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Abstract
A general class of macroscopic traffic flow models describing traffic dynamics on transportation networks is presented, with

emphasis on the formulation of the junction problem. The type of admissible waves generated at junctions under the
formulation proposed and their impact on vehicle energy consumption are described.
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1. Introduction

Macroscopic traffic models date back to the 1950s with the seminal work of Lighthill and Whitham (1956) and
Richards (1956), who introduced one of the first scalar macroscopic traffic models. Later on, non-scalar models were
introduced, to account for the existence of more complex phenomena (Papageorgiou et al., 1990; Aw and Rascle, 2000;
Zhang, 2002; Colombo, 2003; Blandin et al., 2011b). In the general framework of hyperbolic conservation laws, these link
models were extended to the case of net- works in Garavello and Piccoli (2006), see also Coclite et al. (2005); Colombo et
al. (2010). For energy efficiency applications and traffic consumption and pollution optimization, the ability of models to
accurately reproduce traffic patterns inducing spatio-temporal speed variations, and in particular higher-order traffic
phenomena such as stop-and- go waves, hysteresis patterns, as well as the emergence of waves at junctions, is of critical
interest. In this article, we extend state-of-art techniques for link and network macroscopic traffic modeling, and we propose
an integrated formulation for modeling traffic energy consumption at a macroscopic level. The contributions of this article
are the following:

* Corresponding author.

E-mail address: sblandin@sg.ibm.com

1877-0428 © 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the Program Committee
doi:10.1016/j.sbspro.2012.09.749



Sébastien Blandin et al. / Procedia - Social and Behavioral Sciences 54 (2012) 302 — 311 303

¢ Junction model for general phase transition model in the case of a Greenshields flux function: the Riemann
problem at the junction is formulated and a Riemann solver is constructed.

¢ Design of numerical scheme for network phase transition model: the modified Godunov scheme appropriate
for the link version of the model is extended to the case of a network.

» Analysis of a macroscopic consumption model: a link-level power consumption model is considered and
shown to provide good results on test network Riemann problems solution.

The rest of the article is organized as follows. Section 2 presents the phase transition model in the case of a Greenshield
flux in congestion. A Riemann solver is described in details as well as a corresponding numerical scheme, the modified
Godunov scheme. Section 3 is focused on a formulation of a junction model for the phase transition model. One of the
main theoretical contributions of this work is the proof that under this formulation for the junction model, the phase
transition model on networks is well-posed. In Section 4, a functional for traffic energy consumption modeling is
considered for the solution to the phase transition model. Section 5 consists of numerical results based on the extension
to the modified Godunov scheme, for a test Riemann problem at junction. Conclusive remarks and extensions to this
work are discussed in section 6.

2. General phase transition model with Greenshields flux function: link formulation

The phase transition model of macroscopic traftic flow (Covomso, 2003) proposes to consider different systems
of conservation laws to model ditferent phases traffic flow. It was shown in Buanoin et al. (2011Db) that the phase
transition model could be generalized to an arbitrary flux function in the congested phase, and considered in this
phase as an extension to classical scalar macroscopic traffic models that accounts for heterogeneous driving behaviors,
see BLanom et al. (2011a) for an extensive description of model capabilities and numerical validation. In this section
we describe the instantiation of the general phase transition model used in this article, using a Greenshields flux
function (GrernsHIELDs, 1935) in congestion.

2.1. Model dynamics on a link

We model traftic phenomena as constituted of two phases, the free-flow phase 2 and the congestion phase Q.. In
free-flow, the traffic state is represented by the density of vehicle p. In congestion, the traffic state is represented by
the couple # = (p, p), where p denotes a perturbation. The system evolves according to a system of conservation laws:

Sp+ 8:(pv)=0 forp e
N =0 1
o + d:(pw) for (o, p) € Q. (1
dp+dpvy=0
where v denotes the speed of vehicles, defined as:
_yip) =V forp e Qy )
velp.p) = (1- =) (a(p—p) + 222 Y (14 p) for(pup) € 2.

In (2) V" denotes the free-flow speed, p., pmax respectively denote the critical, maximal density, and the parameter @
belongs to the interval [7 L,— 0[ in order to have a concave decreasing flux function in (p, p v) coordinates, for the
congested phase, in the case Where p = 0. The domains €, Q. denoting the free-flow, congestion phase respectively,
are defined as follows:

Qf = {(Pp) ‘ (p,P) € [Oﬁ[]max] X [Pﬂ,lh] aVc(P }7) = V 0 <P < PC+} (3)
Q= {(p.2) 10 p) € [0, pmas] X [P, pu] L velp.p) <V, £z < £ < 2o )
where p_, p, denote the bounds on the perturbation, and p., 1s defined by vy, per P/ pmax) = V-
We further impose g_ > T% to guarantee that, in the congested set €, the 1-Lax curves of the
fimaz —fe

0 AR

system are concave in (p, pv) coordinates.
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2.2. Riemann solver on a link

The Riemann problem for the system (1) is a Cauchy problem with piecewise constant initial condition:

u if x<0

u(0,x) = { (4

u if x>0

In the following we note u,, and u,,_ respectively the solutions to systems:

P fm P _ P

o Prmax - pm_

Vc(phpr) = vc(ﬂmspm)s Vc(pr,pr) = Vc(Pm,,pm,)»
The Riemann solver defined in Braxpm et al. (2011b) reads:

o Casel: u; € Q;and u, € Q;. The solution consists of a contact discontinuity from z; to u,.

e Case2: u € O, and i, € Q.. The solution consists of a 1-shock wave or 1-rarefaction wave from #; to u,, and
a 2-contact discontinuity from i, to u,.

e Case3: u; € 0. and 1, € . The solution consists of a 1-rarefaction wave from # to #, and a contact
discontinuity from u, to u,.

s Case 4. 1, € Oy and 4. € Q. The solution consists of a shock-like phase transition from #; to u,_and of a
2-contact discontinuity from u, to #,.

2.3. Modified Godunov scheme on a link

The modified Godunov scheme introduced in Cuarons and Goarmv (2008) 1s an extension to the classical Godunov
scheme (Gopunov, 1959), appropriate for the non-convex state-space £2,U€, . The derivation of the modified Godunov
scheme is as follows:

Resolution of Riemann problems defined by the datum of neighboring cells on the same link.

Identification of the neighboring cells for which the solution to the Riemann problem includes a phase transition.
Averaging of the solutions on spatial domains for which the solution belongs to a unique phase.

Sampling and projection of the computed solution onto the regular mesh.

We refer the interested reader to Charons and Goarix (2008) and Branpiy et al. (2011b) for more details on the modi-
fied Godunov scheme. The extension of the modified Godunov scheme to the junction problem for the phase transition
model, which 1s the focus of this article, 1s described in Section 3.2.

3. General phase transition model with Greenshields flux function: junction formulation

In this section we present the formulation of the junction problem for the phase transition model detailed in the
previous section, following CoLomso et al. (2010).

3.1. The Riemann problem at junction

For notational convenience, we introduce the following short form
A+ 8, f(u) = 0 (5)
for the phase transition model (1), where

{u:(p,p) and fwy=(pV.pl, it (p,p) ey,
u=(p,p) and fw)=(pvlp,p).pvlo.p)), if (p.p)e.

Following Garaverro and Precorr (2006), Definition 4,1.1, by road network we mean a couple (7, 7), where Fis a
finite collection of unidirectional roads and 7 1s a set of junctions. Each road is modelled by real intervals I; = Ja;, &,
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pv

0 pia R p 0 P Pio R p

Fignre 1. Nofafions nsed in the definition of the sefs Q:(n;0). 7 =1, ,n Left: n;p £ Qf Right:m;p £ 0

i =1,...,M, while each J consists of two sets fnc(J) < (1,...,M} and Out{) < (1,..., M) corresponding to
incoming and outgoing roads of J.
Fix a junction J and assume for simplicity that Ine(J) = {1,...,n}and Out{J) = n + 1,..., n +m}. A Riemann

problem at.7 is a Cauchy problem with initial data constant on each incoming and outgoing road:

{ e =1..... n+m. (€

uw(0,x) = ug
To construct an admissible solution we require the following properties:

(J1) 1t consists of waves with negative speed 1n meoming roads;
(J2) it consists of waves with positive speed in outgoing roads;
(J3) 1t conserves the number of cars at J.

3.1.1. Incoming roads: attainable values at the junction

To satisfy condition (J1), only waves with negative speed can be produced on mcoming roads. Thus, we determine
all states which can be comnected to an mitial state (to the right) by waves with negative speed. In particular, we
determine the maximum flux y*** that can be reached from an initial datum w;¢ = (p; . pio) by means of waves with
negative speed only.

We start describing the sets of fluxes corresponding to states that can be connected to w; 5 on the right using non
positive waves only. Let uy = (o, i) be the point in Q. defined by

Pn _ P
Pm pio’
Ve (um) =7

see Figure 1, right. The sets of reachable fluxes are then given by

P [D,[),!o V] ifll,!o =3 Qf:
O; (uz,O) {lO,Pﬂ’l VJ if U € £2c_-

fori =1,...,n The corresponding maximum fluxes are given by:

1 _Jpio Vot U € Qf,
7o) = {pm VooifugeQ.. (M

Proposition 3.1. Given an initial datum w; o on an incoming rvoad and ¥ € O, there exists a unique O £ Q such that
the Riemarm problem (u; o, Oy) is solved by waves with negative speed and (i) = 7.
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oV Py
F
fmax
jmin
0 po R p 0 Pm Pio R p

Figure 2. Notations used in the definition of the sets @ (u;0), j =n+1..... n+m Left ugp € r Right: u;o € Q.

Notice that @i, € Q@ iff ¥ = "™ (u; o), otherwise @i; € €, (see Figure 1).

3.1.2. Outgoing roads: maximal flux at the junction

To satisfy condition (J2), only waves with positive speed can be produced on outgoing roads. Thus we determine
all states, and the corresponding set of fluxes, which can be connected to an initial state u ;g (to the left) using waves
with positive speed. We introduce the fluxes F and ™ defined as follows (see Figure 2):

o F=p.V=p.,v.({p.y,p,)1s the maximal flux supported by the road;

o foruge € Q. M = M ug) = p"™ v ("™, p), where u™ = (™™, p™™) is the solution in Q. of the
system

o pe

pms T R

ve(u) = vo(ugg).

The sets of reachable fluxes are given by

_ [O’F] iflljgo E!}f:
O,(u,0) = { [0, /™= (u, )] ifug € Qp,

forj=n+1,..., 1 + m. Since the sets O, are convex, the corresponding maximum fluxes are defined accordingly:

ifllj!g c Qf,

ax F

Proposition 3.2. Given an initial datum u,y on an outgoing road and ¥ € Q, there exists a unique O; € Q such that
the Riemann problem (;, u,o) is solved by waves with positive speed and £y () = ¥.
Notice that i € Qrexceptifu;y € Q and; € [™"(u;p), /™ (o), where f™" = (w4 = p™" v, (p™0, pin),

where u™? = (™8 p™iny is the solution in €, of the system

pmin _ &
puin R

Vc(umm) =V (uj,O)-

3.1.3. The Riemann Solver at the junction
We construct a solution to (6) following the procedure introduced in Cocurre et al. (2005) for the LWR model.
First of all we need to define a suitable set of distribution matrices. Consider the set

A= {A ={@uha1, n e pem: O <ay <1V J Z a; =1 Vi}. )]

J=r+l
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Let {e;,...,e,} be the canonical basis of B*. Foreveryi=1,..., n, we denote H; = {e;}*. If 4 € A, then we write,

forevery j=n+1,....n+m a; = (an,...,a;) € R"and H; = {a;}". Let K be the set of indexes k = (f,.... k),
l<f<n-1,suchthat0 <k <k < - <k <n+mandforevery k € K define

:
Hk = m Hkh 5
h=1
Writing1 =(1,...,1) € B and following Cocurre et al. (2005) we define the set
th::{Ae:?{:leHlj foreveryke?(}. (10}

Notice that, if 77 > m, then 91 = §. In this case one can recover uniqueness of the solution introducing “right-of-way"
parameter as explained in GaraverLo and Precor (2009). The matrices of 97 give rise to a unique solution to Riemann
problems at .J, constructed as follows:

1. Fooamatrix 4 € 9 and consider the closed, convex and not empty set

/\={(n---%)eH[O,WﬁX]SA-(Vl,---,Vn)TE ﬂ[o,y;"ax]}. (an
i=1 J=n+l

2. Find the point (¥;, ..., %) € A which maximizes the function

E(y..... Vo) =1 et Y (12)

and define (yu.1. ..., Yugm)” = A (31, ..., y.)7. Since 4 € 9T, the point (11, .. ., ¥, is uniquely defined.

3. Foreveryi € {1,....n}, set 0y either by w;o if f1(u;5) = %, or by the solution to f;(u) = y: given by Proposi-
tion 3.1. For every j € {n + 1,....n+ m), set ii; either by u, g if f(u;) = y,, or by the solution to f; (u) = y,
given by Proposition 3.2.

3.2, Numerical scheme at the junction

We introduce a space step Ax and a time step Af, both assumed to be constant and satisfying the classical CFL
condition. We discretize each road I, [ = 1,...,i + m, involved in the junction with a mesh of size Ax: we set
xy=(k-1/DAxcfork=1,... N, and ¥ = nAt for n € N. Moreover we set x;;.1 2 = % + Ax/2, and we define the
cells Ch, = (I x [ k12, X1 5041 2[- Whose length is equal to Ax. In the followmng we will call u', the (approximated
value) of u = (p, p) at the point (#, %), and, by extension, in (O

We need to generalize the modified Godunov scheme introduced in CravLons and Goarm (2008) and described in
Branpm et al. (2011b) to handle the coupling at the junction.

At each time step, first of all we compute the maximized fluxes ) = y(¢"). I = 1,..., n+m, and the corresponding
conserved quantities 07, by using the procedure described in the previous Section 3.1.3, where we have taken u; 5 =
“?,N,- fori=1,...,n,andu;y = u, forj=n+l,...,n+m

Then, let v, denote the speed} of the phase transition (1f any) in the solution of the Riemann problem between uf
and ﬁf forfori = 1,...,n (respectively, between ﬁﬁ and u;‘_l for j =n+1,...,n+m). By construction, Vi, <0 for
[ =nandvi, = 0for [ >n Setting f?j\gﬂ/z = xﬁgﬂﬂ +v/,At for [ < n, respectively J?H}z = xff/lz +v) Atforl > n,

we can define the modified cells

T = W X [ ik ol forl<n,

X w1208 m 412

which have length A} = ff;(; respectively

_ e+l
Nz~ Yimeiee

+1 4l 1 1
1 = T x x5, forlsa,
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Figure 3. Notations used in the construction of the modified Godunov method at the junction. Left: incoming roads. Right: outgoing roads.

which have length Ax]', =71}, —x7,,. We can thus compute the averaging step on the modified cells as follows:

132 " M
+1 m+l o
AX[ 3 Wy = Avug, At(g(‘{n “zN’“z) Vi tr (V,n “st“z))

+ A (g (‘/11;1:—1 e uy g “i,M) =V Ur (‘/;,}\:,_1/2' Wy Wy ))

forl < n, and
AT = Acu)) - A1 (g (V?S_;2= w, “?2) ~ Vi3 R (V:;ﬂ’ Wi “Ez))
+ 80 (g0 07wy ) < 2 e (V60 )

for £ > n. Moreover, for all / < & (such that v, < 0) we define ujfj\,l+1 by

(L2 _)asMJrl/Z)l?.l/i;\];lH = At(g( Vi g U ) =V ug (ﬁf»“?,wﬂ) - ?;):
and for all / > » (such that v}, > 0) we define u;”l by

(%112 _xﬂ-,lfl)af,gl = —At(g( Vi ) Viy Ur ( iy ut g, ) ?11)

Finally, we apply the usual sampling technique to recover the approximate values on the original cells E?;; l<m

wan o if a0, max(—i‘pf— Vg1 o O]
uf]*\,} = ﬁ?}'\; if a, € ]max(T v},j bl +min(5% Vi, O (13)
u?,;\;ﬂ if 4y € [1 +1’H1]’1(E_?;1 J‘I!O)F 1[ .

. +
respectively on 6:1 , 1> n, where

if a, €]0, max(—_.,— V5. 0)]
ufjl = ui"irl if a, € ]max(m— V1. 0), 1+m1n(—p,— V20 O (14)
ull if g, el +mm(ﬁ,— R ORI([E

4. Power consumption model

In this section we consider the modeling of traffic energy consumption from vehicles, using the solutions to the
system of conservation laws (1) describing the phase transition model.
The power consumption associated with the dynamics of vehicles (Smarson, 2005) can be modeled as the sum of
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the power losses due to aerodynamic and rolling drag, and the power spent on vehicle acceleration and hill-climbing:

dv
p(vs E) = Paero + Proit + Pace + Pt (15)
dv
= kaeru v o+ kroli v+ kacc v E + khl’il v (16)

where k. = 0.5 dCp 4 with dthe air density, C the drag coeflicient, 4 the frontal area of the vehicle, koy = Cram g
with Crg the rolling coetlicient, m the mass of the vehicle, g the gravitational acceleration, k.. = k,, m with k,, a factor
due to rotational inertia of the power-train, and ky,;; = mg Z with Z the grade. In the following we consider the case
of a flat road without wind, hence the last term in equation (15) disappears and the speed corresponds to the vehicle
speed. We compute the average power for a stretch of road [«, 5] at time ¢ as follows

1 dv
Pl (£) = Py Jj P(V(I, x), %(r, x)) ot x) dx (a7
which can be computed from v(-, -) given by the solution of the phase transition model, and using the equality
dv By oy av
dt = ot ox’

Since the phase transition model implicitly models infinite acceleration (existence of shock waves), in the following
section, we illustrate the power consumption results on the first two components of the power consumption.

5. Numerical results

In this section we present the modeling abilities of the network phase transition model on a Riemann problem.

5.1. Experiment selting

We consider the case of a junction with 2 incoming links and 1 outgoing link, of 1 mile each. The fundamental
diagram parameters are as follows:

o Link 1 (incoming): ¥ = 90 mph, R = 600 vpm, o = 120 vpm, o7 = 114 vpm, o, = 138 vpm.
e Link 2 (incoming): ¥ = 30 mph, R = 200 vpm, o = 40 vpm, o_ = 38 vpm, o, = 46 vpm.
o Link 3 (outgoing): ¥ = 60 mph, R = 400 vpm, o = 80 vpm, o-_ = 76 vpm, o, = 92 vpm.

For physical considerations, in the remainder of the article, we represent the state in density-velocity coordinates,

where the velocity is computed from the state variables (p, p) using the expression of the velocity function (2).
We consider the following Riemann datum for the junction:

(280,29) if i=
(pr,v)(E = 0,x) = 1(93,10)  if i
(187,19) if i

1
2 (18)
3

with the units being vehicles per mile (vpm) for density and miles per hour (mph) for speed.

3.2. Numerical solution to network phase transition model

The value of the solution to the Riemann problem (18) at the junction, computed according to the numerical
scheme defined in Section 3.2, with 100 space cells for each link, is represented at time 7' = 2 minutes in Figure 4.

The waves composing the solution to the Riemann problem (18) at the junction, according to the Riemann solver
introduced in Section 3.1, have the following traffic interpretation.

According to the initial datum defined in (18), the sum of the incoming flows equals 9050 vph which is greater than
the maximal allowable flow on the outgoing link, computed as equal to 4201 vph according to equation (8) second

309
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Figure 4. Solution to the Riemann problem at junction at time T = 2 minutes, represented in density (top row) and speed (bottom row) coordinates.
A 1-shock wave emerging from the junction is visible for the incoming links (left and middle columns), whereas a 2-contact discontinuity propagates
on the outgoing link (right column).

case, and its illustration on Figure 2, right. In other words, in this case, the traffic supply downstream of the junction
1s lower than the traffic demand upstream of the junction. The maximal flow through the junction is thus defined from
the supply side as the maximal allowable flow on the outgoing link 4201 vph, which, given the assignment matrix
A = (1,1) for the case of 2 incoming links and 1 outgoing link, induces the respective junction flows 3981 vph and
220 vph on incoming links 1, 2 respectively.

The state arising at the end points on the incoming links due to the flow constraint at the junction can be computed
using the well-posedness constraints detailed in Section 3.1.1 for the incoming links, and illustrated for the case of
congestion in Figure 1, right. In this case, a state with density p = 455 vpm. speed v = 8.5 mph arises at the
downstream end of link 1, and a state with density p = 177 vpm, speed v = 1.9 mph, arises at the downstream end of
link 2. On these two links, a 1-shock wave propagating backward is created.

On the outgoing link, the interaction between the junction flow and the initial condition induces a 2-contact
discontinuity, which propagates forward on the outgoing link without changing the speed profile on that link.

5.3. Power consumption resuit

In this section we present the results of the power consumption associated with the numerical solution to the
Riemann problem (18) at the junction, based on the power consumption model defined in (15).

We consider the following values for the consumption model parameters: d = 1kg/m®, Cpd = 0.583m?,
m = 1465kg, g = 9.8m/s*, Car = 0011, k, = 1.1. The numerical results for the spatial density of power con-
sumption are illustrated in Figure 5.

For the outgoing link (solid line), one may note the increased power consumption after time ¢ = 3 minutes, due to
the propagation of the 2-contact discontinuity and the resulting increased flow of vehicles. In the case of link 1 {dashed
line), the consumption drops suddenly with the propagation of the 1-shock wave, which causes both a decrease in flow
and a decrease in speed. A similar phenomenon occurs for link 2. For all links, in this case of low speeds, the rolling
drag losses are significantly larger than the aerodynamic losses.
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Figure 5. Average Power consumption for link 1 {dashed line), link 2 (dot-dashed line), link 3 (solid line) for the power due to acrodynamic losses
(left) and rolling drag (right).

6. Conclusion

In this article we proposed a formulation for modeling network junctions in the context of the general phase
transition model applied to a Greenshields flux function. The Riemann solver for the junction is constructed and a
corresponding numerical scheme extending the modified Godunov scheme for the link formulation, is introduced.

Leveraging the ability of the model to propagate ditferent types of waves (shocks and rarefactions existing in
scalar models, but also contact discontinuities, phase transitions specific to this model) we numerically compute
power consumption at a macroscopic level.

Extensions to this work include the construction of the Riemann solver at the junction for other flux functions
applied to the phase transition model, and the consideration of bounded acceleration macroscopic models consistent
with the general phase transition model in order to capture power consumption due to acceleration patterns.
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