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Abstract—This article demonstrates the ability for model-
free reinforcement learning (RL) techniques to generate traffic
control strategies for connected and automated vehicles (CAVs)
in various network geometries. This method is demonstrated to
achieve near complete wave dissipation in a straight open road
network with only 10% CAV penetration, while penetration
rates as low as 2.5% are revealed to contribute greatly to
reductions in the frequency and magnitude of formed waves.
Moreover, a study of controllers generated in closed network
scenarios exhibiting otherwise similar densities and perturbing
behaviors confirms that closed network policies generalize to
open network tasks, and presents the potential role of transfer
learning in fine-tuning the parameters of these policies. Videos
of the results are available at: https://sites.google.com/view/
itsc-dissipating-waves.

I. INTRODUCTION

Traffic congestion is a severe problem in road networks
across the world. In the United States alone, the cost of traffic
congestion was estimated to be 305 billion USD in 2017,
costing the average driver in large cities around 2000 USD.
Developing new road infrastructure provides a natural means
of coping with the ever growing demand for mobility, but
is expensive and time consuming, rendering it infeasible in
most situations. Instead, considerable research in the area of
intelligent transportation systems (ITS) has been performed
to achieve a more efficient road usage, thereby increasing
the capacity of road networks. This has led to significant
improvements in traffic control methods such as traffic signal
control, ramp metering, variable speed limits, and adaptive
cruise control (ACC).

Over the past years, RL has led to a considerable amount
of successes in performing control and strategy-driven tasks,
such as playing Atari games at superhuman levels [1], and
outperforming champions in the challenging strategy game
Go [2]. This has prompted researchers in the transportation
community to apply RL techniques on a multitude of in-
telligent transportation system tasks including traffic signal
timing [3], [4], [5], ramp metering [6], [7], and variable speed
limit control [7], [8].

Recently, RL has also been used in conjunction with
state-of-the-art microscopic traffic simulations tools to train
automated vehicles to improve traffic conditions through ve-
hicle to vehicle interactions. In [9], [10], automated vehicles
were trained using deep RL to improve system-level traffic

flow conditions in a variety of closed and looped network
settings, where the actions of a single vehicle can quickly
propagate and affect the performance of all other vehicles
in the network. In a variable length ring road, for instance,
an RL agent with only local observability and controlling
approximately 5% of automated vehicles learned to success-
fully dissipate stop-and-go waves within the network, thereby
allowing the human-driven vehicles to travel at their optimal
speeds. However, the applicability of the proposed controllers
to open, as opposed to closed, network traffic scenarios is
not addressed. This discrepancy is important, as it unclear
whether a small percentage of automated vehicles interacting
in a setting where they have significantly less control can in
fact improve traffic.

The present article expands on the work described in [9].
The key contributions of this article are as follows:
• Using deep reinforcement learning, this article presents

a traffic control strategy that may be employed by a
series of connected automated vehicles to dissipate the
effects of stop-and-go waves on open single lane road
networks. This controller succeeds at eliminating nearly
all stop-and-go waves in simulation with as little as 10%
automated vehicle penetration.

• We also demonstrate that, through deep reinforcement
learning, control strategies developed to improve traffic
conditions in closed networks can be transferred and
fined-tuned to handle realistic open network problems.

The remainder of the article is organized as follows. Sec-
tion II provides an overview of RL and transfer learning, and
discusses characteristic features differentiating the formation
and propagation of stop-and-go waves in closed and open
networks. Section III outlines the RL and transfer learn-
ing problem formulation for dissipating the formation and
propagation of stop-and-go waves in open straight highway
networks. Finally, Section IV presents the findings and results
of a number of computational experiments conducted over
various automated vehicle penetration rates.

II. PRELIMINARIES

A. MDPs and reinforcement learning

Reinforcement learning problems are generally studied as a
discrete-time Markov decision problem (MDP) [11], defined
by (S,A,P, r, ρ0, γ, T ), where S ⊆ Rn is an n dimensional
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state space, A ⊆ Rm an m dimensional action space, P :
S × A × S → R+ a transitional probability function, r :
S → R a bounded reward function, ρ0 : S → R+ an initial
state distribution, γ ∈ (0, 1] a discount factor, and T a time
horizon. For partially observable tasks, which conform to the
interface of a partially observable Markov decision process
(POMDP), two more components are required, namely Ω, a
set of observations, and O : S × Ω → R+, the observation
probability distribution.

In a Markov decision process, an agent receives sensory
inputs st ∈ S from the the environment and interacts with
this environment by performing actions at ∈ A. The agent’s
actions are defined by a stochastic policy πθ : S × A →
R+ parametrized by θ. Common policies used in continuous
control tasks include artificial neural networks with multiple
hidden layers [12] and recurrent neural networks capable of
storing internal memory from previous states [13], [14].

The objective of the agent is to learn an optimal policy:

θ∗ := argmaxθη(πθ) (1)

where η(πθ) =
∑T
i=0 γ

iri is the expected discounted return
across a trajectory τ = (s0, a0, ..., aT−2, sT−1), s0 ∼ ρ0(s0),
at ∼ πθ(at|st), and st+1 ∼ P(st+1|st, at), for all t. In the
present article, these policy parameters are iteratively updated
using policy gradient methods [15].

B. Transfer learning between MDPs

Transfer learning techniques in reinforcement learning
provide methods of leveraging experiences acquired from
training in one task to improve training on another [16].
These tasks may differ in the agent-space (the observation
the agent perceives or the actions it may perform), and in
the MDP-space (such as the transition probability P). For
instance, in the classical cartpole control problem, where
a cart moving left and right attempts to balance a pole
vertically, the task may be modified in the second stage of
training by increasing the gravitational force applied to the
pole. Common transfer learning practices include sharing
policy parameters θ and state-action pairs < s, a, r, s′ >
between tasks. For a survey of transfer learning techniques,
we refer the reader to [16], [17].

C. Stop-and-go waves in closed and open networks

The present article studies traffic control in the context of
microscopic (car-following) models, where the dynamics of
each individual vehicle of index α in a network is described
by ordinary and delayed differential equations of the form:{

dhα

dt = vl(t)− vα(t)
dvα
dt = f(hα(t− τ), vα(t− σ), vl(t− κ))

(2)

where f is an acceleration equation, vα(t) is the speed of the
vehicle, hα(t) is its headway with the leading vehicle l, and
τ , σ, and κ are time delays. These models form the basis for
the transitions of the MDPs studied in this article.

The optimal performance of a system of human-driven
vehicles following a homogeneous car-following model is

characterized by its uniform equilibrium flow. At this equi-
librium, all vehicles in the network move at a constant speed
v∗ and with constant spacing h∗, such that:

f(h∗, v∗, v∗) = 0 (3)

Highway traffic does not naturally remain within its uni-
form equilibrium flow, but rather experiences the formation
of backwards propagating waves sometimes causing part of
the traffic to come to a complete stop. This behavior is
often attributed to inherent instabilities in human driving
dynamics. Specifically, linear string stability formalizes how
small disturbances brought about by lane changes, noise, etc.
propagate to vehicles upstream and expand until a jam is
formed [18].

Numerous articles have studied the nonlinear traffic prop-
erties of the formation and propagation of stop-and-go waves
in the context of closed-network ring roads [19]. Considering
a system of homogeneous vehicles in a closed single lane
highway of variable length, the authors of [20] deduced the
existence of two Hopf bifurcation points for densities in
which the uniform flow equilibrium loses stability. These
findings denote the existence of stable “stop-and-go” limit
cycles within closed networks of certain densities. This is
further illustrated in [21], in which field experiments per-
formed with 22 vehicles in a 230 m ring road demonstrated
the formation of traffic jams, even in the absence of external
perturbations to the network.

Closed-network analysis of microscopic traffic dynamics
such as the ones described in the previous section have
shaped the way we attempt to counteract stop-and-go traf-
fic; therefore, an understanding of the transferability of the
subsequent designed controllers to open network traffic is
paramount. In terms of the MDPs these networks produce,
the primary disparity arises from the assumption of periodic
boundary conditions at the start and end of the highways,
whereby the state of the last vehicle in the network affects the
actions of the first. The relaxation of this boundary condition,
coupled with the concept of convective stability which asserts
that traffic waves can only travel upstream [22], negates
the existence of stable stop-and-go dynamics in finite-length
open networks, as any wave that forms eventually propagates
out of the network. Instead, persistent congested patterns
within convectively unstable open networks is attributed to
periodic perturbations brought about by bottleneck structures
such as on-ramps, lane closers, etc. [23], [24]. This results
in a problem that is more difficult to solve than the one
experienced in closed network geometries, and accordingly
highlights the potential benefits of originally generating con-
trol strategies in closed network settings and attempting to
transfer the knowledge.

III. EXPERIMENTAL SETUP

In this section, we present an experimental setup for
studying the effect of mixed autonomy on open networks via
deep RL, and building on recent studies [9], [10], propose
similar ring road representations of the problem to assess
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Fig. 1. Open network highway network of length 700 m and
inflow rate 2000 veh/hr with an on-ramp of inflow rate 100 veh/h.
Perturbations from the on-merge lead to the formation of stop-and-
go waves. CAVs with a centralized controller are trained via RL to
dissipate these waves.

Fig. 2. Closed network highway of length 1400m with 50 vehicles
and a 700 m controlled region. Periodic perturbations are induced to
vehicles near a fixed point, mimicking the effects of an on-merge.
A centralized controller issues commands to CAVs only within a
controllable region.

the transferability of control strategies generated for closed
networks.

A. Problem setup

This article is concerned with the problem of mixed-
autonomy traffic stabilization: specifically, how a small per-
centage of automated vehicles stabilize stop-and-go traffic in
congested highways networks.

1) Network configuration: A scenario is proposed to study
the effects of automated vehicle in open networks that exhibit
stop-and-go behavior (see Fig. 1). This scenario consists
of a single-lane highway network with an on-ramp used to
generate periodic perturbations to sustain congested behavior.
The scenario is characterized by a variable highway length
Lh in which the system dynamics are influenced by the
presence of automated vehicles, as well as highway and
merge inflow rates, denoted by qh and qm respectively. For
the purpose of this study, the following network parameters
are used: Lh = 700 m, qh = 2000 veh/hr, qm = 100 veh/hr.
Note that the on-ramp inflow rate is much smaller than the
primary highway inflow rate, and is designed to be a fixed
source of perturbations rather than a realistic on-ramp inflow.

2) Human-driven vehicles: The longitudinal dynamics of
human-driven vehicles in the network are provided by the
Intelligent Driver Model (IDM) [25], a microscopic car-
following model in which the accelerations of a vehicle α
are defined by its bumper-to-bumper headway hα, velocity
vα, and relative velocity with the preceding vehicle ∆vα =
vl − vα, via the following equation:

f(hα, vl, vα) = a

[
1−

(
vα
v0

)δ
−
(
s∗(vα,∆vα)

hα

)2]
(4)

where s∗ is the desired headway of the vehicle, denoted by:

s∗(vα,∆vα) = s0 + max

(
0, vαT +

vα∆vα

2
√
ab

)
(5)

where s0, v0, T , δ, a, b are given parameters calibrated to
model highway traffic [26]. In order to simulate stochasticity
in driver behavior, exogenous Gaussian noise of N (0, 0.2)

is added to the accelerations, calibrated to match findings in
[27].

3) Automated vehicles: In order to model the effect of
p% CAV penetration on the network, every 100

p th vehicle
is replaced with an automated vehicle whose actions are
sampled from a centralized (single-agent) RL policy.

4) Observations and actions: The observation space of
the learning agent consists of locally observable network
features. This includes the speeds vi,lead, vi,lag and bumper-
to-bumper headways hi,lag, hi,lag of the vehicles immediately
preceding and following the automated vehicles, as well as
the ego speed vi of automated vehicle i.

The action space consists of a vector of bounded accel-
erations ai for each automated vehicle i. In order to ensure
safety, these actions are further bounded by failsafes provided
by the simulator at every time step.

In an open network, the number of vehicles, and ac-
cordingly the number of automated vehicles, fluctuates as
vehicles enter and exit the network; however, the RL agent
continuously issues a list of actions of fixed size n and
requests a list of observations of fixed size m. In order to
consolidate potential mismatches between the size of the
state/action spaces and the number of AVs, we use zero
padding.

5) Reward function: We choose a reward function that
promotes high system-level speeds. Let vi(t) and hi(t) be
the speed and time headway of vehicle i at time step t,
respectively. The reward function is defined as follows:

r = ||vdes||−||vdes−v(t)||−α
∑
i∈AV

max
[
hmax−hi(t), 0

]
(6)

The first two terms encourage proximity of the system-
level velocity to a desired speed vdes while maintaining a
positive reward value to penalize prematurely terminated
simulation rollouts caused by vehicle collisions. The second
term, on the other hand, is a penalty used to identify local
features of congested traffic (namely small time headways).
In order to ensure that this term does not affect the global
optimum, the penalty is ignored when time headways are
smaller than a threshold value hmax, and a gain α is used to
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Fig. 3. Left: In the absence of autonomy, waves form and propagate through the network without any regulation. Right: In the presence of mixed autonomy,
the automated vehicles learn to temporary reduce inflows by slowing down near the start of the network in order to prematurely terminate propagating
waves. In addition, the automated vehicles at times create safety gaps between themselves and the downstream wave.

diminish the magnitude of the penalty. For this problem, the
following constants are chosen: vdes = 25 m/s, hmax = 1 s,
α = 0.1.

B. Transfer learning from closed network policies

We wish to understand through deep reinforcement learn-
ing whether control strategies developed in a ring can be
transferred and fined-tuned to improve traffic in realistic open
network settings. In order to do so, a ring road setup similar
to the straight highway depicted in Section III-A1 is designed
(see Fig. 2). The ring has a circumference of 1400 m and a
total of 50 vehicles, approximately matching the densities
in straight highway simulations. In order to reconstruct the
effects of the on-merge, vehicles closest to an arbitrary fixed
point are periodically perturbed with a frequency equal to that
on the merge inflow rate Fm. Finally, in order to account for
variability in the number of AVs, observation and action data
in only acquired from and provided to automated vehicles
within a controllable region of length. In all other regions of
space, the AVs act as human-driven vehicles.

During the RL training process, automated vehicles are
initially trained in the ring road with the same actions,
observations, and rewards described. Then after a predefined
number of iterations, the network is replaced with the pre-
viously described straight highway network, and training is
continued.

C. Simulations

Experiments are implemented in Flow, an open-source
computational framework for running deep reinforcement
learning experiments in traffic microscopic simulators [9].
Flow enables the systematic creation of a variety of traffic-
oriented RL tasks for the purpose of generating control
strategies for autonomous vehicles, traffic lights, etc. All
results presented in this article are reproducible from the
Flow repository at: https://github.com/flow-project/flow.

Simulations are executed in the state-of-the-art traffic
micro-simulator SUMO [28] with simulation time steps of
0.2 s and a total duration of 3600 s. The RL agent is

provided updated state information and generates new actions
in increments of 1 s, with the actions repeated for the next
five consecutive simulation steps.

For all experiments in this article, we use the Trust Region
Policy Optimization (TRPO) [29] policy gradient method
for learning the control policy, linear feature baselines as
described in [30], discount factor γ = 0.999, and step size
0.01. For most experiments, a diagonal Gaussian MLP policy
is used with hidden layers (32, 32, 32) and a tanh non-
linearity.

IV. NUMERICAL RESULTS

We illustrate the results for CAV penetration rates ranging
from 0% to 10%. RL training runs for the various experi-
mental setups were executed over five seeds, with training
performance presented over all seeds. Moreover, excluding
Fig. 6, all reported performance values are averaged over
10 simulations in order to account for stochasticity between
simulations. Videos of the results are available at: https:
//sites.google.com/view/itsc-dissipating-waves.

A. Performance benefits of mixed autonomy traffic

Fig. 6 presents the effect of different CAV penetration rates
on key congestion performance factors. In terms of mobility,
we witness a 13% increase in throughput as the portion of
automated vehicles in the network increases from 0% to 10%,
with vehicles on average moving at almost twice the speed.
Moreover, in terms of energy efficiency, we see that stop-
and-go waves within the network as virtually eliminated at
penetration rates of 10%, with smaller penetration rates also
resulting in less frequent and smaller waves in the network.

B. Spatio-temporal dynamics of automated vehicles

Fig. 3, as well as the videos mentioned at the start of this
section, provide a spatio-temporal representation of the effect
of autonomy on the dynamics of the network. In the absence
of automated vehicles, perturbations induced by the on-merge
periodically result in the formation of traffic destabilizing
stop-and-go waves. This congestive behavior has a significant
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Fig. 4. The automated vehicle acts as a ramp meter in the controllable
region of traffic, effectively maintaining the density at approximately 0.36
veh/m. This strategy is less effective under smaller penetration rates.

effect on the number of vehicles passing through the network,
dropping the throughput from a free-flow value of 2000
veh/hr to an observed value of 1604 veh/hr.

In the presence of mixed autonomy, automated vehicles
near the left of the network slow down or stop in the
event of a formation of a wave near the merge, thereby
temporarily blocking off traffic from entering the network
and contributing to the propagation of the downstream jam.
For larger CAV penetration rates, this behavior occurs further
downstream, with the automated vehicles slowing down in
unison for shorter periods of time, resulting in fewer and
shorter lived waves in the network. Finally, once the upstream
jam is partially cleared, the automated vehicles then resume
regular safe car following behavior.

The learned policy for the automated vehicles share many
similarities with ramp metering. As can be seen in Fig. 4,
the automated vehicles succeed in regulating the density of
traffic in the straight highway below its critical value. This
control strategy is more stable at high CAV penetration rates.

Remarkably, the ramp metering and flow synchronization
behaviors discussed in previous paragraphs emerge in the
absence of knowledge on the location of the merge or any
existing stop-and-go waves. Instead, it is likely that the
centralized/single-agent structure of the problem allows ve-
hicles to coordinate actions whenever a lead vehicle acquires
jam-like observations such as small headways for heavy
fluctuations in speed. This demonstrates the potential of V2V
communication in mitigating traffic congestion.

C. Transfer learning performance

Fig. 5 presents the training performance of the RL agent
for an CAV penetration rate of 10%. Comparing the transfer
learning method mentioned in Section III-B against purely
training the RL agent in the straight highway, we find that the
policy learned on the ring road initially outperforms human-
driven dynamics in the straight highway network, thereby
acting as a “warm start” to the RL training process, which
then continues to optimize the controller parameters for the
straight highway. Notably, during the fine-tuning stage, we
do not see a sharp drop in training performance, which would

Fig. 5. RL training performance for a policy trained from a random initial
state (red) and a ring road policy (blue). The policy trained on the ring road
outperforms average human-driven dynamics on the straight highway.

indicate incompatibility of the ring road policy for the straight
road network. This suggests that the MDP structures pre-
sented in closed and open networks are sufficiently similar for
control strategies developed to be somewhat interchangeable.

V. CONCLUSION

This article presents a deep RL approach to generating
stop-and-go wave regulating controllers in realistic network
geometries. This method is demonstrated to achieve near
complete wave dissipation with only 10% autonomous pen-
etration. In addition, penetration rates as low as 2.5% are
revealed to contribute greatly to reductions in the frequency
and magnitude of formed waves. Finally, a study of con-
trollers generated in closed network scenarios exhibiting
otherwise similar densities and perturbing behaviors confirms
the transferability of closed network policies to open network
tasks, and presents the potential role of transfer reinforcement
learning in fine-tuning the parameters of these policies. In
future work, we hope to utilize this interchangeability to solve
much larger and numerically more difficult highway network
tasks from primitives learned on ring roads and single lane
merges.
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