedures above, the aim of enforcing the confidentiality of individual’s constraints has been suc-
cessfully achieved. This section will focus on obfuscating information that would help infer those indirectly.
It is now a supplementary privacy-preserving measure that complements the privacy preservation of drivers’
constraints.

Objective for privacy preservation through obfuscation: Obfuscation has to protect each agent’s opti-
mal program, u(1*), from an opponent that is eavesdropping on the broadcast channel.

A first obvious solution is to de-identify the vectors i, that are communicated to other agents so as to
compute the new value of A. Indeed, computation of A is aggregated with respect to all individuals so as
long as each i, is included once and only once in the process, the result is not changed. In the follow-
ing we will consider a safer procedure that obfuscates the individuals’ programs by adding white noise to
communications.

Optimal decision given

Consensus (7,) Distribute price price and constraints
price )\ information
Constramts
Obfuscating noise
@ Smartphone
Iocally
solves LCQP
Optimal decision given [ )
price and constraints
Constraints
Obfuscating noise % Smartphone
) : n locally
Swarm’s gradient solves LCQP
Price * (i) T+ Optimal decision given t
update price and constraints

¢ ; Constraints
AGHD) — 36 _ Vf ( (z)) \Q Obfuscating noise -

& Smartphone
~(0) _ .6) @) locally
U =Ue Vg t solves LCQP

Fig. 6.  Obfuscated distributed convex optimization algorithm enforcing privacy for a swarm of smartphones. Noise is added to
outbound communication from the smartphones in order to obfuscate individuals’ information related to the trajectories while enabling
an accurate gradient update as the gradient is computed as an average across agents.

3.3.1. Stochastic privacy model

The specific approach chosen is to protect against a man-in-the-middle attack Bishop (2004) which oc-
curs in the system that allows the opponent listens to any broadcast message Agrawal and Srikant (2000);
Sweeney (2002). We further assume that this adversary has a perfect ability to re-identify message senders.
Algorithm 2 is interpreted as a survey in which, at each iteration i, all agents are queried for their optimal
action u;, (/l(i)). Agents do not have to send out their personal sets of constraints, C°, for the dual optimum
A" to be estimated. However, they send out vectors u. (4) which correspond to the optimal series of actions
to undertake with respect to a given signal vector A. This information is considered privacy sensitive as it
can help infer the agents’ trajectories. Therefore, one considers a framework close to that of Warner (1965),
in which participants in a survey are reluctant to give out personal data. It is possible here to leverage the
averaging behavior of the dual gradient in order to compute the common optimum of the whole community
without jeopardizing individual’s privacy.

Consider iteration i of Algorithm 2, the set of optimal programs being broadcast is u]. (/l(i)). The attacker

can keep these messages in memory and then compare them with ] (/l(i)). Although messages have been
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de-identified, we consider the attacker can break that protection. In the example below, smartphones are the
fundamental computational nodes of the procedure. An adversary can target a given device and listen to its
outgoing messages with perfect knowledge of the home address they are being sent from. We assume that the
only ability the attacker does not have is accessing the computations inside the nodes that enclose individual
constraints. This assumption is standard in a man in the middle attack scheme Bishop (2004).

3.3.2. Noise obfuscation of broadcast
Adding artificial noise to communicated data is a powerful tool used in differential privacy for databases in
Dwork et al. (2006b,a); Domingo-Ferrer et al. (2004); Sarathy and Muralidhar (2011) and in filtering Le Ny
and Pappas (2014) for example. Inspired by this work, we design an algorithm where, instead of sending
w' =y (/l(i)), agent ¢ broadcasts
2 =@ 4y (10)
in which the d-dimensional white noise sequences (vﬁ.’))iec are all mutually independent and have variance 1°
for each of their d components. This framework where only blurry observations of the gradient are available
has also been studied in Duchi et al. (2013). The approach presented here diverges in that it intrinsically
leverages the effect of having distributed processors taking part in the computation of the gradient. In par-
ticular a high value of C is core to obtaining good precision and at the same time privacy enforcement, as in
many stochastic approaches to privacy.

3.3.3. Learning rate on personal information
In this setting, the system itself cannot be trusted and there is competition between the speed at which the
community discovers A* and the rate at which a spying statistician can learn individual information. This

attacker is trying to estimate u ” based on a series of i observations ( ED) for a given agent c that
Jetl...i}

is targeted as an individual. Classically, when trying to estimate a vector from a series of linearly perturbed
measurements, empirical mean estimators or Kalman filters yield a Mean Squared Error (MSE) that will scale
proportionally to the variance T x N7?. Therefore we assume the attacker’s estimator for «*” is unbiased

() @ 2 TXNipPk . . . .
u; = —— where « is a constant that depends on the estimation technique

adopted by the adversary and vy it’s learning rate.

The most favorable case for the attacker occurs when the sequence (u ( *(/)) oy remains constant. The law
of large numbers guarantees a convergence rate y = 1 for the empirical mean estimator. Thus, from hereon,
we will assume y < 1.

The privacy enforcement criterion here is that the MSE of the estimator of the attacker remains above a
certain lower bound k. This implies the optimization program has an iteration budget

2\
o :(d"” ) . (11)

Kmin

3.3.4. Noisy descent
The privacy enforcing strategies below aim at converging towards an optimal scheduling price A" faster
than the attacker increases its precision in the estimation of u;.

A strategy to preserve privacy in the distributed gradient computation is to run the deterministic holistic
descent above with noisy broadcasts from the agents. The update of A in the descent becomes A7) =
AD — sOV f (/l(i)) where

TxXN

C
Vf(19) = Zw* (-10) +d - é wy (-19).
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Recalling that {[z(’) =@+ as v is a white noise whose variance trace is 7 x N2, E [W (/l(i))] =
V(A7) and

2
S+ By 12

]E[”W(/l(“)”z] < a2l -
where Apoy = L= Y% L + L ¥ Land B | = B0yp2,

k=1 my c=1 o, hol = C

These considerations lead to the following "obfuscation by the crowd" theorem.

Theorem 3. The precision that can be reached in terms of MSE for the numerical Lagrangian multiplier
while obfuscating the agents’ actions is inversely proportional to the size of the fleet.

. . . o a2\ o
Proof 5. Using the notation m = ¥ mL‘ if one uses step size sV = (m (2# + 1)) , after i iterations of the

noisy holistic descent,

) ZBZ TXN 2L
E[f) - f)] < ——2— <2 €7 (13)
L (2 + i ) m
Aot

As we defined L as a function of the average of ‘TL among the agents ¢ € {1...C}, L is indeed independent
from the size of the fleet we consider.

It is noteworthy that the fact that the constants in this bound are sensitive to 7 and N does not change the
conclusion regarding the role of the number of agents, C, which, as it increases, offers better opportunities
for privacy enforcement by obfuscation.

4. Numerical results

The efficiency of these algorithmic and theoretical contributions to fleet allocation optimization is con-
firmed by numerical work conducted with on actual data collected in New York for Uber ride requests.

4.1. Data

Within the data set used consisting of Uber ride requests in 2014, we chose a random day, April 7th, to
illustrate the properties of our algorithm with actual demand measured in Manhattan for Uber rides extracted
by Flowers (2016). Drivers constraints where simulated at random with a start time picked uniformly at
random through the day and an end time picked uniformly at random within the reminder of day after the
start time. We divided the day into 24 one hour periods and aggregated the demand within these time bins.
We also discretized the spatial space of the city with a tessellation grid of size 16 X 16.

4.2. Convergence towards a distribution of vehicles tracking the demand

We now demonstrate that our approach is effective with field data and is able to match the spatial and
temporal distribution of demand for mobility as a service with the offer. We illustrate this with two different
fleet sizes of 10 and 10* vehicles in Figures 7 and 8 respectively. The first set of plots in the former show
that the offer tracks the demand in the planning that the algorithm has converged to. In the later we show
how a simple map of A* can be interpreted as a price multiplier and formulates a coordinating scalar map
that protects the privacy of drivers. In the figures below, we focus on normalized distributions of offer and
demand as our algorithm is used with different fleet sizes which naturally leads to different absolute levels of
offer. In particular we check that the distribution of vehicles the algorithm converges to does match that of
the demand for rides. This is indeed observed in Figure 7 which confirms the theoretical guarantees of the
previous section.
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Quantized density Uber ride requests (1 hour intervals) Fleet density optimized under driver availability
and network connectivity constraints (1 hour intervals)

Demand distribution at hour 13. Veh. distribution at hour 13.
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Fig. 7. Best viewed in color. Numerical results of our privacy preserving demand tracking algorithm for April 7%, 2014, optimizing
for 1000 vehicles. The vehicles belonging to the mobility on-demand pool obey to availability constraints. We also take into account
the desire for drivers to minimize the distance they travel. The resulting optimized distribution of vehicles (number of vehicles per
cell normalized by the total number of vehicles available) accurately tracks the distribution of demand for ride requests (number of ride
requests per cell normalized by the total number of ride requests). Comparing the left and right columns shows the ability of our solution
to track the demand for rides with the distribution of vehicles despite hard constraints on the offer in terms of available drivers. The
constraints make a perfect match impossible but we find the closest solution given the variable and limited supply of drivers.
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Lagrangian price signals (1 hour intervals) Fleet density optimized under driver availability

and network connectivity constraints (1 hour intervals)

Price multiplier at hour of day: 16
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Price multiplier at hour of day: 18
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Fig. 8. Best viewed in color. Numerical results of our privacy preserving demand tracking algorithm for April 7%, 2014, optimizing for
10000 vehicles. We show here that one of the most compelling outcomes of the dual-splitting approach is the convergence in the dual
space towards a Lagrangian variable that can be interpreted, after renormalization, as a price multiplier. On these two series of plots
one can appreciate how a single signal broadcast to all the devices leads to a scalable convergence of the fleet towards a distribution that
tracks the multiplier. Note that the price multiplier drives the fleet towards locations where it is higher.
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This section focuses on showing the robustness of the scheme with respect to noise added in the broadcasts
as in equation (10). Adding different Laplace noises in multiple gradient descents as in Figure 9 shows that
the scheme we present is robust to perturbations. Indeed, the randomness in distributions of L, norm between
offer for rides and demand does not explode as the noise becomes higher in variance. On average over 20
experiments there is indeed convergence towards an equilibrium.

Influence of number of vehicles, noise scale = 0.01
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Best viewed in color. On these plots, we show how adding noise to the gradient descent in the dual, therefore making it

stochastic, does not hamper the convergence towards an optimal Lagrangian price and therefore a optimal matching between offer and
demand. These curves show how, with different Laplace noise magnitudes and different fleet sizes, convergence to an optimal matching

of offer and demand still occurs.

4.4. Increasing the number of vehicles and obfuscation by the crowd

As demonstrated in the theoretical analysis of privacy through obfuscation, the higher the number of
vehicles, the higher the number of iterations the stochastic gradient method can go through without revealing
too much of the actions the vehicles will undertake. We test the implications of the analysis in a numerical
experiment in which we increase the number of iterations linearly with the number of vehicles in the fleet as
prescribed in (11) for the worst case scenario of y = 1. Figure 10 shows how with a higher number of vehicles
the supplementary number of iterations does enables quite a substantial improvement. This improvement is
not only due to the higher availability of cars as the L, distance between offer and demand steadily decreases
until the end of each gradient method we present.

4.5. Influence of the model parameters

The previous paragraph demonstrated that the method we present is able to reach an optimal schedule in
spite of only being allowed to compute a limited number of gradient method steps to preserve privacy. It can
be observed on Figure 7 that if we only use 1000 vehicles the tracking of the demand by the agent presence
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Fig. 10. Best viewed in color. On these curves we show the convergence results on single runs for a variable fleet size. With a larger
fleet size, the obfuscation by the crowd of the information entailed in the messages shared to conduct the stochastic gradient method in
the dual space allows for a better matching between offer for rides and demand.
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probability is only approximate. In this section, Figure 11 shows that this matching of offer with demand
can be improved as soon as we consider more vehicles (2000 in this paragraph). Indeed, as we increase the
number of vehicles, more degrees of freedom are available and demand for rides can better be answered. The
remainder of this section therefore focuses on three questions that still need to be answered. First, we need
to characterize the influence of the number of spatial cells. After that, we will analyze how the number of
discretization time steps influence impacts the convergence towards a solution. A third concern we address
is that of being able to compute a solution at a speed adapted to the time discretization resolution. We show
that coarser models allow for faster computation of a less accurate solution. We also demonstrate that over-
simplification is not necessary as we are able to compute a solution in less seconds than there is time in a
time step with a fined grained model. In this model, spatial cells are only the size of a few city blocks and
time steps only have a duration of 15 minutes.

4.5.1. Influence of the spatial discretization granularity

In Figures 8, 7, 11, a discretization grid with small cells was used. More precisely, each cell is 0.41 km
wide and 0.93 km tall.

A finer spatial discretization resolution is problematic in two aspects. As we target the average predicted
demand, if fewer observations are available for an element of the state-space of the demand, more noise
impacts our estimates. Also, the scale needs to be adapted to the dimensions of the city as we need each
discretization cell to feature at least one street for it to be practically used by the drivers. As in Figure 1,
some cells in central park only feature a single street and most cells only comprise of 10 city blocks.

Considering a coarser spatial discretization will have two positive effects on the solution that will be found.
The estimates for demand will be more robust because we will leverage more information for each cell. The
computational burden will also be lighter for each sub-problem that needs to be solved in the distributed
algorithm we design. An obvious negative effect will obviously be the illusion that the problem is easier to
solve when it fact this is only a direct consequence of using a less detailed model. The convex problem we
solve with a coarser spatial grid at the level of each individual agent is by definition less complex but the
schedule we obtain fits the demand profile less accurately.

In Figure 12, we indeed show that we converge faster with a discretization grid that is ten times as coarse
than the initial grid we used.

4.5.2. Influence of the temporal resolution

The influence of the temporal resolution is similar, from an accuracy and computational complexity stand-
point, to that of the spatial scale. Figure 12 clear demonstrates that it is much faster to converge with a so-
lution with coarser time steps. This solution will only be adapted to a coarser approximation of the demand
unfortunately.

Based on the empirical observations presented in Donovan and Work (2015), the mode of the pace in New
York is 8 minutes for a single mile. A temporal resolution of 15 minutes is therefore reasonable choice given
the characteristic time needed by an agent to traverse a fine spatial cell blocks in the presence of congestion.
This means practically that from the point of the model, a given agent will be unlikely to “jump” over a
spatial cell in less than a time step.

4.5.3. Computing a solution fast enough to be consistent with the temporal resolution of the model

Another critical aspect of the influence of the temporal resolution is related to an implicit computation
speed requirement which is necessary to compute solutions for them to be relevant to the time steps of the
optimization we are attempting to solve.

Having chosen a time step of 15 minutes, we need to be able to find a solution to our optimization problem
in less than 900 seconds for it to be even relevant if unexpected perturbations to the demand require a quick
re-computation of the solution. Figure 12 shows that the finest model we consider is solved in less than 900
seconds.

This result demonstrates that implementing the scheme on smartphones while providing on-line adaptation
capabilities is feasible. Indeed, as only 400 Amazon EC2 CPUs were used in the experiment featured on Fig-
ure 12 and a general purpose convex optimization solver was employed to solve the agent-level optimization
problems in the multiple steps of the algorithms. The large number agents plays a favorable role here. Our
algorithm being scalable with respect to the number of vehicles, if more agents are present, using more CPU
cores (practically the drivers’ smartphones) will be sufficient. Moreover, more averaging of artificial privacy
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Fig. 11. Left: comparison of the offer initially computed with the demand for rides. Right: comparison of the offer obtained after 10
steps of gradient method with the demand for rides. After 10 iterations of the gradient method we introduced, the availability of 2000
vehicles considerably improves the quality of the solution we find to match the demand for rides. The discretization is here hourly, and
the spatial scale as fine as an area representative of a few streets. The results were computed for April 9th 2013.

enforcing noise will occur in the algorithm and the convergence will be more stable. One EC2 Compute Unit
offered for rent by this service provider runs on commodity hardware and is the equivalent CPU capacity of a
1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor. Showing that we can allow for each of these to support 5
agents in Figure 12 and yet be able to compute a solution in less than 15 minutes therefore indicates that this
scheme can be use to have a reactive distributed control scheme supported by the smartphones of the drivers.
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Fig. 12. Influence of the discretization resolution, in space and time, on the convergence speed of the distributed privacy preserving
algorithm. In this experiments, 2000 vehicles are considered and only 400 Amazon EC2 CPUs are used. Here, even with additive noise
on communications (privacy preserving Laplace noise with scale 0.1) the schedule can be optimized with a fine spatial resolution and
temporal resolution of 15 minutes in less than 5 minutes. This implies that, even with a very detailed model, we can recompute solutions
fast enough to adapt to unexpected conditions.

Therefore, with the method we propose, drivers can use a simple smartphone and do not need to com-
promise with information they want to remain private to optimize their actions as a group. The group will
however be able to optimize its actions in less than 15 minutes and react to changing conditions. This ad-
vantageous property is ultimately a consequence of the approximate model we used whose assumptions are
closely tailored to the operational setting of MaaS.

Conclusion

After a statistical characterization of the spatio-temporal structure of demand for MaaS in New York, we
devised a CIQP to optimize the response to that demand while taken drivers’ availability constraints into
account. In order to make solving this problem computationally tractable and more tailored to the fact that
MaaS companies such as Uber or Lyft do not directly control their drivers, a convex relaxation version of the
problem has been used. Using the dual splitting approach paved the way towards a procedure to optimize
the demand response that scales with the number of drivers and does not require them to communicate their
availability constraints at any point, thereby enforcing strong privacy standards. The method formulates an
optimal price multiplier akin to that of Uber or Lyft (so called “surge” or “primetime”) that has the distri-
bution of the fleet converge to a global optimum. A thorough theoretical analysis of the convergence of the
dual gradient ascent algorithm we presented proved that the scheme was reliable, robust to perturbations and
thereby enables an obfuscation of the optimal driving program that becomes more efficient as more drivers
join the fleet. Indeed, the stochastic version of the gradient ascent Nemirovski et al. (2009) obfuscates the
advised probability of presence of vehicles in order to protect the privacy of the users of the system in the
occurence of an man-in-the-middle attack. Our theoretical contribution shows that this strategy converges to
the initial optimum with an arbitrary precision provided enough drivers are involved in the optimization. This
analysis of learning rates is different from pre-existing work in Duchi et al. (2013); Chathuranga Weeraddana
et al.; Wainwright et al. (2012) and highlights the power of the crowd as a privacy preserving mechanism
thanks to a thorough comparison of the convergence rates of the crowd and the attacker. Such strong theoret-
ical guarantees are crucial to provide practitioners with an accurate estimate of their computational time. The
theoretical analysis is generic enough to give guarantees for an entire class of constraint separable problems.
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