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Abstract— This article presents a method for reconstructing
downstream boundary conditions to a HamiltonJacobi partial
differential equation for which initial and upstream boundary
conditions are prescribed as piecewise affine functions and an
internal condition is prescribed as an affine function. Based
on viability theory, we reconstruct the downstream boundary
condition such that the solution of the Hamilton-Jacobi equation
with the prescribed initial and upstream conditions and recon-
structed downstream boundary condition satisfies the internal
value condition.

This work has important applications for estimation in flow
networks with unknown capacity reductions. It is applied to
urban traffic, to reconstruct signal timings and temporary
capacity reductions at intersections, using Lagrangian sensing
such as GPS devices onboard vehicles.

I. INTRODUCTION

The computation of numerical solutions to the Hamilton-
Jacobi (HJ) partial differential equation (PDE) subject to
boundary conditions, initial conditions or sometimes terminal
conditions is a topic which has generated significant inter-
est in the control and numerical analysis community [18],
[16], [14]. However, the integration of initial or boundary
conditions alone may not be sufficient to solve new data
reconstruction problems arising in the context of Lagrangian
sensing [11]. We consider the specific problem of recon-
structing boundary conditions from internal value conditions
provided by Lagrangian sensing. This problem has important
practical applications, in particular in the context of flow
networks for which it provides information on decreases
in the capacity, which is important to detect and control
saturation and bottlenecks before they propagate throughout
the network.

The fundamental challenge of integrating these different
types of sensing data is the proper use of a constitutive model
of the system. A model capable of mathematically handling
initial, boundary and internal conditions for the HJ–PDE is
presented in [5], [6].

An application of interest is the design of accurate real
time traffic monitoring systems on arterial networks [3],
[19], [10]. The physics of traffic flow is governed by the
presence of signals, with, in general, unknown parameters,
which lead to periodic drops of the capacity at intersections
and to the formation of queues. Today, the GPS technology
provides Lagrangian measurements (happening onboard the
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vehicle) of traffic conditions which can be used to reconstruct
downstream boundary conditions, i.e. to estimate capacity
drops. The state of the road network (density, velocity and
flow) can then be estimated at any location x and time t.

The article is organized as follows. In Section II, we
introduce the mathematical background and state the recon-
struction problem of the downstream boundary condition.
In Section III, we prove the existence of a solution to the
reconstruction problem under some compatibility conditions
between the given initial, upstream and internal value con-
ditions. We detail an algorithm to solve the reconstruction
problem in Section IV and illustrate it numerically in Sec-
tion V.

II. PROBLEM STATEMENT

A. Mathematical background

We investigate the solution to the following HJ–PDE on
the domain (t, x) ∈ [0, tmax] × [ξ, χ], sometimes known as
the Moskowitz HJ-PDE [15], [8].

∂M(t,x)
∂t − ψ

(
−∂M(t,x)

∂x

)
= 0 (1)

The function ψ, called Hamiltonian, is assumed to be con-
cave on its domain of definition Dψ = [0, ρmax] and to sat-
isfy ψ(0) = ψ(ρmax) = 0. We call qmax the maximum value
of ψ on Dψ and define ν[ = ψ′(0) and ν] = −ψ′(ρmax).
The concavity and the condition that ψ(0) = ψ(ρmax) = 0
impose that ν[ > 0 and ν] > 0.

The proper notion of solution to (1) with initial and bound-
ary condition is well studied in the literature [7]. However,
the mathematical properties of the solution of (1) require
specific treatments when we introduce internal boundary
conditions. We use a specific control framework based on
the use of Lax-Hopf’s formula and viability theory [2] to add
this type of conditions. We first define the convex transform
ϕ∗ of the Hamiltonian as follows.

Definition 1 (Convex transform): Let ψ be a concave
function defined on Dψ , its convex transform ϕ∗ takes finite
values on Dϕ∗ = [−ν[, ν]]:

ϕ∗(u) =

{
sup
p∈Dψ

[pu+ ψ(p)] if u ∈ [−ν[, ν]]

+∞ otherwise
(2)

Let c be a lower semi-continuous function defined on a
subset of [0, tmax] × [ξ, χ]. It represents a value condition,
i.e. a value that we want to impose on the solution of (1).

Proposition 1 (Lax-Hopf formula): The viability epi-
solution [1], [5] Mc associated with c is given by

Mc(t, x) = inf
(u,T )∈Dϕ∗×R+

[c(t− T, x+ Tu) + Tϕ∗(u)] (3)
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It is the unique generalized solution of (1) in the Barron-
Jensen/Frankowska (B-J/F) sense [1] associated with c.
Equation (3) also implies an inf-morphism property [1], [5],
[6], which is a key property used to develop the algorithms
of this article.

Proposition 2 (Inf-morphism): Let c be the minimum of a
finite number of functions ci, i ∈ I . The viability episolution
Mc defined by (3) can be written as:
∀ (t, x) ∈ [0, tmax]× [ξ, χ] Mc(t, x) = infi∈I Mci(t, x)

The inf-morphism property is a practical tool to integrate new
value conditions and separate a complex problem involving
multiple value conditions into a set of more tractable sub-
problems [5], [6].

B. State estimation with affine initial and upstream boundary
conditions

In this article, we assume that we are given continuous
piecewise affine initial and upstream boundary conditions,
denoted M0 and γ respectively. We define affine functions
M0i , i ∈ {1, . . . , I0} and γj , j ∈ {1, . . . , Iγ} such that

∀(t, x) ∈ [0, tmax] × [ξ, χ], M0(t, x) =
I0
min
i=1
M0i(t, x) and

γ(t, x) =
Iγ

min
j=1

γj(t, x).

The Lax-Hopf formula (3) leads to an analytical ex-
pression of the solution associated with an affine value
condition [6], omitted in this article for brevity. We introduce
the following notation and definitions, referring to [6] for the
proof of their existence.

Definition 2 (Upper critical density ρc): For ρ∈[0, ρmax],
we define ρc as the largest solution of ψ(ρ)=qmax.

Definition 3 (Congested density associated with q [9]):
For q ∈ [0, qmax] we define ρ(q) as the unique solution of
ψ(ρ) = q for ρ ∈ [ρc, ρmax].

Following [4], we define the subderivative ∂− and the
superderivative ∂+ as follows:
v ∈ ∂−f(x0)⇔ ∀x ∈ Df , f(x) ≥ f(x0) + v(x− x0)
v ∈ ∂+f(x0)⇔ ∀x ∈ Df , f(x) ≤ f(x0) + v(x− x0)
Definition 4: For ρ ∈ [0, ρmax], we define u+0 (ρ) as an

element of −∂+ψ(ρ)∩R+. Note that u+0 (ρ) is not uniquely
defined if ψ is not differentiable in ρ. However, the specific
choice of u+0 (ρ) ∈ −∂+ψ(ρ) does not influence the results
derived later in this article.

Definition 5 (Capture time T 0): The function T 0 is de-
fined as follows:

T 0(ρ, x) =

{
χ−x
u+
0 (ρ)

if u+0 (ρ) 6= 0

+∞ otherwise
∀(ρ, x) ∈ [ρc, ρmax]× [ξ, χ],

C. Problem statement

We assume that, besides the piecewise affine initial and
upstream boundary conditions, we are given an affine internal
value condition µ, defined as follows:

Definition 6 (Affine internal value condition µ): For t ∈
[t1, t2], we define ζ(t) = x1 + v(t − t1). The function µ
reads

µ(t, x) =

{
g(t− t1) + h if t ∈ [t1, t2] and x = ζ(t)
+∞ otherwise (4)

We assume that the constants g and v satisfy 0 ≤ g ≤
ψ(ρc)− ρcv and 0 ≤ v ≤ ν[.

We call downstream boundary condition β, a value condi-
tion that takes finite values on a subset of [0, tmax]×{χ}. At
time t, the downstream boundary condition β(t, χ) provides
information on decreases in the capacity at x = χ, which
is important to detect and control saturation and bottlenecks
before they propagate throughout the network. This motivates
the following reconstruction problem:

Problem 1 (Initial Boundary Value Problem): We
are given an affine internal value condition µ, piecewise
affine upstream boundary condition γ and initial
condition M0. We want to reconstruct the downstream
boundary condition β̂ such that the B-J/F solution of
the Initial Boundary Value Problem of the HJ-PDE (1)
with the prescribed initial and boundary conditions
M0, γ and β̂ satisfies the internal condition:

∀t ∈ [t1, t2], ∀x = ζ(t),

min(MM0
,Mγ ,Mβ̂)(t, x) = µ(t, x). (5)

We define an affine downstream boundary solution βk as
follows:

βk(t, x) =

{
fk + ek(t− βk) if t ∈ [βk, βk+1] and x = χ
+∞ otherwise

(6)

We define ρk = ρ(ek) (Definition 3). The expression
of the solution of the HJ-PDE subject to the downstream
boundary condition βk is denoted Mβk and can be computed
explicitly [6]. We define the domains (i), (ii) and (iii) in
which the solution has a specific analytical expression:

Mβk (t, x) =



fk + (t− βk)ϕ∗
(
χ−x
t−βk

)
if T 0(ρk, x) ≥ t− βk (i)

(t− βk)ek + (χ− x)ρk + fk (ii)

if T 0(ρk, x) ∈ [t− βk+1, t− βk]

fk + (βk+1 − βk)ek + (t− βk+1)ϕ
∗
(

χ−x
t−βk+1

)
if T 0(ρk, x) ≤ t− βk+1 (iii)

(7)

III. EXISTENCE OF A DOWNSTREAM BOUNDARY
CONDITION

In this section, we derive conditions on M0, γ and µ
for the existence of a downstream boundary condition β̂
which solves Problem 1. We study uniqueness properties
among piecewise affine solutions and exhibit a solution that
corresponds to a constant limitation of the maximum flow in
an interval [τ1, τ2].

A. Interval in which the downstream boundary condition is
affine

Given that µ is affine, β̂ is necessarily such that Mβ̂ is
affine on the trajectory ζ (since Mβ̂ and µ coincide on the
domain of µ). The derivative of Mβ̂ in the direction (1, v)
should thus exist in the domain {(t, x) s.t. t ∈ [t1, t2], x =
ζ(t)} and should be equal to g. We first introduce the
following lemma:

Lemma 1 (Intervals in which ϕ∗ is affine): The function
ϕ∗ is affine in [u1, u2] if and only if there exists ρ ∈ Dψ

such that (u1, u2) ⊂ −∂+ψ(ρ).
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Proof: The function ϕ∗ is affine in the interval [u1, u2]
if and only if its subgradient is reduced to a given ρ∗ in
(u1, u2). The subderivative of ϕ∗ satisfies the Legendre-
Fenchel inversion formula [1]:

u ∈ −∂+ψ(ρ)⇔ ρ ∈ ∂−ϕ∗(u).
Since ∂−ϕ∗(u) = {ρ∗} for u ∈ (u1, u2), we have (u1, u2) ⊂
−∂+ψ(ρ∗).

Definition 7 (Density associated with v and g): Let fv
be defined for ρ ∈ [0, ρmax] by fv(ρ) = ψ(ρ) − vρ. The
function is concave as the sum of concave functions, and
attains its maximum value ϕ∗(−v) in a closed interval
(Definition 1). Let ρ∗ be the upper bound of this interval. We
assumed in Definition 6 that 0 ≤ g ≤ ψ(ρc)−ρcv = fv(ρc),
and thus 0 ≤ g ≤ ϕ∗(−v). Since fv is continuous and
fv(ρmax) ≤ 0, the intermediate value theorem states
that there exists a solution ρ̃(v, g) ∈ [ρ∗, ρmax] such that
fv(ρ̃(v, g)) = g. Given that fv is concave and given the
definition of ρ∗, fv is strictly decreasing on [ρ∗, ρmax]
which proves that ρ̃(v, g) is unique. Given that g ≤ fv(ρc),
we have ρ̃(v, g) ≥ ρc.

Definition 8 (Compatibility conditions): A necessary con-
dition for Problem (1) to be well posed is to have compatible
initial, upstream and internal conditions [5], [6]. This means
that all these conditions can be imposed simultaneously and
is written as

min(MM0
,Mγ)(t,x)≥µ(t,x) ∀t∈[t1,t2], x=ζ(t)

min(MM0
,Mµ)(t,x)≥γ(t,x) ∀(t,x)∈[0,tmax]×{ξ}

min(Mγ ,Mµ)(t,x)≥M0(t,x) ∀(t,x){0}×[ξ,χ]
(8)

In the remainder of this article, we call ρout = ρ̃(v, g) and
qout = ψ(ρout) and assume that the compatibility conditions
between M0, γ and µ are satisfied.

Proposition 3 (Affine boundary condition): If the internal
condition µ is such that ψ is differentiable at ρout, there exists
an interval [τ̃1, τ̃2] in which any piecewise affine solution
of Problem 1 is necessarily affine, with temporal derivative
equal to qout.

Proof: We consider a potential piecewise affine solution
β̂. If such a solution exists, there exists a set of functions
(βk)k∈K , defined by (6) such that ∀(t, x) ∈ [0, tmax]×{χ},
β̂(t, x) = mink∈K βk(t, x). For each k ∈ K, we consider
the domain defined by t ∈ [tk, tk] and x = ζ(t) in which
Mβ̂(t, x) = Mβk(t, x). We show that the points (tk, ζ(tk))

and (tk, ζ(tk)) necessarily belong to the domain (ii) of the
downstream boundary condition βk. We then show that the
temporal derivative of βk is necessarily equal to qout and
conclude the proof.

Since Mβ̂ is a solution of Problem 1, it takes finite values
at (tk, ζ(tk)) and (tk, ζ(tk)). These points necessarily belong
to one of the domains (i), (ii) or (iii) of Mβk .
• If (tk, ζ(tk)) belongs to domain (iii), we define δk ≥

tk, the first time such that (δk, ζ(δk)) is in domain (iii).
The function Mβk is necessarily affine along the trajectory
ζ with derivative equal to g. For any t ∈ [δk, tk] such that
Mβk is differentiable in (t, ζ(t)), its total derivative along
the trajectory ζ is given by

dMβk

dt (t, ζ(t))=ϕ∗(u(t))−(v+u(t)) (ϕ∗)′(u(t)), (9)

with u(t) = χ−ζ(t)
t−βk+1

. We then have
d2Mβk

dt2 (t, ζ(t)) = 0⇔ (ϕ∗)
′′
(u(t)) = 0, ∀t ∈ [δk, tk].

Necessarily, ϕ∗ is affine on [u(δk), u(tk)] and Lemma 1
proves that there exists ρ∗ ∈ Dψ such that [u(δk), u(tk)] ⊂
−∂+ψ(ρ∗). It implies that, on the trajectory ζ, ϕ∗(u(t)) =
ψ(ρ∗) + u(t)ρ∗ and (ϕ∗)

′
(u(t)) = ρ∗. The total derivative

of Mβk along the trajectory is thus given by
dMβk

dt (t, ζ(t)) = ψ(ρ∗)− vρ∗.

Since dMβk

dt (t, ζ(t)) = g, ρ∗ = ρ̃(v, g); since ψ is differen-
tiable at ρout = ρ̃(v, g), −∂+ψ(ρ∗) is reduced to a singleton.
This implies that u(δk) = u(tk) and thus δk = tk. The point
(tk, ζ(tk)) is at the boundary of the domains (ii) and (iii).
Similarly, if (tk, ζ(tk)) is in the domain (i), it is also in the
domain (ii) and thus at the intersection of the two domains.
• In the domain (ii), Mβk is affine and its total derivative

along the trajectory ζ is given by
dMβk

dt (t, ζ(t)) = ψ(ρk)− vρk.
Necessarily, ρk = ρout and fk = ψ(ρk) = qout. For the points
(tk, ζ(tk)) and (tk, ζ(tk)) to be included in the domain (ii),
we have

βk ≤ tk −
χ−ζ(tk)

u+
0 (ρout,ζ(tk))

and βk+1 ≥ tk −
χ−ζ(tk)

u+
0 (ρout,ζ(tk))

For all k such that Mβ̂(t, ζ(t)) = Mβk(t, ζ(t)) for
t ∈ [tk, tk], βk has a temporal derivative equal to qout. The
continuity of Mβ̂ imposes that there exists a unique k = k∗

such that Mβ̂(t, x) = Mβk∗ (t, x) on the trajectory ζ. We
define τ̃1 and τ̃2 as follows:

τ̃1 = t1 − χ−x1

u+
0 (ρout,x1)

and τ̃2 = t2 − χ−x2

u+
0 (ρout,x2)

. (10)

The boundary condition βk∗ takes finite values in a domain
including [τ̃1, τ̃2] × {χ} in which its temporal derivative is
equal to qout.

If ψ is not differentiable in ρout, the choice of βk∗ also
leads to the equality of the derivatives of µ and Mβk∗ on
the trajectory ζ, even though this choice may no longer be
unique.

B. Existence under compatibility conditions

Proposition 4 (Existence): If the internal value condition
µ is affine, if the initial and upstream boundary conditions
are piecewise affine and if the feasibility conditions of
Definition 8 are satisfied, there exists a downstream boundary
condition β̂ solution of Problem 1. We exhibit a solution
which is affine on the smallest interval [τ1, τ2] ⊃ [τ̃1, τ̃2],
representing a constant limitation of the maximum flow.

Proof: We search for a potential solution β̂ of Prob-
lem 1 which represents a constant limitation of the maximum
flow during a time interval [τ1, τ2]. To achieve this goal, we
search for τ1 ≤ τ̃1, τ2 ≥ τ̃2, m and ρ such that β̂(t, χ) =
m+(t−τ1)ψ(ρ), ∀t ∈ [τ1, τ2]. We call β̂∗ the restriction of β̂
in [τ1, τ2]×{χ} and Mβ̂∗ the associated viability episolution.
For t ≤ τ1, there is no downstream constraint in the flow and
we choose β̂(t, χ) = min(MM0 ,Mγ)(t, χ). For t ≥ τ2,
there is no limitation of the maximum flow at x = χ. The
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flow at x = χ is given by min(MM0
,Mγ ,Mβ̂∗)(t, χ),

it depends on the upstream, initial and upstream boundary
condition β̂∗.

From the results of Proposition 3, we choose ρ = ρout.
With this choice, the trajectory ζ is included in the domain
(ii) of Mβ̂∗ . The function Mβ̂∗ is affine in domain (ii) and
its derivative along the trajectory ζ is equal to g.
• Equation satisfied by τ1 and τ2: In the domain (ii), we

have Mβ̂∗(t, x) = (t − τ1)qout + (χ − x)ρout + m and we
want Mβ̂∗(t1, x1) = µ(t1, x1) = h. This condition imposes
a relation between τ1, m and h:

(t1 − τ1)qout + (χ− x1)ρout +m = h. (11)
We define the function h̃ for t ∈ [0, tmax] by h̃(t) = h −
ρout(χ−x1)+(t− t1)qout. With this notation, (11) is written
m = h̃(τ1). The continuity of β̂ at (τ1, χ) imposes that
m = min(MM0 ,Mγ)(τ1, χ) which leads to the following
equation for τ1 ∈ [0, τ̃1]

h̃(τ1)−min(MM0 ,Mγ)(τ1, χ) = 0. (12)
We choose τ2 = τ̃2. Note that larger values of τ2 are
possible, leading to a longer limitation of the maximum
flow at x = χ but we choose the smallest solution. The
observation of µ only provides a lower bound for the value
of τ2. If Equation (12) has a solution in the interval [0, τ̃1],
we call τ1 the largest such solution and present an algorithm
to compute this solution in Section IV. Otherwise, we set
τ1 = 0 and we introduce specific feasibility conditions in
Definition 8.

Proposition 5 (Feasibility conditions): The search for a
piecewise affine limitation of the maximum flow implies that
β∗(t, χ) ≤ min(MM0 ,Mγ)(t, χ),∀t ∈ [τ̃1, τ̃2] i.e.

∀t ∈ [τ̃1, τ̃2], min(MM0 ,Mγ)(t, χ) ≥ h̃(t). (13)

If there is no solution to (12) in [0, τ̃1], the feasibility
conditions require the existence of x̂ ∈ [ξ, χ] such that the
spatial derivative of M0 is −ρout for (t, x) ∈ {0} × [x̂, χ]
and such that M0(0, x̂) = h− (x̂− x1)ρout − t1qout.

If these conditions are satisfied, the construction of ρout,
τ2, τ1 and m leads to a solution of Problem 1.

Proof: This is true by construction. We define
β̂∗(t, χ) = m+ (t− τ1)ψ(ρout) for t ∈ [τ1, τ2], the solution
β̂ takes finite values in [0, tmax]× {χ}:

β̂(t, x) =


min(MM0

,Mγ)(t, χ) if t ≤ τ1
β̂∗(t, χ) if t ∈ [τ1, τ2]
min(MM0

,Mγ ,Mβ̂∗)(t, χ) if t ≥ τ2
.

The function defined as the minimum of MM0
, Mγ and

Mβ̂ in the domain [0, tmax] × [ξ, χ] is a solution of the
HJ-PDE (1). The compatibility conditions ensure that the
boundary conditions are satisfied and the construction of β̂
ensures that the function takes the same values as the internal
condition µ for all (t, x) on the trajectory defined by ζ.

IV. RECONSTRUCTION OF DOWNSTREAM BOUNDARY
CONDITIONS USING ONE AFFINE INTERNAL VALUE

CONDITION

In this section, we present an algorithm which computes
the largest solution of (12) in the interval [0, τ̃1] or proves that

there is no solution on this interval. The algorithm leverages
the inf-morphism property (Proposition 2) and the convexity
of Mci for any convex target function ci [6].

Proposition 6 (Algorithm to compute τ1): If (12) has a
solution in [0, τ̃1], its largest solution can be computed
by solving a finite number of scalar convex optimization
programs and scalar linear equations (Algorithm 1). If there
is no solution in [0, τ̃1], the same algorithm provides a proof
that no solution exists.

Algorithm 1 Algorithm for computing τ1
1: Define κi, κ

1
i and κ2i for i ∈ {1, . . . , I0 + Iγ},

2: K = ∪i{κi, κ1i , κ2i }, τmax = t1 − χ−x1

u0(ρout)
,

3: τmin = max{[0, τmax) ∩ K}, T = ∅.
4: while T == ∅ do
5: I = {i ∈ {1, . . . , I0 + Iγ} : κi ≤ τmax}
6: for i ∈ I do
7: ni = Mci(τmin, χ), pi =

∂Mci

∂t (τ+min, χ), ni =

Mci(τmax, χ), pi =
∂Mci

∂t (τ−max, χ)

8: if ni ≤ h̃(τmin) then
9: θ is the unique solution of Mci(t, χ) = h̃(t) on

[τmin, τmax].
10: if Mci(θ, χ) = Mc(θ, χ), T = T ∪ {θ}
11: else if ni + p

i
(τmax − τmin) ≤ h̃(τmax) and ni −

pi(τmax − τmin) ≤ h̃(τmin) then
12: t∗ is the largest minimizer of Mci(t, χ) − h̃(t)

in [τmin, τmax], δ = Mci(t
∗, χ)− h̃(t∗)

13: if δ ≤ 0 then
14: θ is the unique solution of Mci(t, χ) = h̃(t)

in [t∗, τmax]
15: if Mci(θ, χ) = Mc(θ, χ), T = T ∪ {θ}
16: end if
17: end if
18: end for
19: τmax = τmin, τmin = max{[0, τmax) ∩ K}
20: end while

Proof: According to the feasibility conditions (13),
min(MM0

,Mγ)(τ̃1, χ) ≥ h̃(τ̃1). We denote by ci the value
condition i, i.e. ci = M0i if i ≤ I0 and ci = γi−I0
if i > I0. We define c = mini ci. We search for the
largest t ≤ τ̃1 such that ∃i ∈ {1, . . . , I0 + Iγ} satisfying
Mci(t, χ) = h̃(t) = Mc(t, χ). If no such t exists, there is
no solution to (12) in [0, τ̃1], otherwise, this value of t is also
the largest solution of (12) in [0, τ̃1].

Let T represent the current set of solutions of (12),
initialized to the empty set. We initialize τmax = τ̃1. The
algorithm iteratively updates τmax such that, if T = ∅, there
is no solution of (12) in [τmax, τ̃1], otherwise the algorithm
terminates and the largest element of T is the largest solution
of (12) in [0, τ̃1]. More precisely, ∀t ∈ [τmax, τ̃1],∀i ∈
{1, . . . , I0 + Iγ}, Mci(t, χ) ≥ h̃(t).

This condition is true as we initialize τmax because of the
compatibility condition (13). Each component Mci can be
computed explicitly [6] and we can define three domains in
which the solution has a specific analytical expression. For
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i ∈ {1, . . . , I0+Iγ}, we define κi ≤ κ1i ≤ κ2i corresponding
to the boundaries of the three different domains in x = χ.
We have Mci(t, χ) = +∞ if and only if t ≤ κi and t 7→
Mci(t, χ) is affine on the interval [κ1i , κ

2
i ]. For a given τmax,

we define τmin as τmin = max{[0, τmax) ∩ K}.
The solution Mci associated with the convex target

function ci is convex [6] which implies the convexity of
t 7→ Mci(t, χ). We define ni = Mci(τmin, χ), ni =
Mci(τmax, χ), pi is the right derivative of t 7→ Mci(t, χ)

at τmin (denoted ∂Mci

∂t (τ+min, χ)) and pi is the left derivative
of t 7→ Mci(t, χ) at τmax (denoted ∂Mci

∂t (τ−max, χ)). For
i ∈ {1, . . . , I0 + Iγ}, we check the following conditions:

1. If ni ≤ h̃(τmin): The function t 7→Mci(t, χ)− h̃(t) is
convex in [τmin, τmax] as the sum of two convex functions.
It is negative at τmin and positive at τmax. The function has
a unique zero in [τmin, τmax], which we add to the set T if
Mci(θ, χ) = Mc(θ, χ).

2. If ni+ p
i
(τmax− τmin) ≤ h̃(τmax) and ni− pi(τmax−

τmin) ≤ h̃(τmin): The convex function t 7→Mci(t, χ)− h̃(t)
is positive in [τmin, τmax] if and only if its minimum on
this interval is positive. Since the function is convex it has
a unique minimum δ reached on a closed interval and we
denote by t∗ the upper bound of this interval. If δ ≤ 0, there
exists a unique zero in the interval [t∗, τmax] which we add
to the set T if Mci(θ, χ) = Mc(θ, χ).

3. If none of the previous conditions is satisfied, the
function t 7→ Mci(t, χ) − h̃(t) is positive in [τmin, τmax]:
We have ni > h̃(τmin) and at least one of the following
conditions holds: (1) ni + p

i
(τmax − τmin) > h̃(τmax) or

(2) ni − pi(τmax − τmin) > h̃(τmin). If the first condition
holds, the function t 7→Mci(t, χ) is convex in [τmin, τmax]
so Mci(t, χ) ≥ ni + (t− τmin)pi. Given that ni > h̃(τmin),
and ni + p

i
(τmax − τmin) > h̃(τmax), the linear function

t 7→ ni + p
i
(t − τmin) is greater than h̃ at t = τmin and

t = τmax and thus, in the entire interval [τmin, τmax]. It
implies that t 7→Mci(t, χ)− h̃(t) is positive in [τmin, τmax].
If the second condition holds, a similar reasoning implies
that t 7→Mci(t, χ) − h̃(t) is positive in [τmin, τmax] which
concludes the proof.

Stopping condition: After checking conditions 1, 2 and 3
above for all i, there are two possible cases:
• If T = ∅, the function t 7→ Mci(t, χ) − h̃(t) is positive
in [τmin, τmax] for all i. We set τmax = τmin and keep the
property that Mci(t, χ) − h̃(t) ≥ 0, ∀t ∈ [τmax, τ̃1]. We
update τmin = max{[0, τmax) ∩ K} and iterate.
• If T 6= ∅, its largest element is the largest solution of (12)
in the interval [τmin, τmax] and thus in the interval [0, τ̃1].
We terminate the algorithm.

Remark 1 (Analytical solution of τ1): In the intervals
[τmin, τmax] such that τmin ≥ κ1i and τmax ≤ κ2i , the
function t 7→Mci(t, χ) is affine. Its minimum or zeros are
computed by solving a scalar linear equation.

V. PRACTICAL IMPLEMENTATION

We are given a concave Hamiltonian ψ, piecewise affine
upstream and initial boundary conditions γ and M0, which
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Fig. 1. Concave Hamiltonians ψ used in the numerical simulations. In the
context of traffic flow, they represent the empirical relation between flow and
density. Left: Triangular Hamiltonian, parameterized by the free flow speed
(ν[ = 10 m/s), the capacity (qmax = 1300 veh/h) and the maximum density
(ρmax = 1/10 veh/m). Right: Greenshields Hamiltonian, parameterized by
the capacity (qmax = 1300 veh/h) and the maximum density (ρmax = 1/10
veh/m).
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Fig. 2. Solution of (1) given initial and upstream piecewise affine boundary
conditions and one affine internal value condition between (t1, x1) and
(t2, x2). Top: Solution computed for a triangular Hamiltonian. Bottom:
Solution computed for a Greenshields Hamiltonian.

simulate value conditions of a road segment. We illustrate
the reason why the resolution of Problem 1 is important
to reconstruct capacity reductions in flow networks. We use
Algorithm 1 to solve the reconstruction problem and compute
the corresponding solution of Problem 1.

A. Experimental setting

We are given piecewise affine initial and upstream bound-
ary conditionsM0i , i ∈ {1, . . . , I0} and γj , j ∈ {1, . . . , Iγ},
which are generated randomly for the numerical example of
interest. In the context of traffic flows, this corresponds to
information on vehicle counts at the upstream boundary of
the road segment. We also consider an affine internal value
condition µ that satisfies the compatibility conditions with
the initial and upstream boundary conditions and represents
a vehicle reporting information on a portion of its trajectory,
during which its speed is considered constant. The compu-
tations are performed for two concave Hamiltonians (illus-
trated Figure 1), which are commonly used in transportation
engineering [12], [17]. The numerical solution is computed
using a toolbox developed for Matlab [13], which evaluates
the exact solution numerically at any point (t, x) with a low
computational cost.

B. Solution with piecewise affine initial and upstream bound-
ary conditions and one affine internal condition

We compute the solution of (1) with the prescribed piece-
wise affine initial and upstream boundary conditions and the
affine internal condition as the minimum of MM0 , Mγ and
Mµ [6]. This solution does not take into account the fact
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Fig. 4. Solution of the reconstruction problem 1 given initial and upstream
piecewise affine boundary conditions and one affine internal value condition
between (t1, x1) and (t2, x2). Top: Solution computed for a triangular
Hamiltonian. Bottom: Solution computed for a Greenshields Hamiltonian.

that the internal value condition results from both the initial,
upstream and downstream boundary conditions (even though
not observed directly), resulting in a domain of null flow and
density downstream of the internal value condition between
θ1 and θ2 (Figure 2).
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Fig. 3. Solution of (1) with
value conditions M0, γ and
β.

A strong motivation for solv-
ing Problem 1 is the following.
Let β be the value of the solution
of (1) in [0, tmax]×{χ} with the
prescribed value conditionsM0,
γ and µ. The solution of (1) with
prescribed value conditionsM0,
γ and β leads to a different solu-
tion, in particular one which does
not coincide with µ, as shown
in Figure 3. The motivation is also intuitive in the context
of traffic flow engineering, where Figure 2 corresponds to
having a vehicle suddenly breakdown when there is no
obstacle in front of it. Slow downs are expected to be due
to queues caused by downstream capacity reductions.

C. Resolving the domains of null flow and density

To take into account the fact that the internal condition is
not only caused by the initial and upstream conditions but
also by the downstream condition, we solve Problem 1 using
Algorithm 1, i.e., we reconstruct a downstream boundary
condition that “caused” the internal value condition. The
algorithm computes a solution that represents a constant
limitation of the maximum flow for a time interval [τ1, τ2],
as illustrated in Figure 4 for the two concave Hamiltonians.
Note that the solution is unique (among the piecewise affine
solutions) for an interval [τ̃1, τ̃2] included in [τ1, τ2] and that
other downstream boundary conditions are possible out of
this interval.

VI. CONCLUSION

We studied a reconstruction problem of downstream
boundary conditions from Lagrangian sensing and prescribed
upstream and initial conditions, with important applications
in flow networks estimation and control. Under compatibility
conditions, a downstream boundary condition representing a
constant capacity drop can be reconstructed and we present
a computationally efficient algorithm that numerically com-
putes the solution.

We discuss the uniqueness of the solution on specific
domains, among piecewise affine boundary conditions. The
generalization of the algorithm when several internal condi-
tions are given, when the compatibility conditions are not
satisfied or when specific conditions (such as periodicity)
are imposed on the boundary conditions are the subject of
current work.
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