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Abstract— Forecasting road traffic conditions requires an ac-
curate knowledge of the spatio-temporal dependencies of traffic
flow in transportation networks. In this article, a Bayesian
network framework is introduced to model the correlation
structure of highway networks in the context of traffic forecast.
We formulate the dependency learning problem as an optimiza-
tion problem and propose an efficient algorithm to identify
the inclusion-optimal dependency structure of the network
given historical observations. The optimal dependency structure
learned by the proposed algorithm is evaluated on benchmark
tests to show its robustness to measurement uncertainties and
on field data from the Mobile Millennium traffic estimation
system to show its applicability in an operational setting.

I. INTRODUCTION

The increasing volume of urban traffic in the recent
decades has led to the growth of massive recurrent congestion
phenomena whose cost is estimated to be 87.3 billion dollars
per year in the United States [24]. In order to reduce the
direct costs associated with traffic congestion as well as
the negative externalities it creates, accurate modeling and
controls tools are required. The development of more accu-
rate traffic models, real-time congestion estimates, forecast
and routing algorithms can enable traffic managers to attain
higher efficiency on the existing road infrastructure.

Traffic modeling is a well established discipline which
dates back to classical macroscopic traffic models [9], [19],
[22]. Macroscopic traffic models consider the dynamics of
traffic flow using hydrodynamics theory. Classical estimation
techniques [6], [16], have been shown to work efficiently
with macroscopic traffic models [27], [29]. In particular,
the recent growth of the number of smartphones equipped
with sensing devices has provided the traffic estimation
community with a large number of possible measurement
sources [11], [28]. However, a significant portion of the
research work has been considering the estimation problem
for current traffic conditions (nowcast), and the forecast
problem has been left relatively untouched.

Traffic forecast is an important problem, because ac-
curate forecasts are a mandatory requirement for optimal
routing on road networks, which is a major component of
congestion mitigation. A crucial requirement for accurate
traffic forecasting is the knowledge of how traffic states at
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different times and locations depend on each other. Most
physical principles assumed by classical traffic models can
be seen as defining information propagation rules. For scalar
macroscopic models, the mass conservation principle yields
a partial differential equation (PDE) which can be directly
solved by wavefront tracking methods [1], or numerically
by Godunov schemes [8]. Both of these methods provide an
encoding of the spatio-temporal dependencies of the physical
system. Unlike in the estimation problem, in which the model
errors can be corrected via observations, the forecast problem
relies heavily on an accurate model as the forecast error
grows with the length of the forecast horizon [15]. Thus,
knowing the exact dependency structure of the network is
crucial in forecasting traffic conditions.

In this article, we propose to represent the evolution of
traffic on the road network as a Bayesian network [13],
[14], [21] and to learn its time-space dependencies using a
structure learning algorithm. Bayesian networks provide an
efficient framework to represent and work with dependencies
in distributed systems, in particular to address fundamental
problems such as learning and inference. This statistical
framework allows us to learn the conditional dependencies
that best fit the data and avoid the need for detailed as-
sumptions regarding the physical system, which are often
unknown or inaccurate. Thus, the proposed model is more
flexible and allows for a variety of traffic phenomena to
be accounted for, unlike some classical models. Once the
dependency structure of the network is identified, it can be
used to forecast the evolution of traffic conditions.

Several approaches can be considered for the dependency
structure learning problem. In this article we propose to
learn the physical dependency structure due to information
propagation, and not the statistical dependency structure
due to similar and concurrent traffic episodes without a
cause-consequence relation. i.e. learning the dynamics of the
system as opposed to pattern matching. We assume that the
traffic state evolution is a Markov process and thus can be
modeled by a Bayesian network with specific properties [14],
[21]. In this setting, the structure learning algorithm identifies
the most likely set of dependencies characterizing traffic flow.

The Bayesian network framework has been used for traffic
applications, in [12], [18], for the estimation problem using
different statistical methods, and in [26] for the forecast
problem, but in all of these cases, the dependency structure
is assumed to be known. To the best of our knowledge,
there is no significant previous work on Bayesian network
structure learning for traffic flow. In a wider context, the
structure learning problem for Bayesian networks has been
studied in [2], [3], [7], [23]. In this work we propose to adapt
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the greedy-equivalence search (GES) algorithm developed
in [3] to our specific problem. We show that reasonable
traffic assumptions yield a much simpler version of the
original algorithm. In particular we show that the dependency
structure of the Bayesian network represents a causality
relation of traffic flow.

The contributions of this article are as follows:
• A modeling framework for traffic flow based on

Bayesian networks.
• A tractable approach to solve the structure learning

problem for road networks in the context of traffic fore-
cast. An adaptation of the GES algorithm [3] specific
to the topological properties of the proposed Bayesian
network.

• An implementation and evaluation of the method on
field data collected in the San Francisco Bay Area.

The rest of the article is organized as follows: in Section II
we recall the classical framework of Bayesian networks and
introduce notations. Section III presents our Bayesian model
of traffic and formulates the structure learning problem as
an optimization problem. In Section IV we present and
analyze experimental results obtained with real data from
the Mobile Millennium traffic estimation system. Finally,
Section V draws some conclusions and discusses further
extensions to this work and related research topics.

II. BAYESIAN NETWORKS

A Bayesian network is a directed acyclic graph in which
each vertex represents a random variable and an edge be-
tween two vertices implies a dependence between the two
random variables, where the strength of the influences is
represented by conditional probabilities [21]. We consider
a directed acyclic graph G(V, E) where V = {Vn,t|(n, t) ∈
{1, . . . , N} × {1, . . . , T}} is a set of vertices and E is a
set of directed edges [14]. Each vertex Vn,t in the graph is
naturally associated with a random variable representing the
traffic velocity at a spatio-temporal location indexed by n for
the spatial dimension and by t for the temporal dimension. A
typical Bayesian network is illustrated in Figure 1. The graph

Fig. 1. Bayesian network for vehicular traffic: Traffic dependencies are modeled by
a Bayesian network in which each vertex represents the distribution of traffic velocity
at a given spatio-temporal location. The horizontal dimension corresponds to space
and the vertical dimension corresponds to time.

structure encodes the Markov conditions [21] which state
that each vertex Vn,t is independent of its non-descendants
given its parents. The probability of a set of values D =
(ν1,1, . . . , νN,T ) for a graph G with a parameter set Θ reads:

p(D|Θ,G) =

N∏
n=1

T∏
t=1

p(νn,t|πn,t,Θ),

where πn,t denotes the set of parents of the vertex Vn,t, and
D the data (observations). Realizations of random variables
are denoted by lower-case letters. The term Θ denotes the
parameters of the joint distribution of the graph. The log-
likelihood for a dataset D on the graph G is given by:

l(D; Θ,G) =

N∑
n=1

T∑
t=1

log p(νn,t|πn,t,Θ). (1)

In a typical learning framework, in which the conditional
distributions are more often available, equation (1) conve-
niently expresses the likelihood of the data in terms of local
conditional probabilities. If joint distributions are available,
this expression can be transformed to:

l(D; Θ,G) =

N∑
n=1

T∑
t=1

log p(νn,t, πn,t|Θ)− log p(πn,t|Θ),

where the first term is assumed to be known as the joint
distribution of a vertex and its parents. The second term can
be computed by marginalizing out the vertex Vn,t [14]. As
illustrated in Figure 1, Bayesian networks are an efficient tool
to represent complex dependency relations between random
variables. However, Bayesian network theory depends on
strong assumptions regarding the generative distributions
being modeled, such as the symmetry, decomposition and
intersection properties described in [21]. For example, the
generative distribution of G is required to satisfy the de-
composition axiom, which states that if ∀Y ∈ Y , X is
independent of Y , then X is independent of Y (with X , Y
being two nodes of the network and Y a set of nodes). This
property is satisfied by the Gaussian distribution. However,
it is not satisfied by most probability distributions (see [21]
for an example and [17] for the general case). This motivates
the choice of the Gaussian distribution as the generative
distribution for our problem in the following section.

III. PROBLEM STATEMENT

A. Traffic modeling

We propose using a Bayesian network to model traffic flow
by discretizing space and time into intervals of respective
size ∆x and ∆t. Each vertex of the Bayesian network has
a spatio-temporal index (n, t) ∈ {1, . . . , N} × {1, . . . , T},
and thus the Bayesian network has a grid form (Figure 1).
The horizontal dimension represents space and the vertical
dimension represents time. Each vertex Vn,t is associated
with a probability distribution which represents the traffic
velocity at the corresponding spatio-temporal location. A
directed edge between two vertices implies a dependence
between the corresponding velocity distributions. Our model
makes the following assumptions.
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Assumption 1: Traffic state evolution can be represented
by a Markov process.
In particular the dependency structure learned only depends
on the dynamics of the traffic state. The parameters of
the dependency structure are the parameters of the state
transition matrix of a Markov process. While this assumption
ignores the recurrence of traffic conditions based on the
time of day and day of week, the proposed framework
can be easily extended to incorporate this information by
conditioning on the expected traffic velocity or learning
separate models for each congestion state.

Assumption 2: Traffic state evolution can be modeled as
a linear function of past observations.
For tractability, we also assume that the velocity distributions
of interest belong to the Gaussian family. In particular the
Gaussian family is closed under the conditional operator,
and conditional Gaussian distributions have expressions an-
alytical in the parameters of the original distributions [5].
By using Gaussian distributions to model spatio-temporal
traffic state dependencies, we assume that locally, traffic state
evolution can be considered to be linear in the observations.
According to the triangular model of traffic [4], [20], this is
true within a single traffic phase (free flow or congestion).

The nature of traffic flow leads us to impose the following
set of constraints C on the structure of a graphical represen-
tation of a traffic model.

C =

{
∀(νn,t, νn′,t) ∈ V2, (νn,t, νn′,t) /∈ E
∀(νn,t, νn′,t′) ∈ V2 s.t. t < t′, (νn′,t′ , νn,t) /∈ E

(2)
The first line in equation (2) states that there is no direct
dependency relationship between the velocity on the highway
at two different locations at the same time step. The second
line in equation (2) states that the traffic state at a given time
period can only impact the traffic state at a future time period,
i.e. information does not propagate backwards in time.

Remark 1: Any graph G generated under the structure
constraint C expressed by (2) is acyclic.
This feature is of crucial importance for the tractability of
the structure learning algorithm described in the following
section.

B. Structure learning

Structure learning is a natural problem in Bayesian net-
work theory [13], [14]. Given a set of vertices V and a
set of constraints C on the Bayesian network, the structure
learning problem consists of finding an optimal set of edges
E and an optimal set of distribution parameters Θ for the
application of interest. A standard approach to this problem
is the maximization of a score function. In general, for
correctness and computational tractability, a score function
should satisfy the following properties:
• The decomposability property states that the score can

be decomposed in a sum of local scores. This allows for
efficient comparison of structures by local comparisons.

• The asymptotic consistency property states that in the
limit of a large number of samples, the score function

prefers the model with the fewest number of parameters.
A more formal definition can be found in [3].

• The local consistency of the score guarantees that a
locally greedy structure search nudges the model in
an optimal direction. If two vertices Vj and Vi are
not independent from each other given the parents of
Vi in the generative distribution, then adding the edge
Vj → Vi increases the value of the score function. If
they are independent given the parents of Vi, adding the
edge Vj → Vi decreases the score function.

In our algorithm, we use the Bayesian Information Cri-
terion (BIC) score [10], [25], which satisfies all of the
conditions listed above and is one of the most commonly
used score functions. The BIC score is given by:

SBIC(D,G,Θ) = logP (D|Θ̂,G)− d

2
logm+O(1) (3)

where D is the data, Θ̂ is the maximum likelihood distribu-
tion parameters for D, d is the number of edges, and m is the
sample size per vertex. The BIC score is an approximation of
the Bayes-Dirichlet score [25], which expresses the posterior
probability of the network parameters Θ given the data D.

Our structure learning problem can be formulated as an
optimization problem. Given a set of vertices V , a set of
constraints C (2) on a network structure, a score function
SBIC (3), and a dataset D, we consider the following
problem:

max
Θ,E

SBIC(D,G(V, E),Θ) (4)

subject to: G(V, E) satisfies C

Solving this problem gives us the structure of the Bayesian
network most likely to explain the observed data given the
modeling constraints. In the following section we describe an
algorithm for solving this optimization problem efficiently.
The solution of this optimization problem consists of the set
of edges and the distribution parameters which are the closest
to the generative distribution in the BIC score sense.

C. Learning algorithm

In general, finding the optimal Bayesian network structure
given a dataset D requires searching through the entire
directed acyclic graph (DAG) space and selecting the graph
G with the highest score function value S(D,G,×). This is
clearly intractable given that the size of the DAG space is
super-exponential in the number of vertices.

Definition 1: We define a valid topological ordering to be
an ordering where the vertices are sorted by ascending time
index.
Given the constraint set C (2) and the resulting property
stated in Remark 1, we can reduce the DAG space to a
set of topological orderings of the vertices that satisfy the
constraints.

Lemma 1: All topological orderings are equivalent. As
stated in the constraint set C, there are no dependencies be-
tween vertices with the same time index, thus all topological
orderings allow for the same set of dependencies.
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As a result, the DAG space can be limited to a single
topological ordering of the vertices.

The restricted DAG space given the constraint set C
is however exponential in the number of vertices in the
network. While the general structure learning problem is this
setting is hard, more tractable solutions exist for finding an
inclusion-optimal model. An inclusion-optimal model is a
Bayesian network that contains the generative distribution
and has no subgraph with the same set of independence
relations1. In general, the inclusion-optimal structure must be
found by searching over all topological orderings. However,
as explained above, given the constraints of our problem it is
sufficient to consider one arbitrary valid topological ordering.

Algorithm 1 Greedy equivalence search algorithm for traffic
modeling. Forward phase: edge additions which maximize
the increase of the score function. Backward phase: Edge
removals which do not decrease the score function.

1: Define the edges E = ∅
2: Define topological ordering satisfying the constraints C
3: Forward phase
4: for each vertex Vn,t do
5: for each candidate parent π̃n,t do
6: Compute the score of the graph with the additional

edge (Vn,t, π̃n,t)
7: Keep the local structure maximizing the score
8: end for
9: end for

10: Backward phase
11: for each vertex Vn,t do
12: for each parent πn,t do
13: Compute the score of the graph with the edge

(Vn,t, πn,t) removed
14: Keep the local structure maximizing the score
15: end for
16: end for

We adapt the greedy equivalence search (GES) algorithm2

from [3] that finds an inclusion-optimal Bayesian network
to solve our structure learning problem. The pseudo-code
for the modified version of this greedy search algorithm is
given in Algorithm 1. The algorithm consists of two phases, a
forward phase with edge additions and a backward phase of
edge removals. Edge additions and removals are performed
only when they increase the score function. The set of
candidate parents of a vertex is a parameter of the algorithm
which denotes the set of possible parents considered in the
forward phase of the algorithm. In Section IV (Figure 3) we
analyze the sensitivity of the algorithm to this parameter.
The simplified version of the greedy equivalent search algo-
rithm from [3] is used to solve the optimization problem (4).

1This is not necessarily optimal in the general sense as there might be a graph with
fewer edges that also contains the generative distribution.

2In addition to the properties listed in Section III-B this algorithm also requires
that G satisfies the path property [3] which expresses that a dependency in G can be
characterized by the existence of a path between vertices.

The search algorithm given in Algorithm 1 has a manageable
complexity that is linear in its inputs. The complexity is equal
to the product of the sample size |D|, the number of vertices
in the Bayesian network |V|, and the size of the candidate
parents set. It should be noted that this structure learning
procedure easily lends itself to be distributed over a parallel
computing framework, due to the local consistency property
of the score function.

IV. RESULTS

In this section, we present results on sensitivity and
robustness to noise with a benchmark dataset. We also study
the velocity forecast accuracy and its impact on route choice
with experimental traffic data from the Mobile Millennium
traffic estimation system.

A. Benchmark tests
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Fig. 2. Stability of the structure learning algorithm: The relative error in the
covariance matrix of the joint distribution increases with respect to the relative L2

norm of the noise with respect to the data. The algorithm is able to reconstruct the
covariance structure reasonably well for relative L2 norm of the noise lower than 0.2.

We study the performance of the structure learning algo-
rithm for two criteria; first the robustness to noise in the
training set, second the impact of the optimal number of
parents on the forecast accuracy with synthetic data.

In order to study the robustness of our structure learning
algorithm, we consider a dataset generated from a probability
distribution corresponding to the Bayesian network detailed
in Figure 1. We add independent and identically distributed
Gaussian noise to each observation in the network. This is
assumed to model a real life situation, in which the data does
not correspond exactly to a given generative distribution, but
is subject to sensing, processing, modeling errors. The results
from Figure 2 show that the structure learning algorithm is
stable (error in the structure of the joint covariance matrix
learned is lower than the error in the signal) up to reasonably
high relative values of noise to signal ratio.

We also analyze the sensitivity of the forecast accuracy to
the number of parents using synthetic data from the graph
from Figure 1. The complexity of the algorithm increases
linearly with the size of the candidate parents. Therefore, it
is important to understand the trade-off between accuracy and
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Fig. 3. Dependency to optimal number of parents: Traffic state forecast at
locations which depend on a high number of parents have the same forecast mean
error in average (dashed blue line) but a smaller standard deviation (continuous red
line).

computation time. The results from Figure 3 show that the
accuracy of the forecast mean is not significantly impacted
by the optimal number of parents. However, the forecast stan-
dard deviation error decreases as a function of the number of
parents. More information leads to a tighter estimate, which
is what would be expected from a statistical estimate that
is unbiased and consistent. This is of particular importance
for applications which focus on distributed quantities such as
travel time. Forecast results with real data from the Mobile
Millennium system are presented in the following section.

B. Forecast accuracy

The algorithm is tested in a operational setting with ex-
perimental data from the Mobile Millennium system on a 10-
mile section of I-880 in the Bay Area, California (Figure 4).
Experimental data consists of traffic velocity estimate at
a 1/4 mile, 30-second resolution. We learn the optimal
structure of the Bayesian network on data corresponding to
2 hours of the morning rush on February 1st, 2010. The
forecast accuracy of the algorithm is assessed by comparing
the forecast given by our method on February 2nd, 2010
with the output of the Mobile Millennium system over the
same time period. The random variables corresponding to

Fig. 4. Experimental data location: We consider the Mobile Millennium highway
model output on a 10-mile long stretch of I-880 in the Bay Area.

each vertex in the Bayesian network represent a mean traffic
velocity for a 2.5 minute interval over a 1/4 mile road

segment. The Markov structure has a spatio-temporal extent
of 10 miles and 30 minutes, i.e. in the forecast phase,
knowledge of traffic state up to 30 minutes before and 5 miles
upstream and downstream can be considered to compute the
forecast. Results show that the performance of the algorithm
does not depend on the sample size for a vertex sample size
of at least 100 in the training set, which given the dataset
available corresponds to about 1 hour of data.

A 10 minutes velocity profile forecast is presented in
Figure 5. Typical features of traffic such as queue locations
are correctly forecast. However, the forecast cannot capture
the full variability of traffic phenomena observed during this
time. We believe this is in part due to the modeling of non-
linear traffic dynamics using a linear dependency relationship
as stated in Assumption 2.
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Fig. 5. 10 minutes velocity profile forecast: The velocity Bayesian forecast (dashed
blue line) captures the space variation of ground-truth traffic velocity (solid black line).
The forecast tends to have lower variability than the ground truth.

C. A tool for real-time routing

The forecast of traffic conditions has a great value for
real-time traffic routing applications. However, most of the
existing routing engines neither account for current traffic
conditions nor incorporate forecast based on current traffic
conditions. Common routing estimates are either based on
purely static quantities or on historical estimates of the traffic
conditions. In Figure 6, we consider a 2.5-mile segment of
I-880 in the Bay Area, California, and compute a travel time
forecast at a 10 minute horizon by two different means. The
first one assumes that traffic conditions are stationary and
forecast the exact current conditions, whereas the second
forecast is given by our Bayesian algorithm for traffic states
aggregated at a 2.5 minute, 1/4 mile resolution. We convert
this velocity forecast to a travel time forecast.

As seen in Figure 6 the accuracy of the naive approach of
equating future traffic conditions to the current traffic condi-
tions is reasonable when traffic conditions do not change
significantly. However, over the entire period of interest,
our Bayesian travel time forecast method performs better.
This is also related to the result presented in Figure 3. The
travel time with the simplistic method can be quite good on
average, but since it does not use the conditional knowledge
of a large set of vertices, its variance is larger. This has a
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negative impact on the travel time accuracy for which errors
are accumulated over the path.
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Fig. 6. 10 minutes forecast with Bayesian network: Forecast travel time relative
error computed from Bayesian velocity forecast (solid blue line) and from current
conditions (dashed red line). The travel time forecast relying on the stationarity of
traffic is not always accurate and in average does not perform as well as the Bayesian
forecast method that we develop.

V. CONCLUSION

We considered the problem of learning a Bayesian network
structure for accurate traffic forecast in a highway network.
Under some reasonable physical and statistical assumptions,
we implemented a tractable structure learning algorithm
which provides an inclusion-optimal solution to the problem.
Robustness analysis with respect to noise in the learning set
was conducted with synthetic data, and forecast accuracy
was assessed using real-time traffic estimates from the Mo-
bile Millennium system. Experimental results show that this
approach accurately identifies the changes in traffic state for
short forecast horizons.

As alluded to previously, the accuracy of the proposed
method is limited by attempting to forecast a non-linear
system using a linear Gaussian model. While the system is
non-linear, empirical data and discretization methods for the
PDE based solutions such as the Godunov scheme [8] show
that the dynamics is linear when conditioned on the density
of vehicles on the road. This implies that our model could
be extended to cluster the data by traffic state and solve
the structure learning problem for each cluster individually.
The forecast can then be obtained based on which cluster is
most likely given the data. This is a topic we are currently
exploring and expect to improve the forecast accuracy with.
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