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Abstract— We consider the problem of estimating flow state
in real time in large-scale open channel networks. After
constructing a state space model of the flow based on the Saint-
Venant equations, we implement the optimal sequential impor-
tance resampling (SIR) filter to perform state estimation using
some additional flow measurements. The estimation method is
implemented using a model of a network of 19 subchannels
and one reservoir, Clifton Court Forebay, in Sacramento-San
Joaquin Delta in California and the numerical results are
presented.

I. INTRODUCTION

Data assimilation is the process of integrating observations
or measurements into a mathematical model of a physical
system, in order to estimate some quantities of interest.
Recently, data assimilation has provided rapid advances in
geosciences such as meteorology, occeanography and hy-
drology [1], [3], [4], [21]. Different methods for assimilating
data include variational data assimilation [5], filtering-based
methods [15], [23], [28], [33], [31], [34], optimal statistical
interpolation [27], or the Newtonian relaxation [18], [29].

Open channels are examples of the so-called distributed
parameter systems in which the dynamics of the system
can be modelled by a set of partial differential equations
(PDEs). For modelling the water flow in rivers and open
channels, the Saint-Venant equations, which are a set of first-
order hyperbolic nonlinear PDEs, are commonly used [11],
[2]. Solving the PDEs requires an accurate knowledge of
the boundary conditions, which are usually obtained from
measurements of sensors installed at appropriate locations.
Nevertheless, noise and inaccuracies in the measurements of
the boundary conditions, as well as modelling assumptions
(simplifications made to construct the mathematical model),
can lead to mismatch between the values computed by the
model and the actual state of the system. When additional
observations (measurements) of the system are available,
it is desirable to incorporate these measurements into the
model to reduce the mismatch between the values computed
by the model and the actual system throughout the whole
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domain of interest. Different state estimation methods can
be used to estimate the state of the system in real time
using available observations obtained from the system. In
distributed parameters systems, where the system is typically
high dimensional, it is important that state estimation meth-
ods with appropriate computational complexity are used so
that real-time state estimation becomes tractable.

In the last decade, sequential Monte Carlo methods, also
known as Particle Filters have attracted a lot of attention
among researchers and practitioners due to their generality
and scalability [16], [25], [7], [13], [14]. Particle filters can
be applied to nonlinear systems and they do not require
any Gaussianity assumptions on the noise. In particle filters,
the posterior probability density function is approximated
by a number of particles with their corresponding weights.
These particles are propagated forward and their weights are
updated at every time step. A larger number of particles
results in more accurate results while it increases the compu-
tational cost of the method. Nonetheless, particle filters have
shown to encounter different problems when implemented
on various systems. The most critical issue observed in
implementations of particle filters is the degeneracy problem
[14]. When degeneracy happens, almost all of the particle
weights vanish after a number of iterations meaning that most
of the samples get too far from the actual state of the system
and consequently they no longer contribute to approximating
the posterior density function. Different methods have been
developed to deal with the degeneracy problem among which
Sequential Importance Resampling (SIR) filter is a most
commonly used approach[22]. In the SIR filter, after each
time step, the density function is resampled so that the
samples with small weights are discarded and more probable
samples are duplicated according to their weights.

In the current article, using one-dimensional Saint-Venant
equations, we construct a state-space model of the flow in an
open channel network. Considering a case where we have ad-
ditional discharge measurements available at some locations
in the network, our goal is to incorporate these measurements
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into the model to improve the model results everywhere in
the entire network. Given the observation model is linear
and we assume the noises are Gaussian, we apply the optimal
SIR filter to perform the data assimilation. We implement the
method on a network of 19 subchannels and one reservoir
in Sacramento-San Joaquin Delta in California.

The rest of this article is organized as follows: In section
II, the one dimensional saint-Venant equations are presented
and a state-space model of the flow in a network of open
channels is constructed. In section IIl, we review the opti-
mal sequential resampling (SIR) filter. Section IV provides
information about the implementation of the method in a
network of open channels in Sacramento-San Joaquin Delta
in California and numerical results are presented. Finally, we
conclude the article in section V.

II. FLOwW MODEL
A. Saint-Venant Model

The Saint-Venant model is among the most common
models used for modeling the flow in open channels and
irrigation systems [11], [2]. In one dimensional case, Saint-
Venant equations are two coupled first-order hyperbolic par-
tial differential equations (PDEs) derived from conservation
of mass and momentum. For prismatic channels with no
lateral inflow, these equations can be written as follows [30]:

T—+—=0 )

2
Q. 9 (Q ) + %(ghcA) —gA(So—S;) @
for (z,t) € (0,L) x R, where L is the river reach (m),
Q(z,t) is the discharge or flow () across cross section
A(x,t) = T(x)H(z,t), H(z,t) is the stage or water-depth
(m), T'(x) is the free surface width (m), D = A/T is the
hydraulic depth (m), S¢(x,t) is the friction slope (Wm), S; is
the bed slope (Wm), g is the gravitational acceleration ("/s?)
and h. is the distance of the centroid of the cross section
from the free surface (m).

The friction slope is empirically modelled by the Manning-
Strickler’s formula [24]:
m?2 2P4/3
with Q(z,t) = V(x,t)A(x,t) the discharge across cross-
section A(z,t), P the wetted perimeter, i.e. the perimeter
of the wetted portion of the cross-section, and m the
Manning’s roughness coefficient (sm=1/3).
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In the case of sub-critical flow, the boundary conditions
are taken to be upstream flow Q(0,t¢) and downstream stage
H(L,t) or vice versa [24].

For channels with non-rectangular cross-sections, three
correction parameters, c, 1 and 7y can be introduced through
the following equations, A = oTH, P = (2T + H) and
h. = vH. These parameters are calculated based on the
average stage.

B. Discretization

‘We use the Lax diffusive scheme [10], [30] which is a first-
order explicit scheme to discretize the equations at internal
grid points. Using f to represent the state variables, () and
H, the derivatives become
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using traditional finite difference discretization notation, with
subscript ¢ for space and superscript k£ for time.

Applying this scheme to equations (1) and (2), we obtain
the following set of finite difference equations,
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This scheme is stable provided that the Courant-Friedrich-

Lewy (CFL) condition holds, i.e.

At

A:C|V+C’| <1 10)
where C' = /gD is the wave celerity and V is the average
velocity.

However, the equations above may only be used for
interior grid points. At the boundaries, these equations cannot
be applied since there is no grid point outside the domain.
Therefore, another method needs to be used to compute
the unknown variables at the boundaries. Here, we use
the method of specified time intervals to compute these
variables [10]. In this method, after computing the charac-
teristics, the boundary grid point is projected backward to
the previous time step along its corresponding characteristic
curve. After computing the variables at the projected point,
which is usually done by using linear interpolation, the
characteristic equations are used to compute the unknown
variable at the boundary grid point at the next time step.

C. Internal Conditions for Confluence in Channel Network

In order to apply this model to a channel network, it is
necessary to impose networked internal boundary conditions
at every confluence in the channel network. Here, the internal
boundary conditions constraints are briefly described for a
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Fig. 1: Tlustration of internal and external boundary conditions for a
channel network.

simple confluence as in Figure 4 which comprises three chan-
nels. The constraints corresponding to the internal boundary
conditions of stage and discharge are as follows:

H, =Hy,=Hj
Q1 =Q2+ Q3

where H;, H,, and Hs represent the stage in the cross
sections 1, 2, and 3, respectively, and @1, @2, and Q3 are
the discharge at the three cross sections. The first equation
is simply consistency of stage in all channels at the junction
and the second equation is just the conservation of mass at
the junction.

The discretized equations obtained from the Lax scheme
and the method of specified time intervals along with the
internal boundary constraints assembled to obtain a state-
space model for the entire network of interest, written in a
compact form as follows

(1)

where x; is the state vector at time k& which consists of
discharge and stage at all cells throughout the whole network
excluding the external boundary condition variables, and the
input vector uy contains the external boundary conditions.

Tk4+1 = f(xka uk:)

D. Stochastic State-space Model

The effect of modelling uncertainties, as well as inaccura-
cies in measurements of the inputs, are commonly considered
as an additive noise term in the state equations (11) to obtain
a stochastic equation

Trg1 = f(Tr, up) + v (12)

The noise vy is usually assumed to be zero-mean white
Gaussian and

Evl] = Qb

zo € R™ is the initial state which is also assumed to be
Gaussian and

13)

zo = N(Zo, Po) (14)

where T and Py are the initial guesses for state and error
covariance.

Similarly, the errors and uncertainties in the measurements
can be taken into account by adding a noise term to the
measurement model to obtain

Yk = g(xp, k) + e (15)

where ¢ is the function that relates the measurements to the
state vector and ey, is the measurement noise of the sensors
which is assumed to be zero-mean white Gaussian and

Elere] ] = Rl (16)

We also assume that the process and measurement noises
and the initial conditions are all uncorrelated.

III. OPTIMAL SEQUENTIAL IMPORTANCE RESAMPLING
FILTER

In Bayesian estimation, the goal is to recursively calculate
the conditional probability density function (pdf) p(zx |21k ),
where x;, is the state vector at time k and zi.; is the set
of measurements obtained up to time step k. Assuming the
initial state pdf p(zg) is known, the pdf p(zx|z1.x) may
be calculated recursively in two steps, prediction step and
update step. The prediction step uses the state-space model
to propagate the conditional pdf forward in time. In other
words, it calculates p(xg|2z1.x4—1) given p(xp_1|z1.k—1) via
the Chapman-Kolmogorov equation

p(Tr|21:6—1) =/P($k|ffk—1)p(fﬂk—1|21;k—1)d$k—1 17

In the update step, when the measurements z; becomes
available, the conditional pdf is updated using the Bayes’
rule

p(z)zr)p(Tr]21:0-1)
p(zk: Zl:k:—l)

p(Tr|21.8) = (18)

where

p(2k|21:6—1) = /P(Zk|$k)p($k|21:k—1)d$k (19)

While the above set of equations theoretically solve the
Bayesian estimation problem, analytic solutions are tractable
only in certain simplified cases, e.g. Kalman filter for linear
systems with Gaussian noise [20]. For more general cases,
different approximate solutions have been devised. Extended
Kalman filters [6], approximate grid-based filters, unscented
Kalman filters [19], [32], [17] and particle filters [13] are
examples of these approximate methods.

Particle filtering is a sequential Monte Carlo method which
calculates approximate solutions to the above equations for a
general case of nonlinear systems with arbitrary process and
measurement noises. The basic idea behind particle filters is
that the posterior pdf p(zo.x|21:1), Where zo., = {x;,5 =
0,---,k} is the set of all state vectors up to time k, is
approximated using a number of particles or random samples
with their corresponding weights (probabilities). In other
words

N,
p(wO:klZl:k) ~ Zwivé(x():k - CCE);A:) (20)
=1
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where z}, is the i™ sample and w}, is its corresponding
weight (the weights are normalized so they sum to one) and
Ny is the number of samples. The estimates are computed us-
ing the particles and their associated weights and the weights
are chosen using the principle of importance sampling [8].

A common problem with the sequential importance sam-
pling particle filter is the degeneracy problem. However, a
good choice of importance density can reduce the degeneracy
of the particles. In this work, we choose the importance
density q(zg|xi_,, 2;) to be

a(zp|zi_ s 2) = plarlzi_y, )
_ p(zrler, @ )p(@k|2)_1) @1)
p(’zk|x}<¢—l)

It has been shown [14] that this choice of importance den-
sity minimizes the variance of true weights, w;" defined as
wit = p(xi|z1.1) /q(xk|2 |, 2x) which in turn maximizes

N,
the effective sample size defined as Ny = —————.
P T TF Var(w}")
We assume the process and measurement noises are mutually
independent and independent identically distributed (i.i.d.)
Gaussian and

Vg—1 ™~ N(Oa Qk:—l)
ex—1 ~ N(0, R_1)

With this assumption, for systems with nonlinear dynamics
and linear measurement model

(22)
(23)

(24)
(25)

zp = fr(Tr—1) + vp—1
2 = Hpwy + ey

it has been shown that p(xk|:c§f_1, 2 ) is Gaussian [14], [12]
and

plek|zr—1, 28) = N(my, ) (26)
pzkler—1) = N (Hifu(xr-1), Qro1 + Hy R HY)  (27)
with
Bl = Quly + H B H
my = Sp(Qp 1 fr(@r—1) + H{ Ry 21)

With this choice of importance density, the weights update
equation simplifies to

(28)
(29)

w;c X wZ—lp(zk|$Z—1) (30)

—wi_, / R AR

In cases in which the degeneracy occurs even with this
choice of importance density, resampling can be done
whenever the effective sample size becomes too small [9].
In this resampling method, each particle generates a number
of duplicates proportional to its weight and particles with
small weights are discarded. A pseudo-code description of

3D

the resampling algorithm is provided in Algorithm 1.

Algorithm 1: Resampling Algorithm

(" wf, 9}, ] = RESAMPLE[{sf, wf }
Initialize the CDF: ¢; =0
for i =2 to N, do
Construct CDF: ¢; = ¢;—1 + wi,
end for
Start at the bottom of the CDF: ¢ =1
Draw a starting point: u; ~ U[0, N;!]
for j =1to N, do
Move along the CDF: u; = uy + N7 1(j — 1)
while u; > ¢; do
1=14+1
end while 4
Assign sample: 7" = z},
Assign weight: w], = N}
Assign parent: i/ = i
end for

Algorithm 2 illustrates particle filter with resampling

Algorithm 2: Particle filter with resampling

[y w12 ) = PRl{a_y w1y 2]
for i =1to N, do
Draw x ~ q(zy |z} _1, 21) = p(zk|T)_1, 2k)
Assign the particle a weight, wy,, using (31).
end for
Calculate total weight: ¢t ="
for i =1 to N, do
Normalize: w} =t~ w}
end for 1
Calculate Neff =

N,

i=

i
1 Wy

if Nt < Ny then

Resample using algorithm 1:

[{w} )~} ] = RESAMPLE[{, w}
end if

IV. IMPLEMENTATION

We consider a network of 19 subchannels and one reser-
voir in the southern part of Sacramento-San Joaquin to
implement the data assimilation methods. The Sacramento-
San Joaquin Delta, in northern California, is the hub of
California’s water system. This complex network covers
738,000 acres interlaced with over 1150 km of tidally in-
fluenced channels and sloughs and approximately 50 percent
of California’s average annual streamflow flows to the Delta.
Figure 3 shows a map of the Delta.
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TABLE I: The names and geometry information of the subchannels in the open channel network in Sacarameto-San Joaquin Delta in California used

for the implementations.

Channel River Length  Avg. width  Avg. depth Channel River Length  Avg. width  Avg. depth
1-2 Italian Slough 14198 234.0 14.0 8a9 Old River 5347 157.1 9.0
2-3 Italian Slough 2723 203.4 16.4 9-10 Old River 2456 109.0 11.7
2-5 Italian Slough 3227 4375 10.3 9a10 Old River 5062 157.1 9.0
3-4 Old River 4754 3513 21.8 10-11 Old River 7744 198.4 12.4
3-5 Old River 5022 351.2 22.0 11-13 Old River 2609 266.0 19.0
5-6 Old River 4313 2384 13.0 13-14 0Old River 3857 245.0 17.8
5-11 West Canal 10041 253.0 28.0 14-16 Old River 12089 176.0 10.0
6-7 Victoria Canal 8760 386.5 18.3 14-15 Mendota Canal 12500 196.0 18.0
6-8 Old River 2722 276.3 15.2 13-17 Grant Line Canal 15831 404.0 16.0
8-9 0Old River 2793 109.0 11.7

Sensor
measure?nents DsM2 CBoonudr::zzls
Monte Carlo Forward
estimator Simulation
Validation

Fig. 2: A flow diagram of the experiment.

The network considered for implementation consists of the
Clifton Court Forebay and its surrounding channels which
are parts of the Old River, the Italian Slough, the Mendota
Canal, the West Canal, the Victoria Canal and the Grant Line
Canal and is located on the northern side of Tracy. Figure 4
shows a satellite picture of the area and a map of the network
with the channel configuration of the network, considered in
building a one-dimensional model of the flow. As can be
seen in this figure, this network consists of one reservoir,
19 subchannels and 10 junctions. The total length of the
channels in the network is 38,420m. Table 1 presents the
name and some geometry information about the channels.
The channels are represented by their parent nodes from
figure 4.

Figure 2 shows a flow diagram of the experiment. We
use the Delta Simulation Model II, DSM2, to obtain mea-
surements for boundary conditions and data assimilation as
well as to evaluate our results. DSM2 is a one dimensional
mathematical model, developed in the California Department
of Water Resources (DWR), for dynamic simulation of
hydrodynamics, water quality and particle tracking in the
Delta. DSM2 can calculate stages, flows, velocities, transport
of individual particles, and mass transport processes for con-
servative and non-conservative constituents, including salts,
water temperature, dissolved oxygen, and dissolved organic
carbon. We use DSM2 since there are not enough USGS
sensor stations in the area of interest to obtain boundary
conditions and additional flow measurements needed for the
data assimilation. DSM2 is one of the reference models used
by the DWR for operations and will be considered in this
work as the ground truth.

Fig. 3: The Sacramento-San Joaquin Delta, image adapted from [26]. The
small box on the southern part of the Delta is the network considered for
implementation in the current article.

A. Numerical results

We perform an experiment for a period of 25 hours using
historical data corresponding to June 12, 2006. We obtain
the boundary conditions and measurements used for data
assimilation from DSM2. As boundary conditions, discharge
is imposed at nodes 1, 7, 15, 16 and 17 and stage is imposed
at nodes 4 and 12.

The number of cells in each subchannel is chosen in a way
that the spatial step size in the subchannel is close to and
not smaller than 900ft and the temporal step size is chosen
to be 15sec. This choice of spatial step size results in 204
cells for the full network. Since at each internal cell, there
are two states, discharge and stage, and there is one state at
the boundary cells, we will have a 401 dimensional system.
We run DSM2 with spatial step size of 5,000 ft and temporal
step size of 15 min. We run DSM2 starting one day earlier
so that the effects of inaccurate initial conditions are washed
away and the DSM2 results are close to reality from the
beginning of the experiment.

To perform data assimilation, we only assimilate discharge
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Fig. 4: (a) Satellite image of the channel network around the Clifton
Court Forebay used for the experiment. (b) The network connectivity of the
channel network used for the experiment consisiting of 19 subchannels, 10
junctions and one reservoir.

as the stage results computed by the forward simulation are
relatively close to the corresponding results of DSM2. We
use six discharge measurements at the middle of channels 3-
4, 6-8, 9a10, 10-11, 5-11, 13-14., The process and measure-
ment noises are assumed to be zero-mean white Gaussian
noise. We assume that the noise on different measurements
are uncorrelated. At each cell, the process noise on discharge
is assumed to be correlated with the discharge at its four
neighboring cells from each side. The variance on discharge
at each cell is taken to be 25 and the correlations are taken
to be 20, 12, 8, 4 with the discharge at the neighboring cells,
respectively. The sensor measurements are obtained from
DSM?2 and a zero-mean Gaussian noise with a variance of 50
is added to these measurements to simulate the uncertainty
in the measurements.

Using these flow measurements, the optimal SIR filter is
applied. Figure 5 shows the results of the forward simulation
and the SIR filter with 1000 particles compared to the
corresponding results. obtained from DSM2. The discharge
at four locations in the network are illustrated for the period
of the experiment, As can be seen in this figure, the SIR
filter improves the model results significantly. In order to
quantify the performance of the methods more rigorously,
we calculate the relative error throughout the whole domain
at each time step using the following formula

SN (QF — Qh)?
SN Q)2

where Q¥ and QF are the true value of the flow and the

B(k) = (32)

Fig. 6: Time evolution of relative error for forward simulation and the
optimal SIR filter.

estimated flow at cell ¢ and time step k, respectively.

In Table II, the average relative error per time step is
provided for the forward simulation and the optimal SIR
for a few different number of particles. As can be seen in
this table, performing data assimilation using the optimal SIR
filter reduces the average error of the model from about 23%
to around 10% which is a significant improvement.

TABLE II: Average Relative error corresponding to the forward simula-
tion and the optimal SIR for a few different number of particles.

Method Number of particles  Error(%): mean/variance
Forward sim. - 23.36
SIR 1 10.87 / 0.63
SIR 10 10.41 /7 0.48
SIR 100 10:28 / 0.39
SIR 1000 10.15 /7 0.30

V. CONCLUSION

We investigated the performance of the optimal impor-
tance resampling filter, applied for estimation of water flow
in an open channel network consisting of 19 subchannels and
one reservoir in Sacramento-San Joaquin Delta in California.
Starting from one-dimensional Saint-Venant equations, we
constructed a state-space model of the flow in the network
of interest. Considering a case in which additional measure-
ments of the flow are available, we implemented the optimal
sequential importance resampling filter and the numerical
results were presented.

Applying other sequential Monte Carlo methods, e.g.
Ensemble Kalman Filter and the recently developed implicit
particle filter, to perform the data assimilation and comparing
the performance of these methods is a topic of future work.
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Fig. 5: Time evolution of discharge at six channels in the network, (a) channel 11-13 (b) channel 5-6 (c) channel 3-4 (d) channel 2-5, obtained from the
forward simulation and the optimal SIR filter compared with the ground truth, i.e. DSM2 results.
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