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Abstract— The development and update of reliable Geo-
graphic Information Systems (GIS) greatly benefits Intelligent
Transportation Systems developments including real-time traf-
fic management platforms and assisted driving technologies.
The collection and processing of the data required for the
development and update of GIS is a long and expensive
process which is prone to errors and inaccuracies, making
its automation promising. The article introduces a method
which leverages the emergence of sparsely sampled probe
vehicle data to update and improve existing GIS. We present
an unsupervised classification algorithm which discriminates
between signalized road segments (as having a signal at the
downstream intersection) and non-signalized road segments.
This algorithm uses a statistical model of the probability
distribution of vehicle location within a link, derived from
hydrodynamic traffic flow theory. The decision of whether the
link has a traffic signal or not is taken according to model
selection criteria. Numerical results performed with sparsely
sampled probe data collected by the Mobile Millennium system
in the Bay Area of San Francisco, CA underline the importance
of the problem addressed by the article to improve the accuracy
and update signal information of GIS. They showcase the
ability of the method to detect the presence of traffic signals
automatically.

I. INTRODUCTION

Geographic Information Systems (GIS) store various types
of geographically referenced data. Accurate and reliable GIS
(such as NAVTEQ or OpenStreetMap) are needed for a
large number of applications in Intelligent Transportation
Systems (ITS): an accurate description of the geometry and
the features of the road network is necessary to develop real-
time traffic information systems [2], [9], routing [15] and
driver assistance technologies. The collection and processing
of data for GIS is an expensive and time consuming process,
making automated techniques desirable. Besides the cost
and time inefficiencies, traditional map developments and
updates are based on surveying methods and digitizing
of satellite images which lead to inaccuracies and sys-
tematic errors. The emergence of new technologies opens
new possibilities to increase the efficiency in developing
and maintaining reliable GIS, in particular in developing
countries where the infrastructure is evolving rapidly.

The use of GIS for ITS applications has attracted a lot
of interest in the computer vision and robotics community
to improve driver assistance technologies. For example,
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real-time video processing detection algorithms combined
with accurate GIS significantly improve the capabilities to
infer speed limitations [12]. Similarly, object recognition
algorithms based on image processing allow for the real-time
detection of traffic signals by intelligent vehicles [5]. These
algorithms can update existing map databases as intelligent
vehicles travel the network. The distributed nature of the
problem makes crowdsourcing approaches appealing as they
leverage information collected by a large number of vehicles
traveling on the road network.

GPS traces have generated significant interest in the
machine learning community, to lower the costs of producing
and updating digital maps while improving their accuracy.
In particular, GPS traces have been used to learn the map
network geometry using clustering and graph inference
algorithms [3]. In [14], data-mining approaches are used to
process GPS traces and refine existing digital maps to enable
safety applications, such as lane-keeping, and convenience
applications, such as lane-changing advice. However, high
frequency sampling GPS traces remain scarcely available to
the public, mainly because of privacy concerns, communica-
tion costs and limitation of the battery life of portable GPS
devices. Sparsely sampled probe data is still at the present
time the main source of geo-location data with the prospect
of global coverage in the near future. For these reasons, the
present article focuses on the use of sparsely sampled data
for digital map learning (vehicles are sampled on average
once per minute).

The potential of sparsely sampled probe vehicle data has
been demonstrated through the successful implementations
of reliable real-time traffic information systems on both the
highway and the arterial networks [2], [9]. We investigate the
use of sparsely sampled probe data collected by the Mobile
Millennium system [2] to improve and update existing digital
map databases: we study how this data can be used, in com-
bination with to the road network geometry, to automatically
detect the presence of traffic signals (traffic lights or stop
signs) at each intersection.

The contributions of the article are as follows. We develop
an algorithm based on hydrodynamic theory [11], [13] to
derive the probability distribution (pdf) of the location of
a vehicle on an arterial road segment. The presence of
traffic signals leads to the creation and dissolution of queues
upstream of signalized intersections. The model formalizes
the following intuition: vehicles are more likely to be located
where they experience delay, i.e. in the queue upstream of
a signalized intersection. We develop a statistical model to
learn the parameters of the pdf of the location of vehicles
and present an unsupervised classification algorithm which
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identifies whether there is a signal at the upstream end
of each road segment in the network. We define a road
segment (link) as the stretch of road between consecutive
intersections.

The rest of the article is organized as follows. In Sec-
tion II, we present the statistical model derived from hy-
drodynamic theory and derive the pdf of the location of
vehicles upstream of a signalized intersection. Section III
describes the unsupervised classification algorithm based on
model selection information criterion. We analyze the signal
detection potentials of our algorithm in Section IV using data
collected from the Mobile Millennium system in an arterial
network in San Francisco, CA including over 1,000 links. In
the reminder of this article, a link refers to a road segment
between successive intersections (signalized or not).

II. MODELING THE DISTRIBUTION OF VEHICLES
UPSTREAM OF A SIGNAL

The presence of traffic signals leads to the formation
of queues, which results in a non-homogeneous density of
vehicles along the link. The density of GPS measurements
received from probe vehicle sampled uniformly in time (even
with a low frequency) is expected to be higher close to
signalized intersections than far from the intersections. From
hydrodynamic theory, we derive a model which represents
the distribution of vehicles upstream of a signalized inter-
section and use this model to detect signal locations.

A. Flow model for arterial traffic

We model vehicular flow as a continuum and represent it
with macroscopic variables of flow, q(x, t), density, ρ(x, t)
and velocity, v(x, t). The conservation of vehicles leads to
a relation between these variables: q(x, t) = ρ(x, t)v(x, t).
Experimental results show another relationship, referred to
as the fundamental diagram [11], [13]. We make the standard
assumption of a triangular fundamental diagram. Upstream
of the traffic signal, queues form and dissipate periodically,
creating areas of the link of higher density, when considering
the temporal average. We define two discrete traffic regimes:
undersaturated and congested, depending on the presence
(resp. the absence) of a remaining queue when the signal
turns red. Both regimes are illustrated Figure 1.

Undersaturated regime: The queue fully dissipates within
the green time. When the flow arriving on a link is constant
(corresponding to a density ρa), the speeds of formation and
dissolution of the queue are constant and denoted va and w
respectively. The spatio-temporal region where vehicles are
stopped on the link is called the triangular queue (because
of its triangular shape). Its length is called the maximum
queue length, lmax.

Congested regime: There exists a part of the queue down-
stream of the triangular queue called remaining queue with
length lr corresponding to vehicles which have to stop
multiple times before going through the intersection.

Remark 1: The undersaturated regime is a special case of
the congested regime in which the remaining queue lr has
length zero. We present the derivations of the model for the

Fig. 1. Space time diagram of vehicle trajectories with uniform arrivals
under an undersaturated traffic regime (top) and a congested traffic regime
(bottom).

congested regime as it also includes the derivations for the
undersaturated regime.

B. Probability distribution of vehicle locations

We define the average density d(x) at location x as the
temporal average of the density ρ(x, t) at location x and
time t.

d(x) =
1

T

∫ T

0

ρ(x, t) dt

In practice, flow is never perfectly periodic, but we will
assume that the above averaging over a duration T is a good
proxy as long as T is of higher order of magnitude than the
cyclic dynamics imposed by the presence of a signal.

The density at location x and time t takes one of the three
following values, denoted (ρi)1≤i≤3: ρ1 is the density in
the queue, i.e. the maximum density ρmax; ρ2 is the density
in the queue release, i.e. the critical density ρc and ρ3 is
the arrival density ρa. The average density at location x is
d(x) =

∑3
i=1 βi(x)ρi where βi(x) represents the fraction

of the cycle time during which density is equal to ρi at x.
Upstream of the queue, the average density is the arrival
density ρ3. As the speed of formation and dissolution of the
triangular queue are constant, the average density increases
linearly in the triangular queue. Vehicles arrive and leave
the remaining queue at the maximum flow, corresponding to
the critical density. The speed of formation and dissolution
of the remaining queue are both equal to w. The average
density is constant upstream of the maximum queue length
(see [8], [6] for details).

When vehicles are sampled uniformly in time, the pdf
of observing a vehicle at location x is proportional to
the average density d(x), with the proportionality constant
given by Z =

∫ L
0
d(x) dx. The shape of the distribution

is fully determined by three independent parameters: the
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Fig. 2. Distribution of vehicle locations on the link as a function of the
distance from the upstream intersection (left: pdf, right: cdf).

remaining queue length lr, the triangular queue length lmax

and the normalized arrival density ρ̃a = ρ3/Z. The pdf of
vehicle location, denoted φL(x; ρ̃a, lmax, lr), is illustrated in
Figure 2, together with the cumulative distribution function
(cdf). It can be derived explicitely (see [8], [6] for details):

φL(x; ρ̃a, lmax, lr) = ρ̃a if x ≥ lmax + lr
φL(x; ρ̃a, lmax, lr) = ρ̃a + (lr+lmax)−x

lmax
∆ρ̃ if x ∈ [lr, lmax + lr]

φL(x; ρ̃a, lmax, lr) = ρ̃a + ∆ρ̃ if x ≤ lr

with ∆ρ̃ =
1 − ρ̃aL

lmax/2 + lr
,

where L denotes the length of the link. The expression
of ∆ρ̃ above, can be obtained easily by noticing that∫ L
0
φL(x; ρ̃a, lmax, lr) dx = 1.

C. Density estimation

The parameters ρ̃a, lmax and lr are learned by maximizing
the likelihood of the set of location observations (denoted
(xo)o∈O) collected from probe vehicles:

max·
ρ̃a,lr,lmax

∑
o∈O

ln(φL(xo; ρ̃a, lmax, lr))

s.t. 0 ≤ ρ̃a ≤ 1
L , 0 ≤ lr, 0 ≤ lmax,

lr + lmax ≤ L

(1)

The constraints are derived from the flow modeling: (a)
the arrival density is inferior to the average density on the
link, (b) the total queue cannot extend beyond the length of
the link and (c) the triangular queue and the remaining queue
must be non-negative. The constraints on the queue lengths
do not limit the generality of the model. Under spill-over
conditions (queue length extending beyond the upstream
intersection), we consider that the queue length extends up to
the upstream intersection, the rest of the queue is accounted
for in the upstream links. Bounds on the parameters can be
added to limit the feasible set and ensure the quality of the
results when little data is available.

Remark 2: The objective function is not concave in the
optimization variables. However, the search space is limited
(three bounded parameters) and we perform a grid search
followed by a local gradient ascent for the B best solutions
of the grid-search. We found that a very fine grid was
not necessary to provide good results, leading to efficient
computation times.

III. AUTOMATIC SIGNAL DETECTION

We present two algorithms based on the statistical model
derived in Section II to automatically identify the presence
(resp. absence) of traffic signals at intersections with model
selection criteria.

A. Detection based on a single link

The algorithm independently classifies each link of the
network as having a traffic signal at the downstream intersec-
tion or not. Under the hypothesis that there is a traffic signal,
we learn the parameters of the probability distribution by
solving (1) from location measurements xo sent by sparsely
sampled probe vehicles. For link i with length Li and
learned parameters ρ̃ia, l

i
max, l

i
r, the learned distribution of

measurements is denoted

ϕsig
i (x) = ΦLi

(x; ρ̃a, lmax, lr).

Under the hypothesis that there is no traffic signal, the
distribution of measurements is expected to be uniform on
the link and we denote

ϕno sig
i (x) =

1

Li
1[0,Li](x),

where 1[0,Li] is the indicator function of interval [0, Li].

B. Detection based on two consecutive links

Another possible approach to the signal detection is the
following. We consider two consecutive links i and j (with
link i upstream of link j), connected by an intersection. We
are interested in the detection of a signal at the downstream
intersection of link i. According to the density modeling
of Section II, we train two models representing the pdf of
vehicle location under the assumption that there is a signal
or that there is no signal at the downstream intersection of
link i.

Under the assumption that there is a signal at the
downstream intersection of link i, we learn the parameters
ρ̃ia, l

i
max, l

i
r using the measurements received on link i and

the parameters ρ̃ja, l
j
max, l

j
r using the measurements received

on link j. Let x denotes the distance from the upstream
intersection of link i on the stretch of road (i, j). The
parameters of link i (resp. link j) characterize the shape of
the distribution of measurements for x ≤ Li (resp. x ≥ Li).
The pdf of measurements on the stretch (i, j) is denoted
ψsig
i,j(x) and is given by

ψsig
i,j(x) = αi,jΦLi(x; ρ̃ia, l

i
max, l

i
r)1[0,Li](x)

+ (1 − αi,j)ΦLj (x− Li; ρ̃
j
a, l

j
max, l

j
r)1[Li,Li+Lj ](x)

The parameter αi,j represents the relative weight of the
measurements on links i and j. The maximization of the
likelihood with respect to αi,j leads to a closed form formula
for αi,j : the number of measurements received on link i
over the number of measurements received on links i and j
combined.

Under the assumption that there is no signal at the down-
stream intersection of link i, we consider links i and j as a
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single link of length Li+Lj . We learn the parameters of the
distribution of vehicle on this link using the measurements
received on both link i and link j. The parameters are
denoted ρ̃i,ja , li,jmax and li,jr and the corresponding pdf is
denoted ψno sig

i,j (x) and given by

ψno sig
i,j (x) = ΦLi+Lj (x; ρ̃i,ja , l

i,j
max, l

i,j
r )

C. Model selection

Whether we consider the distribution of vehicles on a
single link i or on two consecutive links i and j, the signal
detection problem amounts to a model selection problem.

For the single link approach, we decide whether ϕsig
i

or ϕno sig
i represents the distribution of measurements most

accurately. We learn the parameters characterizing ϕsig
i using

the probe vehicle data received on link i. The model ϕno sig
i

does not require fitting as it corresponds to a uniform
distribution of the measurements over the length of the link.
To select the model which explains the best the data, we
introduce model selection criteria as described below.

We are interested in choosing between models of different
complexity. Note that by model complexity, we refer to the
number of parameters required to specify the model. Various
criteria have been developed to trade-off between model
fit and model complexity. In general, increasing the model
complexity leads to a better fit, and thus a higher likelihood
but may overfit the available data. In the present article,
we use information criteria which penalize the number of
parameters to compare models with different numbers of
parameters.

Remark 3: The uniform distribution is a special case of
the parametric distribution function ΦLi

(x; ρ̃ia, l
i
max, l

i
r) for

which ρ̃ia = 1/Li. The parameters ρ̃ia, l
i
max, l

i
r are chosen

to optimize the likelihood of the training data under the
distribution ϕsig

i . The likelihood score for this distribution
will necessarily be higher than under the distribution ϕno sig

i .
To choose between the models, it is necessary to account for
the number of parameters of each of the proposed models.

For the two links modeling approach, both models require
fitting based on the available probe measurements. The
model ψsig

i,j has a higher number of parameters than the
model ψsig

i,j . The detection of the presence of a traffic signal
requires the use of appropriate model selection criteria.

The selection capabilities of three model selection criteria
are compared in the experiments: the Aikaine Information
Criterion (AIC), its correction for finite sample sizes (AICc)
and the Bayesian Information Criterion. The model selec-
tion capabilities of the AIC and the AICc have theoretical
motivations from Information theory [1], [4], whereas the
derivations of the BIC arise from Bayesian statistics [16].
The different criteria have an analytical expression given by:

AIC = −2 ln(Λ) + 2p,
AICc = −2 ln(Λ) + 2p n

n−p−1 ,

BIC = −2 ln(Λ) + p ln(n),

where Λ is the likelihood of the estimated model, p is the
number of model parameters and n is the data size. All

the criteria consist of the sum of the opposite of the log-
likelihood and a penalization term which depends on the
complexity of the model (number of parameters p) and on
the size n of the dataset used to train the model.

For the one link approach, the parameters of the model
with signal are ρ̃ia, limax and lir and thus p = 3. The
model without signal does not have free parameters: the two
parameters of the uniform distribution are 0 and the length
of the link and are not set based on the data. As for the
two link approach, the parameters of the model with signal
are ρ̃ia, limax, lir, ρ̃

j
a, ljmax, ljr and αi,j , and thus p = 7. The

model without signal is parameterized by ρ̃i,ja , li,jmax and li,jr
and thus p = 3

IV. RESULTS

A. Experimental setup

We apply the signal detection algorithm using data col-
lected by the Mobile Millennium [2] system in the Bay Area
of San Francisco, CA. The system collects several millions
GPS data points per day from probe vehicles reporting their
location at a given sampling frequency (typically about every
minute). The data used for the specific study presented
below comes from a sub-fleet of around 500 probe vehicles
collected on Tuesdays from 6 am to 10 am.

Remark 4: Numerical experiments have shown that the
assumption of uniform arrival rates and periodicity (Sec-
tion II) does not limit the decision capabilities of the
algorithm. For signal detection, the most important feature
is the detection of a queue which characterizes the presence
of a traffic signal (traffic light or stop sign). The numerical
analysis presented in the present article was also performed
on data collected during 15 consecutive days (all times of
day from January 1st, 2011 to January 15th, 2011) with very
similar conclusions.

B. Automatic signal detection

We filter the GPS measurements and match them on the
road network using a map-matching and path inference al-
gorithm [10] which combines models of GPS measurements
and drivers’ behavior into a conditional random field. The
road network geometry is given by the NAVTEQ digital map.
The derivations of Section II underline that the most impor-
tant feature of the pdf of measurements is characterized by
the presence (resp. absence) of a queue due to the presence
(resp. absence) of a signal. The presence of a queue is
characteristic of any signalized intersection. So far, the noise
in the data and the temporal aggregation of the data prevent
the model from distinguishing between traffic lights and stop
signs, which both induce queue and delay at the end of the
link. We classify the links according to whether they have a
signal (light or stop) or not at the downstream intersection.
We study a sub-network of San Francisco, CA of 1,172
links. The percentage of signalized links, as indicated in the
NAVTEQ database, is 54%. For each link of the network,
we use the classification algorithm to identify the presence
of a traffic signal. The decision of the algorithm is then
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compared with the signal label available in the NAVTEQ
database (Quarter 3, 2008).

In Section III, we investigated two different approaches to
identify the presence of a signal using data collected on the
link or on the link and the downstream consecutive link. We
also suggested different model selection criteria to classify
each link as being signalized or not. The results of all the
proposed approaches are summarized in Table I.

Confusion matrices are 2 by n matrices presenting the
counts of good and bad classifications for each class of
decision. In the present case, n = 2 and the two pobbible
decisions are signalized or non-signalized link. At first, the
results look disappointing with only around 70% of correct
classification. Furthermore, the results show an unexpectedly
high false-positive rate (e.g. 30.7% for BIC using two links),
i.e. a significantly large number of links for which the
algorithm detects the presence of a signal while the database
does not indicate the presence of a signal. The performance
of the one link models and the two links models are similar,
and so are the performance of AIC and AICc. We expected
the results of the AIC and the AICc to be similar as the
difference between the criteria tends to zero as the sample
size increases and most links received several hundreds of
measurements. The main differences are observed between
the AIC type criterion (AIC and AICc) and the BIC criterion.
The AIC approach leads to higher false positive rates, which
is not unexpected as BIC penalizes more the complex models
than AIC does.

The results reported in Table I are based on the validation
against a GIS which is also prone to errors. The confusion
matrices presented in Table I represent a quantitative com-
parison between the GIS labels (which contain some label
noise) and the labels provided by the algorithm for each of
the proposed approach (model with one or two links and
different model selection criteria). The analysis of the label
noise of the GIS is presented in the following section and
underline the importance of the automatic labeling approach.

C. GIS cleaning and update

We represented the empirical distribution of the measure-
ments and the models corresponding to the hypothesis that
the link was signalized or not. This qualitative analysis of
the results seemed to indicate that, for a large number of
the false-positive decisions, the model which was estimated
under the assumption that the link was signalized fit the
empirical data very accurately, whereas the model corre-
sponding to the assumption of a non-signalized intersection
did not capture the shape of the distribution. Figure 3 illus-
trates the fitting results on such a link, which the algorithm
classified as signalized whereas the database did not indicate
the presence of a signal. Figure 3 (left) represents the results
obtained with the one-link approach and Figure 3 (right)
corresponds to the two-link approach. We validated our
intuition that a signal was actually present using Google
Street View.

From the realization that some of the signalized intersec-
tions were not present in the map database, we decided to

TABLE I
CONFUSION MATRIX BETWEEN PREDICTION AND GIS INFORMATION

FOR THE TWO APPROACHES (ONE LINK OR TWO LINKS) AND THE

DIFFERENT MODEL SELECTION CRITERIA.

AIC - one link Prediction
Signal No signal

Actual Signal 508 125
No signal 241 297

AICc - one link

Actual Signal 506 127
No signal 237 301

BIC - one link

Actual Signal 384 249
No signal 149 389

AIC - two links

Actual Signal 551 82
No signal 276 262

ACCc - two links

Actual Signal 548 85
No signal 269 269

BIC - two links

Actual Signal 429 204
No signal 165 373
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Fig. 3. Pdf of measurement locations. The models learn the parameters of
the distribution under the assumption that there is a signal at the end of the
link or not. Left: One link model. Right: Two links model. The position
of the intersection of the two links is depicted by the vertical black line.
For both the one link and the two links models, all information criteria
accurately classify the link as having a traffic signal at the downstream
intersection.

do manual checks on the links which were classified (using
BIC on two links) as being signalized when the database
indicated no signal (false-positives). The manual checks
were performed using Google Street View. Among the 165
false-positives of the BIC-two links algorithm, 40% actually
had traffic signals, 17% had stop signs. More than half of
the false positives are in reality true positives. Among the
71 remaining links, 17% had specific features that explain
the false-detection such as (a) presence of a pedestrian
crossing at the downstream end of the link, even though
there is no actual signal, (b) complicated intersections or (c)
unnels in which GPS reception and cellular communications
are nonexistent or inaccurate. We illustrate some of these
cases (pedestrian crossing and complicated intersection) in
Figure 4. The authors acknowledge that a manual labelling
of the entire database would lead to stronger results but this
tedious process has not been performed so far.

V. CONCLUSION

The approach proposed in this article leverages the physics
of traffic to derive a statistical model representing the
distribution of vehicles on a link, depending on the presence
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Fig. 4. Illustration of the features of the downstream intersection of some
links detected as being signalized by the algorithm (false-positives).

(resp. the absence) of signalization. The model parameters
can be estimated using sparsely sampled probe vehicle data
which makes it very promising given the emergence of this
data at a large scale. The method is a first step towards
automate GIS updates for signal location. The algorithm
produces interesting result (more than half of the automatic
signal detections that were not recorded in the GIS database
correspond to real stop or traffic lights). Furthermore, exper-
iments with one week coverage data, were also satisfactory
enabling a periodic use of the solution to update and correct
a GIS, in particular in areas where the infrastructure evolves
rapidly such as developing countries.

This first step towards automate GIS updates and clean-
ing has the prospect to be improved and generalized by
taking into account additional features. For example, the
graph structure of the network structure can be leveraged
to improve the decision results e.g. at an intersection with
a light, all links are signalized and therefore a global
decision by intersection (and not by link) should improve
the robustness of the decision. Another possible extension
of the methodology regards the discrimination of stop signs
from traffic lights. Other information derived from sparsely
sampled probe vehicle data such as travel times should be
a mean to perform this discrimination more accurately than
the average density of measurements.
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